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1 Introduction

The main contributions of this paper are concerned withllaoalysis of Newton-
type methods for solving the following system of equationd mequalities:

a(z)=0, b(z)>0, c¢(2)>0,d(z)>0,c(zd2)=0, @)

where the functiong: R" — RP, b: R" - RY, ¢c: R" - R", andd : R" —» Rf
are differentiable with locally Lipschitz-continuous detives. We call the problem
(1) complementarity systetvecause of the complementarity constraints appearing
therein (given by the last three relations). There are maoplpms which are nat-
urally stated as (1), or can be reduced to this form. Some pbemrare: (mixed)
complementarity problems and Karush—Kuhn-Tucker (KKT3tesns arising from
optimization, variational problems, or generalized Naghilbrium problems; see
[10, Chapter 1], [21, Chapter 1], and also sections 6 andabel

A good number of efficient techniques for solving problem &by its special
cases go first through reformulating it as a constrainearysiff equations:

F(z7=0 s.t zeQ, (2)

with a continuous functior : R" — R™ and a nonempty and closed €@tC R".
There are many ways of casting (1) as a constrained systequafiens (2), depend-
ing on the choice of the functiof and of the setQ. In this paper, we shall mainly
consider @
L a(z B

F(z):= (min{c(z),d(z)}) =0 st zeQ, 3)
where

Q:={zeR"|b(z) >0, c(z) >0, d(z) > 0}, (4)

and the minimum in (3) is taken componentwise. Under ourditenassumptions
above, the sef2 is obviously closed. It is also easy to see that every sailutio
(1) is a solution of (3), and vice versa. Note also that, stheemin-operation fully
characterizes complementarity (including the signs) rlekision of the constraints
c(z) > 0 andd(z) > 0 in the definition ofQ is not necessary to state the problems’
equivalence. However, local quadratic convergence of tstbihian methods in [6,
7] (which are also the subject of this paper) cannot be gteednwvithout including
those constraints into the definition &f. This will become clear in the subsequent
sections; see also [7]. The same concerns putting the edmidifz) > 0 into Q in-
stead of writing it as mif0,b(z)} = 0 and incorporating this term into the function
F. In this respect, it should also be noted that if any of thecfiomsb, ¢ or d are
nonlinear, constrained subproblems of Newton-type mettamglied to (3), withQ
given by (4), would be (generally) impractical to solve. at case, a further slacks
reformulation of the nonlinear constraints in (4) is penfied, moving the resulting
equality into the functiofr and thus obtaining a polyhedral €@t see [6, 7, 20], and
also sections 4 and 5 below.

Next, it should be emphasized that, unless the restrictiiet somplementarity
condition holds at a solutior’ of problem (1) (i.e.c(z") +d(z") > 0), the function
F given in (3) cannot be expected to be differentiable‘atFurthermore, we are



Newton-type methods for complementarity systems 3

interested here in the general cases, wzeedso need not be an isolated solution of
the problem. This combination of difficulties (nondiffetebility and degeneracy)
makes for a very challenging case, with most approachegpditable; see [7] for a
detailed discussion.

We next recall the methods in [6,7] for solving constraingdations (2), to be
considered in the sequel. Eventually, our main focus wilbbehe case of piecewise
continuously differentiable (P€) functionsF, and in particular on the reformula-
tion (3)—(4) of the general complementarity system (1), al as the special case
of KKT systems arising from optimization or variational ptems and generalized
Nash equilibrium problems. The methods of [6, 7] have venyrgg local convergence
properties, even when solutions are not isolated and thetibmis not differentiable
at solutions. It should be mentioned that even for the cad€kdf systems, other
Newton-type methods for degenerate problems need assamsptiat imply that the
primal part of the solution is isolated [11,12,16-19, 28 slso [21, Chapter 7].

