![]() |
ИСТИНА |
Войти в систему Регистрация |
ИПМех РАН |
||
Let $\varphi$ be a symplectomorphism of ring of polynomials $k[x_1,\dots,x_n; y_1,\dots,y_n]$. Consider an algebra $A_\varphi=k[\xi_i,\eta_i; i=1,\dots,n]: [\xi_i,\eta_j]=\delta_{ij}$, other commutators are zero, $\xi_i^p=\varphi(x_i), \eta_i^p=\varphi(y_i)$, $p$ is prime. If for any $\varphi$ algebra $A_\varphi$ is isomorphic to $A_{id}=W_n$, then Kontsevich conjecture holds - group of symplectomorphism isomorphic to group of automorphisms of Weil algebra. However, we can prove that algebras $A_\varphi$ are Morita equivalent.