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Narrow-escape times for diffusion in microdomains with a particle-surface
affinity: Mean-field results
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We analyze the mean time tapp that a randomly moving particle spends in a bounded domain �sphere�
before it escapes through a small window in the domain’s boundary. A particle is assumed to diffuse
freely in the bulk until it approaches the surface of the domain where it becomes weakly adsorbed,
and then wanders diffusively along the boundary for a random time until it desorbs back to the bulk,
etc. Using a mean-field approximation, we define tapp analytically as a function of the bulk and
surface diffusion coefficients, the mean time it spends in the bulk between two consecutive arrivals
to the surface and the mean time it wanders on the surface within a single round of the surface
diffusion. © 2010 American Institute of Physics. �doi:10.1063/1.3442906�

I. INTRODUCTION

A generic problem in cellular biochemistry is to estimate
the time—the so-called narrow-escape time �NET�—that a
randomly moving particle spends in a bounded domain be-
fore it escapes through a small window in the domain’s
boundary. A particle can be an ion, a ligand, a molecule, a
protein, etc. A confining domain can be a cell, a mi-
crovesicle, a compartment, an endosome, a caveola, a den-
dritic spine, etc. A variety of processes in which the impor-
tance of the NET problem is striking were discussed in Refs.
1–4.

Conventional analytical calculations of the NET rely on
the assumption that the confining surface is perfectly reflect-
ing everywhere, except for the escape window—an aperture
of typical size a. For the Brownian motion, evaluation of the
NET probability density function �PDF� Ft amounts to find-
ing the solution of the diffusion equation with mixed
Dirichlet–Neumann boundary conditions.5

In three dimensions �3D� one finds5 �see also Ref. 3� that
at sufficiently large times, the probability St that the particle
has not reached the escape window up to time t obeys

St � exp�−
t

t3D
� , �1�

where the symbol “�” signifies that one deals with the lead-
ing in time asymptotic behavior and omits the numerical
prefactors. The characteristic decay time t3D �the subscript
“3D” specifies that the search for the escape window pro-
ceeds via the bulk diffusion� in Eq. �1� is given by

t3D =
V

4D0a
, �2�

where V is the volume of the domain and D0 is the bulk
diffusion coefficient. This result holds for any 3D bounded
domain, provided that the boundary is sufficiently smooth
and the ratio a /R, where R is the typical size of the domain,
is sufficiently small.

The PDF Ft then follows via the relation Ft=−dSt /dt.
Hence, t3D in Eq. �2� can be interpreted as the mean time of
the first passage to the escape window—the mean NET. Note
that the results in Eqs. �1� and �2� have been obtained earlier
in Refs. 6–8 and 2 in the special case of a sphere of radius R
and the escape window being a geodesic disk of radius a,
a /R�1.

To get some idea of typical NET scales, consider an
example mentioned in Ref. 1—search for the tubule entrance
in a vesicle by a diffusive ligand. The vesicle size R and the
radius of the tubule entrance a are of orders of 10−5 and
10−6 cm, respectively, while the ligand diffusion coefficient
D0 is in the range of 10−5–10−7 cm2 /s. Thus t3D is of order
of 10−4–10−2 s, depending on the value of the bulk diffusion
coefficient. Of course, one may encounter considerably
larger first passage times for larger R or smaller a, as well as
under conditions of molecular crowding emerging due to
complexity of the cellular environment. In the latter case, an
effectively subdiffusive motion can emerge.4 On the con-
trary, interactions of particles with molecular motors may
induce an effective biased motion and thus reduce the NET.

The analysis based on the “perfectly reflecting wall” as-
sumption misses an important factor. In realistic systems, in
addition to the short-range repulsion, there are always some
attractive interactions between the surface of the domain and
the diffusive particle. Capitalizing on ideas of Adam and
Delbrück,9 set forward for chemoreception �see also the dis-
cussion in Ref. 7�, one may suppose that if such interactions
are sufficiently strong, the actual search for the escape win-
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dow will be a two-stage process, in which the particle will
first find the surface of the cell and then will move diffu-
sively along the surface until it finds the escape window.
Consequently, one may expect that in this two-stage process
the rate at which the escape window is found �and corre-
spondingly, the apparent NET tapp� will increase �decrease�
by an amount that depends on the surface diffusion coeffi-
cient.