The Linear-Programming-Newton method (LP-Newton methadnf now on),
proposed in [7], is the following iterative procedure. lsst Q be a given iterate,
and let| - || be an arbitrary but fixed vector norm, where the space is élear the
context. Then, the new iterate is thpart of a solution of the following optimization
problem:

miny st zeQ,

zy
IF(9)+G(9)(z—9)| < VIF($)I?, ®)
lz—s| <ylF©)I,

whereG(s) is a suitable substitute for the derivativefofat s (the precise conditions

imposed orG will be specified in due time). It can be shown thagii§ not a solution

of (2), the subproblem (5) always has a solution; see [7, &%itipn 1]. (Note that

[7] uses the additional constraipt> 0 to define the feasible set in (5). However,

this inequality is redundant, as in (5) it is clearly satdfautomatically ifs is not

a solution of (1). And ifs is a solution, the method would simply stop before the

subproblem (5) needs to be solved.) If the infinity ngfm|. is used and ifQ is

a polyhedral set, then (5) is a linear program (LP). This ériason for the name

“LP-Newton method”. It is shown in [7] that a sequence getezt®y this algorithm

converges locally quadratically to a solution of (2), undertain mild assumptions

(recalled in section 2 below), which in particular imply tiner the differentiability of

F nor the local uniqueness of a solution of (2).

In [6], it was shown that the constrained version of the L&éerg—Marquardt
method for (2) converges under the same mild assumptionsose required for
the LP-Newton scheme. Again, lste Q be a given iterate. Then, the constrained
Levenberg—Marquardt method (see [22] and [2]) computea¢heiterate as a solu-
tion of the following optimization subproblem:

min [F(s)+G(s)(z—9)|* + u(s)|z—s|* st zeQ, (6)

with an appropriateegularizationparametey(s) > 0, andG(s) being again a suit-
able substitute for the derivative Bfats. If the Euclidean nornj - ||z is used and if
Q is a polyhedral set, then (6) is a strongly convex quadratigram (QP), having a
unigue solution.
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The main goal of this paper is to establish conditions undeclkvthe methods
described above converge quadratically to a solution ef(43) and therefore of the
complementarity system (1). We start with recalling in ggcl the assumptions
required in [7] for fast local convergence in the contextled general constrained
equation (2). Then, in section 3, we consider the case oflaf@@tionF, of which
the function in (3) is a special case. For'Pi@nctions, we develop conditions which
are sufficient for the assumptions in [7]. A condition basaeror bounds for some
of the selection functions definirfgwas already introduced in [7], and it was shown
there that this condition implies one of the convergencarapsions. The first main
result in our paper is that the same condition, in additioa suitable choice of the
feasible selQ, is actually sufficient for all of the convergence assumpgito hold.
A related result for a slacks reformulation of (2) is provedeéction 4. In section 5,
we go back to the complementarity system (1), and transéentain result for P&
functions to the constrained reformulation (3)—(4) of (h)particular, we show that
the methods under consideration converge quadraticaldy dolution of (1) under
the only assumption that the complementarity system segisfimild piecewise local
error bound condition. In section 6, the special case of Ki&iesms arising from op-
timization or variational problems is considered, and stiswn that the noncriticality
assumption on the Lagrange multiplier [19,15] is sufficimtconvergence in this
case. Sections 7 and 8 consider different reformulatio&<df systems associated
to generalized Nash equilibrium problems, where we exaBilfficient conditions for
the required error bounds in that setting. Specifically saltérom [20] based on the
full row rank of a certain matrix is recovered. In additiormare general result is pre-
sented, showing that even the weaker constant rank of centarices is sufficient.

Throughout the paper, we assume that the solutiorZ s#tproblem (2) is not
empty and that* € Z is an arbitrary but fixed solution. We denoteliyt the Jacobian
of a differentiable functiomd. Throughout the papelt,- | stands for an arbitrary but
fixed vector norm in a finite dimensional space, always cleanfthe context. The
specific Euclidean norm is denoted By ||> and the infinity norm by - ||». The
distance from a poinz € R" to a nonempty set C R" is given by disfz,U] :=
inf{||s—27|| | se U}. By B5(z) := {s€ R" | ||s—z|| < &} we denote the closed ball
aroundz € R" with radiusd > 0.

