![]() |
ИСТИНА |
Войти в систему Регистрация |
ИПМех РАН |
||
Во время доклада планируется рассказать результаты об асимптотическом поведении при $t\to\infty$ положительных решений полулинейного параболического уравнения $$ u_{t} = \sum\limits_{i,j=1}^{n} \frac{\partial }{\partial x_{j}} \Big( a_{ij}(x,t) \frac{\partial u}{\partial x_{i}}\Big)+ f(u), $$ определенных в цилиндрической области $\Omega\times (0,\infty)$, удовлетворяющиx условию Неймана на $\partial\Omega\times (0,\infty)$, где область $\Omega \subset R^{n}$ ограничена. Цель - сформулировать условия на функцию $f(u)$, чтобы результат был аналогичен случаю $f(u)= u^{q}$ , $0<q<1$, в котором положительные решения $u(x,t)$ эквивалентны некоторому решению обыкновенного дифференциального уравнения $\dot{u}=u^q$, т.е. являются неограниченными функциями вида $ u(x,t)=[(1-q)(t+t_{0})]^{1/(1-q)} + O(e^{-\delta t} )$ при $t\to\infty$.