It would be even more realistic to suppose that in the
presence of particle-surface attractive interactions, the search
for the escape window will be an intermittent two-stage
process:10–14 A particle approaching the surface will revers-
ibly bind to it �if the barrier against lateral diffusion is
smaller than the desorption barrier� and diffuse over the sur-
face for some �random� time T, after which it will desorb
back to the inner part of the confining domain, approach it
again at some other point, reversibly bind, diffuse, etc.
Therefore, as depicted in Fig. 1, a typical particle trajectory
will consist of a sequence of surface diffusion tours followed
by excursions in the inner part of the domain, i.e., an inter-
mittent combination of diffusion in two and three spatial di-
mensions. In this case, tapp will also acquire a dependence on
the mean time �s of residence on the surface within each
round of surface diffusion. Given that attractive interactions
are always present, the result in Eq. �2�, based on the as-
sumption of a perfectly reflecting wall, does not provide a
reliable estimate of the actual mean NET tapp.

In this paper we study analytically, within a mean-field
approach, the effect of the particle-surface affinity on the
mean NETs. In Sec. II we define our model. In Sec. III we
first rederive the result in Eq. �2� in the spirit of the approach
discussed by Berg and Purcell7 in their analysis of diffusive
ligand adsorption from the extracellular space by cell bound
receptors. Next, we consider a special case of very strong
attractive interactions, such that a particle, once it bumps on
the surface, stays there for good and wanders along the sur-
face until it finds the escape window. This limit can be
thought of as an analog of the Adam–Delbrück two-stage
process. Further on, we consider the general case of an in-

termittent two-stage process. We develop a mean-field ap-
proach which allows us to derive a general result for tapp,
valid for any �s. This result represents an interpolation for-
mula from which we recover Eq. �2� when �s→0 and the
result of the Adam–Delbrück-type approach for �s→�. Fi-
nally, we conclude with a discussion of the overall effect of
the particle-surface affinity on the NET.

II. MODEL

We focus here on the simplest geometry in which the
bounded domain is a sphere of radius R. We base our ap-
proach on the analysis of representative particle’s trajecto-
ries, rather than on the solution of the diffusion equation with
appropriate boundary conditions. Therefore, instead of stan-
dard settings “point particle versus window of radius a,” we
switch here to an equivalent formulation in which the par-
ticle has radius a, while the escape window is a point on the
surface. Consequently, we stipulate that the particle covers
an area �a2, when it touches the surface. We suppose, as
well, that the particle is initially placed at a random position
on the surface of a sphere of radius r0=R−�, �=�a, where �
is a numerical factor of order of unity; its precise value will
be discussed below.

Diffusion coefficient of the particle in the bulk inside the
sphere is D0. When the particle approaches the sphere �i.e.,
the distance between the particle and the surface of the
sphere gets smaller than a�, it becomes weakly adsorbed and
starts to diffuse, with diffusion coefficient Ds, along the sur-
face of the sphere. At every �arbitrarily small� time step �t,
the particle updates its state: With probability pd it may de-
tach from the surface and diffuse away, and with probability
1− pd it stays adsorbed and continues diffusion over the sur-
face. The time T of residence on the surface within a single
surface diffusion tour is a random variable with distribution

Ps�T� =
1

�s
exp�−

T

�s
� , �3�

where the mean value

�s = �t
1 − pd

pd
. �4�

Our goal is to define, in this general case, the decay of the
probability St that the particle has not found the escape win-
dow up to time t, from which we will define the tail of the
first passage distribution Ft and hence, the characteristic
mean NET tapp, as a function of �s, D0, Ds, R, and a.

III. NET PROBLEM WITH A PARTICLE-SURFACE
AFFINITY

As the first step, we rederive the results in Eqs. �1� and
�2�, adapting to the NET problem the approach discussed by
Berg and Purcell7 within the context of chemoreception.
Next, we will extend the developed approach over the case
when a particle has an affinity to the surface and may diffuse
along the surface.

FIG. 1. A path of a diffusing particle starting at point “x” �situated at a
distance � apart from the surface� and leaving the sphere through the escape
window placed on the south pole. Excursions in the inner part of the sphere
between two consecutive contacts with the surface �Brownian excursions�
are marked by a blue color while the excursions along the surface—by a
green color.
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A. NET problem with a perfectly reflecting wall
revisited

Let pd�1 so that the boundary of the sphere is perfectly
reflecting. A given path of a particle during time t can be then
viewed as a sequence of N Brownian excursions—3D loops
connecting the points where the particle has touched the sur-
face; of course, N is a realization-dependent random vari-
able. These excursions correspond to the parts of the path
marked in blue in Fig. 1; since we focus on the case pd�1,
the “green” parts should shrink to single points on the
sphere.