The following constraint qualifications (CQs) for systenfsequations and in-
equalities will play some role in the sequel. To this end sider the system

R(z=0, S2>0 (M

with continuously differentiable functionR: R" — R™ andS: R" — R™. Letz'
denote an arbitrary but fixed solution of (7). We indicateffythe index set of those
functionsS which are active at, i.e.,

Fo={ie{l,....m}|S(z =0}

Thelinear independence constraint qualificatilCQ for short) holds atzif the

matrix
JR(Z)
<Js%<2> )
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has full row rank. HereSy, consists of those components $fvhose indices be-
long to.%. System (7) satisfies thdangasarian—Fromovitz constraint qualification
(MFCQ for short) atzif the matrixJR(Z) has full row rank and there existsc R"
such that

JR(zZh=0 and JSy (2h>0

hold. The MFCQ was introduced in [26]. The next constrairgldication which we
would like to recall is theelaxed constant rank constraint qualificati@CRCQ for
short) introduced in [24]. This condition is satisfied#tthere existss > 0 such that,
for each index set” C .%, the matrices

JR(2)
<JS¢(Z) )

have the same rank for @k %, (z). It is well known that LICQ implies both MFCQ
and RCRCQ. However, MFCQ neither is implied by nor impliesRGT) [27].

Finally, we say that thiocal error bound conditiorfor system (7) is satisfied at —
if there existe > 0 andw > 0 such that

disfz, 2] < o(|[R(2)[| + [[min{0,(2)}||)

holds for allz € %,(z), where 2 denotes the solution set of (7). This condition
will play a central role in this paper. It is shown in [28] thtae local error bound
condition is implied by MFCQ. Moreover, the RCRCQ also imeplthe local error
bound condition. The latter is established in [27] and atsf2b]. It should also be
mentioned that for twice continuously differentiable ftioos, the relaxed constant
positive linear dependence condition is weaker than RCR&®also implies the
error bound [1]. As we do not assume twice differentiabiiitythis paper, we shall
not state or use this weaker CQ.

2 A general framework for the analysis of local convergence

In this section, we recall and discuss the assumptionsnedjtor local convergence
of the LP-Newton method, described by (5), for solving coaieed equations (2).
These assumptions were given in [7]. Recall, however, tltmsame set of assump-
tions also guarantees local convergence of the constrdiseenberg—Marquardt
method described by (6). This was established in [6].

Let a functionG : R" — R™" be given. The choice d& will be specified in the
next section, wherE is assumed to be a P@unction. For the moment, it is enough
to say thaG is the Jacobian df, or a suitable substitute K is not differentiable.

Itis shown in [6, 7] that the algorithms in question convdmyelly quadratically
to a solution of (2) if the following four assumptions areisi@td, with some suitable
40> 0.

Assumption 1 (Lipschitzian growth of theresidual) There existd > 0 such that
IF(s)|| < Ldists, Z]
holds for allse #5(z") N Q.
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Assumption 2 (Error bound) There existgv > 0 such that
dists, Z] < w[|F(s)|
holds for allse %#5(z") N Q.

Assumption 3 (Nonemptyness of approximate solution sets) There exists” > 0
such that the set

F(sF):={ze Q[|F(8+G(8)(z-9)| < T[F(9)? llz—sl < T |F(3)]}
is nonempty for als € B5(Z°) N Q.

Assumption 4 (Quality of the approximate solution set) There existx > 0 such
that

ze {z€ Q| |F(9+G(s)(z-9)| < a2, [lz—s| < a}
implies
IF(@)|| < ka?
forallse (#Bs5(z)NQ)\ Zand alla € [0,9].

Note that Assumption 3 above is different from its formuwdatin [7]. There, itis
required that, for somé > 1, the optimal valug(s) of (5) is bounded above by for
all se B5(z°)N Q. Under the natural convention that for our subproblem (Bplitls
thaty(s) = — if F(s) = 0, Assumption 3 and its counterpart in [7] are equivalent.
Indeed, if the se# (s,I") is nonempty for somec %5(z") N Q, andzis an element
of #(s,I"), then(z,y) with y :=I" is feasible for problem (5). Thereforgs) < I <
I with I :=max{1,I } holds for allse #5(z*)N Q. Conversely, ify(s) < I is valid
for somes € %B5(z°) N Q, then thez-part of every solution of (5) belongs 16 (s,I")
with I :=I*. Thus, the setZ(s,I") is nonempty for al € %5(z') N Q.