Note that the term “touching the surface,” as well as the
hypothetical path depicted in Fig. 1 should be viewed with
an appropriate caution. As a matter of fact, the total number
of distinct encounters of a point particle with the surface
during a finite time interval is infinite in the limit of continu-
ous diffusion. To avoid this confusing behavior, one has to
introduce a finite cutoff distance of order of a realistic par-
ticle radius.

Further on, not all encounters with the surface can be
considered as independent tries in search for the escape win-
dow, but only those Brownian excursions whose ends on the
surface are separated by a distance greater than a; shorter
Brownian excursions should be removed and considered as a
single try. This circumstance has been discussed in Ref. 7. Of
course, this criterion is rather ambiguous and does not define
the precise value of the cutoff distance. In this regard, we
define a Brownian excursion as a part of a particle trajectory
which starts at a distance �=�a away from the surface and
ends up on the surface without ever crossing it. In doing so,
we consider � as a fitting parameter which will be chosen
afterward in order to match the exact result in Eq. �2�.

The probability of not hitting the escape window in a
single random encounter with the surface is 1−�a2 /4�R2. If
the contacts with the surface can be taken as independent
tries, we may estimate the probability that a given path, start-
ing at a random location on the surface of a sphere of radius
R−�, has not found the escape window as a product
�1− �a2 /4R2��N. Consequently, the survival probability St will
be given by

St = 	
N=0

�

Pt�N��1 −
a2

4R2�N

, �5�

where Pt�N� is the probability that the particle “touched” the
surface exactly N times within time interval t.

Suppose now that a particle starting at t=0 at distance �
apart from the surface of the sphere touches the surface for
the first time at t=�1, for the second time at t=�1+�2, etc.
Then, the probability distribution Pt�N� can be defined as

Pt�N� = E�
��t − 	
k=1

N

�k���	
k=1

N+1

�k − t�� , �6�

where the symbol E��¯  denotes averaging with respect to
the distribution of �-variables, while ��x� is the Heaviside
theta function which is defined as ��x�=1 if x	0 and zero
otherwise.

Using the following representation of the rectangular
function:

��t − A���B − t� = L−1
 exp�− 
A� − exp�− 
B�



� , �7�

L−1�¯  being the inverse Laplace transformation with re-
spect to the parameter 
, we perform averaging over the
distribution P��� of independent, identically distributed
�-variables and find that Pt�N� obeys

Pt�N� = L−1
�

N



�1 − �
�� , �8�

where

�
 = �
0

�

d� exp�− 
��P��� �9�

is the moment-generating function of the �-variables. One
may readily notice that Pt�N� in Eq. �8� is normalized,
	NPt�N�=1.

To evaluate P���, and hence, �
, consider the following
auxiliary problem—the survival of a particle �whose initial
location is uniformly distributed on the surface of a sphere of
radius R−��, which diffuses with diffusion coefficient D0

within a sphere of radius R whose surface is perfectly ad-
sorbing. Green’s function G��r �r0=R−�� solution of this
problem is given by15

G��r�r0� =
1

2�R
	
n=1

� sin��nr

R
�

r

sin��nr0

R
�

r0

�exp�− ��n

R
�2

D0�� . �10�

Integrating over the angular variables and r we find S�—the
probability that such a particle survives until time �,
from which we get the desired PDF P���=−dS� /d� that the
first encounter with the surface occurred exactly at time
moment �,

P��� =
2�D0

R2 − �R
	
n=1

�

n sin��n�

R
�exp�− ��n

R
�2

D0�� .

�11�

Note that the distribution in Eq. �11� has been previously
obtained in Ref. 16 within a different context.