At the end of this section, let us recall the main local cogeece results of
the LP-Newton and the constrained Levenberg—MarquardhodetThe following
theorem follows by [7, Theorem 1] and [6, Corollary 2].

Theorem 1 Let Assumptions 1-4 be satisfied. Then, thereisQ such that any
infinite sequencgZ‘} generated by the LP-Newton method, describe®hyor by

the constrained Levenberg—Marquardt method, describ&@}owith a starting point
2 € %:(z*) N Q converges quadratically to some solution(&).

3 Discussion of the assumptionsfor PC!-functions

In this section, we consider the caseFobeing a PE&-function. We shall provide
sufficient conditions for Assumptions 1-4 to hold in thistiset Our main result is
Theorem 2 below which shows that all the needed assumpiiensAssumptions 1—
4) are satisfied if certain error bound conditions hold, ditad setQ is appropriately
chosen.
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AfunctionF : R" — R™Mis calledpiecewise continuously differentiatfRC') if F
is continuous and if there are continuously differentidbtectionsF?,... F/: R" —
R™M such that

F(2) € {FY(2),...,F‘(2)}

holds for allze R". The functions?, ... F! are calledselection functionsFor z
R", we denote by7(z) the index set of all selection functions which are active, at
ie.,

d(2):={ie{l,....0} [F@=F(2)}.

We assume that the derivatives of the selection functiomoaally Lipschitz-conti-
nuous. We also assume ti@at R" — R™" is such thaG(z) € {JF'(2) | i € &7/ (2)}
holds for allz € R", which is clearly natural.

Obviously, the functiorF : R" — RP*" defined in (3) is a P&function (with¢ =
2" selection function§?,...,F2 : R" — RP*"). Due to our smoothness assumptions
on a, ¢, andd, the selection functiong?, ..., F2 are differentiable and have locally
Lipschitz-continuous derivatives.

Next, we discuss Assumptions 1—4 in the context of R@ictions. It is clear that
Assumption 1 is satisfied, because aRnction is locally Lipschitz-continuous [14,
Theorem 2.1].

Proposition 1 Any PC-function F is locally Lipschitz-continuous. In particul&s-
sumption 1 is satisfied with arbitray > 0.

Our next objective is to provide sufficient conditions foe tAssumptions 2 and
3 to hold. To this end, consider the following.

Condition 1 (Error boundsin terms of residuals of active pieces) There exist
& > 0 andw, > 0 such that

dists. Z] < e [|F'(9)]|

holds for alli € <7 (") and allsc€ %5 (') N Q.

Proposition 2 below shows that Condition 1 implies Assuompt?2. Roughly
speaking, Condition 1 requires that every selection famcthich is active at*,
provides a local overestimate for the distance to the swiget of problem (2).

Proposition 2 Let Condition 1 be satisfied. Then, Assumption 2 hold$ for0 suf-
ficiently small.

Proof Letd € (0, ;] be small enough so that' (s) C <7 (z") holds for alls€ %5(Z")
(suchd exists, due to the continuity ¢f). Now, fors € %5(z") N Q andi € @/ (s),
we haveF (s) = F'(s), and Condition 1 yields

dists, Z] < wil|F'(s)|| = cx||F ()l

Hence, Assumption 2 is satisfied with:= c;. a
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Note that the differentiability of the selection functioissnot needed in the last
proof. The assertion of Proposition 2 remains valid if tHe@on functions are only
continuous.

We next show that Condition 1 does not imply Assumption 3nefé and Q
are given by (3) and (4).

Example 1Consider the following constrained system of equations:
F(2):=F(xy):=min{x®—y,—2y} =0 st z=(xy) €Q (8)
with
Q:={(xy)" €R*|}*—y>0, —2y>0} = {(xy) €R?|y<O0}.
The functionF is a PG-function with the selection functions
Fliz):=Flxy):=x*—y and F%(2):=F2(xy):=—2y.