Before we proceed further, several remarks concerning
the PDF in Eq. �11� are to be made. The distribution P���
involves three different time scales. The smallest one corre-
sponds to the most probable value ��2 /D0, which means
that most of the time the particle simply bounces onto the
surface almost immediately without leaving it for any con-
siderable distance. Further on, at intermediate scales the dis-
tribution P��� has a “fat” algebraic tail P�����−3/2. In this
regime P��� describes the probability for a random walk,
commencing at a plane bounding an infinite 3D system, to
return back to the plane for the first time after time �. As a
matter of fact, the mean �—the mean length of Brownian
excursions �b—is dominated by this very regime,

235101-3 Narrow-escape times J. Chem. Phys. 132, 235101 �2010�
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�b = �
0

�

d��P��� =
R�

3D0
�1 −

�

2R
� �

R�

3D0
�12�

and is R /� times larger than the most probable return time.
Finally, at times of order R2 /D0, finite-size effects dominate
and the distribution P��� decays exponentially with time.

Consequently, the moment-generating function of a ran-
dom variable � obeys

�
 =
R

R − �

sh��R − ���
/D0�

sh�R�
/D0�
, �13�

from which equation we find that at sufficiently large times t,
the distribution function Pt�N� follows:

Pt�N� �
�5�

2��RN
exp�−

5�

4RN
�N −

3D0t

�R
�2� . �14�

This distribution is centered around the mean value N̄= t /�b

and, at fixed t, decays exponentially with N on both sides of

the N̄.
Now, the asymptotic decay form of St in Eq. �5� can be

determined in two different ways. We can either convert the
sum into an integral and use the asymptotic distribution in
Eq. �14�, or perform summation exactly and then invert the
Laplace transform in the asymptotic limit t→��
→0�. We
proceed with the latter scenario. Plugging Pt�N� given by Eq.
�8� into Eq. �5� and performing summation over N, we get

St = L−1� �1 − �
�


�1 − �1 −
a2

4R2��
�� . �15�

In the large-t limit, the integral in Eq. �15� is dominated by
the behavior of �
 in the vicinity of 
=0. Expanding

1 − �1 −
a2

4R2��
 �
a2

4R2 −
R�

3D0

 , �16�

we find that the asymptotic behavior of St in Eq. �15� follows

St � exp�−
3D0a

4�R3 t� . �17�

Choosing now �=� /4, we see that the latter decay form
coincides with the result in Eqs. �1� and �2�. Consequently,
we may interpret t3D in Eq. �2� as

t3D =
4R2

a2 �b, �18�

where the first multiplier determines the mean number of
independent tries necessary to find the location of the escape
window, while the second factor is the mean time separating
independent tries—the mean length of a Brownian excur-
sion.

B. NET problem with particle-surface affinity:
Adam–Delbrück-type two-stage process

In this subsection we consider an opposite extreme case,
i.e., that of pd=0, so that once a particle happens to approach
the surface of the domain, it stays there for good and wan-

ders along the surface until it finds the escape window. In a
sense, this is an idealized situation. Indeed, in this case the
barrier against the desorption should be infinitely large, and
consequently, the barrier against the lateral diffusion should
be infinitely large too, effectively suppressing the movement
of the particle along the surface.

Neglecting the time �b it will take, on average, for the
particle to arrive for the first time at some random point on
the surface of the domain, we write the probability that a
particle diffusing along the surface with diffusion coefficient
Ds would not find the escape window until time t as

St = �1 −
A�t�

4�R2� , �19�

where A�t� is the mean area swept on the surface of a sphere
of radius R by a diffusive disk of radius a until time t—a
two-dimensional analog a Wiener sausage.17 This area is de-
fined by a series18

�1 −
A�t�

4�R2� = �1 −
a2

4R2�	
k=1

�

ak exp�− k�k + 1�
Dst

R2 � ,

�20�

where

ak =
1

1 − x0
��

x0

1

dxPk
�x��2��

x0

1

dxPk

2 �x� , �21�

P�x� being the Legendre functions, while x0=−1+a2 /2R2

and k are the roots �numbered in the ascending order� of the
equation

Pk
�x0� = 0. �22�

Note that the expansion in Eq. �20� differs by a factor
�1− �a2 /4R2�� from the formal solution of the trapping prob-
lem on the surface of a sphere.18 This difference originates
from different initial conditions. Namely, in our case a par-
ticle can be initially located at any point on the surface �in-
cluding the area covered by the trap, in which case it disap-
pears instantaneously—this corresponds to finding the
escape window at a first try�, while in the situation studied in
Ref. 18 the particle starts from a random point somewhere
outside the trap.

The leading asymptotic behavior of St in Eq. �19� is
dominated by the smallest root 1 of Eq. �22�. Hence, the
asymptotic behavior of St is

St � exp�−
t

t2D
� , �23�

with

t2D =
R2

1�1 + 1�Ds
, �24�

where the subscript “2D” signifies that the search for the
escape window proceeds in this case via the surface diffu-
sion.

When a /R�1, for the smallest root one gets 1

�1 / �2 ln�2R /a�� and, consequently, t2D obeys, in the lead-
ing order in a /R,18
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t2D �
2R2

Ds
ln�2R

a
� . �25�

This result has been also obtained in Refs. 1 and 7 and earlier
by Bloomfield and Prager19 in their calculation of the attach-
ment rate of tail fibers to bacteriophages. Note that t2D

�R2 ln�R� and thus should be much larger than �b�R,
which describes the mean time necessary to reach the surface
of the domain. This means that it was quite legitimate to
discard this contribution in our analysis.

C. NET problem with particle-surface affinity:
An intermittent two-stage process

We turn finally to the general case when the detachment
probability 0� pd�1 so that a particle, when touching the
surface, will remain weakly adsorbed and wander on the sur-
face for some random time T, then detach and diffuse in the
bulk, reattach to the surface, etc.

Consider a path starting at a random point on the surface
of a sphere of radius R−�a /4 and suppose that this path
touched the surface of the sphere at time moment �1, then
wandered along the surface for a random time T1, detached
from the surface at time moment �1+T1, subsequently re-
turned to the surface at time moment �1+T1+�2, etc. Then,
assuming that subsequent visits of the surface can be consid-
ered as independent tries in search for the exit, the probabil-
ity St that the escape window has not been found by such a
path comprising N rounds of Brownian excursions followed
by subsequent surface diffusion tours, can be written as

St = Pt�N = 0� + 	
N=1

�

E�,T
�
k=1

N �1 −
A�Tk�
4�R2��

��t − 	
k=1

N

�k + 	
k=1

N−1

Tk���− t + 	
k=1

N+1

�k + 	
k=1

N

Tk�� ,

�26�

where now the symbol E�,T�¯  denotes the averaging with
respect to both the distribution of �-variables, Eq. �11�, and
the distribution of T-variables, Eq. �3�.

Note that Eq. �26� tacitly assumes that each surface dif-
fusion tour is an independent try in search for the escape
window, which manifests itself in the decoupling of the av-
erage of the product into the product of average values. This
is, of course, an uncontrollable assumption.

On one hand, the distribution P�d� of the distance d
between the point where the particle detaches from the sur-
face and the point where it reattaches to the surface again
after an excursion in the bulk is given by the Poisson kernel
for a three-dimensional ball:20 P�d���1 /d3�. This is a broad
distribution, such that the areas visited on the surface in two
consecutive surface diffusion tours will not, on average, sig-
nificantly overlap.

On the other hand, the surface of the domain is of a finite
extent and one will certainly have an oversampling—some
parts of the surface will be visited many times before the
escape window is found. This will incur some correlations in
the search process since the true survival probability St ac-
counts only for the actual area swept on the surface by a

particle up to time t, and counts multiple visits to the same
place as a single try. In this sense, Eq. �26� defines a lower
bound on the true survival probability, precisely in the same
way as the Rosenstock �or Smoluchowski� approximation
defines a rigorous lower bound on the decay function for the
trapping problem �see, e.g., Ref. 21�.

Consequently, decoupling of correlations defines a rigor-
ous lower bound on the mean NET. Given that, as we pro-
ceed to show, tapp obtained via such a mean-field approach
entails exact results for �s→0 and �s→�, one may judge
that it is a useful and plausible approximation. A further dis-
cussion of this matter goes beyond the scope of the current
paper and will be addressed both analytically and numeri-
cally elsewhere.22

Using the Laplace transform representation of the rect-
angular function, Eq. �7�, we may conveniently rewrite Eq.
�26� and perform straightforwardly averaging over the distri-
butions of �- and T-variables. In doing so, we get

St = L−1
1 − �




+

�
�F0 − �
F
�

�1 − �
F
� � , �27�

where �
 is defined in Eq. �13� and

F
 =
1

�s
�

0

�

dT�1 −
A�T�
4�R2�exp�−

T

�s
− 
T� . �28�

Explicitly, F
 is given by a series

F
 = �1 −
a2

4R2�	
k=1

�

ak�1 + k�k + 1�
Ds�s

R2 + �s
�−1

. �29�

Consider now the behavior of the coefficients in this series in
more detail. First, for small a /R a good approximate solution
of Eq. �22� is k=k−1+1 / �2 ln�2R /a��,18 and thus the roots
of Eq. �22� grow linearly with k. Second, in the leading order
in a /R, ak=�k,1, where �k,1 is the Kronecker delta �ak=1 for
k=1 and zero otherwise�, correction terms to this dependence
are of order of �a /R�2fk, where fk is a rapidly decaying func-
tion of k. All this permits us, so far as we are interested in the
small-
 �large-t� limit, is to consider only the first term in the
series in Eq. �29� and skip the remaining terms, giving

F
 � �1 −
a2

4R2��1 + 1�1 + 1�
Ds�s

R2 + �s
�−1

. �30�

Finally, notice that the first term in Eqs. �26� and �27� decays
rapidly in the time t domain, compared to the second one
�indeed, its characteristic decay time is just �b� and thus its
contribution is negligible in the large-t limit, we get

St � L−1
�3D0�a2 + 41�1 + 1�Ds�s�
12D0R2�s + �aR3 + 
�−1� , �31�

which describes the asymptotic behavior of the survival
probability in the limit 
→0.
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IV. RESULTS AND DISCUSSION

Inverting Eq. �31�, we obtain our main results,

St � exp�−
t

tapp
� , �32�

where

tapp =
12D0R2�s + �aR3

3D0�a2 + 41�1 + 1�Ds�s�
�33�

is the mean NET for diffusion in a sphere with particle-
surface affinity. Note that for �s→0 we recover the exact
result in Eq. �2�, while for �s→� we find from Eq. �33� the
exact result in Eq. �24�, specific for the Adam–Delbrück-type
two-stage search process.

It is expedient to cast the result in Eq. �33� into a physi-
cally meaningful form, using the characteristic times intro-
duced in Eqs. �4�, �12�, and �24�,

tapp =
�b + �s

a2

4R2 +
�s

t2D

. �34�

This equation has a transparent physical meaning: The nu-
merator on the right-hand-side of Eq. �34� defines the overall
time spent, on average, in a single Brownian excursion in the
bulk followed by a surface diffusion tour, while the denomi-
nator defines the average fraction of the sphere surface cov-
ered within a single tour of surface diffusion. Therefore, tapp

equals the time consumed by a Brownian excursion and a
single surface diffusion tour, times the number of tries nec-
essary to cover the whole surface. Note that essentially the
same argument have been used in Refs. 23 and 24 to estimate
the first passage time for search by a diffusive protein for a
specific binding site on a DNA molecule.

Further on, we rewrite Eq. �34� formally as

tapp = t3D�1 +
�s

�b
���1 +

4R2

a2

�s

t2D
� . �35�

One notices next that tapp is a monotonically increasing �de-
creasing� function of �s if t2D	 t3D �t2D� t3D�. Consequently,
tapp	 t3D when

D0

Ds
	

�

3
1�1 + 1�

R

a
. �36�

Typically, Ds is less by two or three orders of magnitude than
D0 �may be even less under the conditions of molecular
crowding25�, which means that the ratio on the left hand side
of the inequality in Eq. �36� is of order of 102–103. For the
example, mentioned in Sec. I, search for the tubule entrance
in a vesicle by a diffusive ligand, one has R /a�101 so that
the right hand side of Eq. �36� is of order of unity and the
inequality in Eq. �36� evidently fulfills. This means that for
this example the particle-surface affinity will generally lead

to larger mean NETs, compared to the estimate based on the
assumption of a perfectly reflecting wall. To inverse the in-
equality, one will need the ratio R /a to be of order of
103–104, which may be realized, say, for catalytic reactions
in microporous media �R being the radius of a pore and
a—radius of a catalytic site�. In this case, indeed, one may
expect that particle-surface affinity will reduce the effective
times of the first passage to the catalytic site and thus en-
hance the reaction rate.

Finally, we recall that Eq. �33� defines a rigorous lower
bound on the actual mean NET for any �s. This is, however,
a mean-field result and, in view of the importance of the
problem, it would be highly desirable to study the NET prob-
lem with a particle-surface affinity within a more elaborate/
exact approach accompanied by numerical simulations.
These investigations are currently underway.22
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