LetG: R? — R™*2 be any function satisfyinG(z) € {JF'(2) |i € </ (2)}. Obviously,
z*:=(0,0)" is a solution of (8) withe7(z*) = {1,2}. The solution set of (8) is

Z={(xy)" € R*|min{x*—y,—2y} =0} = {(x,y)" € R?|y=0}.

Throughout the rest of this example, the Euclidean vectomris used. The distance
froms= (x,y)" to Z is equal toly| for all s € R?. Taking into account that < 0 for
s=(xy)' € Q, we have

X2 —y=|
|

dmhﬂleg{w _

for all s€ Q. Therefore, Condition 1 is satisfied with arbitra®y> 0 anday, := 1.
However, to see that Assumption 3 is not validatlet us consider the sequence
T
{s} € Q given bys<:= (%, —k—zz) . Obviously, this sequence convergestoFor
everyk > 1 we have
3 4
w&:ﬁ<p:#@y
Therefore,o7 () = {1} holds for allk € N and thus,

F@S:ﬁ@ﬂ:% and q&qu%ﬁ:(%_Q.

Suppose that Assumption 3 is satisfiedatvith some constants > 0 andd > 0.
Then, fork sufficiently large, there ig = (x,yk) | € .Z(s¢,I"). Due to||Z — ||» <
I |F ()| we particularly have

3

1
&_ﬂgrw@ﬂ:@p
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Using this,|F () + G(s*)(Z — )| < I'|F(s)|?, andyk < 0, we obtain
2 1 S 1 6
TRk

9 3 2 1 2 1
tkk) e |7 [ e "

Wl =
This inequality cannot be satisfied fosufficiently large. Thus, we have a contradic-
tion and Assumption 3 does not hold. Note that the assertibtisis example stay
true for any vector norm. O

Next, fori € {1,...,¢}, letZ; denote the set of all zeros of the selection function
FlinQ,ie., _
Zi:={ze Q|F'(z)=0}.
Fori € &/(Z"), it is clear that the seZ; is nonempty since* belongs taz;. Condi-
tion 2 below requires that every selection funct®nwhich is active at* provides
an overestimate for the distanceZofor all points in a certain neighborhood bf.
Note that, unlike Condition 1, Condition 2 refers to the diste taZ;, not toZ.

Condition 2 (Individual error bounds on Q for active pieces) There existd, > 0
andw, > 0 such that .

dists, Z] < wz ||F'(9)||
holds for alli € <7 (") and alls€ %5,(Z°) N Q.

It will turn out that Condition 2 implies Assumption 3. Monegr, it also implies
Assumption 2 if the following property is additionally ssfted: the sef2 excludes
all zeros of the selection functions (being activezgtwhich are not zeros df, at
least in a certain neighborhood o In other words, it is required that every zero of
any selection function being active &t which is sufficiently close ta* and which
belongs taQ, is also a zero of . Formally, we state this requirement as follows.

Q-property We say that th&-propertyholds atz* if there existsd, > 0 such that
Zin%s,(z)Z forallie o (Z).

In the case of given by (3), theQ-property means that the s& excludes
all zeros of the selection functions for which some compamefc(z) or d(z) are
negative. In particular, this is guaranteedfis defined by (4). The next proposition
shows that Condition 2 and the-property, together, imply Condition 1.

Proposition 3 Let Condition 2 and th&-property at 7 be satisfied. Then, Condi-
tion 1 holds.

Proof For é; > 0 with & < min{d,, %69} let us take ang € %5 (') N Q, and let
i € o/(z*) be arbitrary but fixed. Moreover, Istbe an element d; with

disfs,z] = |s—9].. 9)

Note thatz; is nonempty, becauses <7 (z*) impliesz* € Z. FurtherZ is closed due
to the continuity ofF', and the closedness &. Condition 2 yields

s—§] < wl[F'(9)]- (10)
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Since
I5= 2| < |Is— 8] +[ls—Z'|| < 2|s— 2| < 281 < 8,

the Q-property ensures< Z. By (10), we obtain
dists, Z] < [|s— 3] < w||F'(s)]]-
Thus, Condition 1 is satisfied witty, := . O

Now, we prove a relation between Condition 2 and Assumptiasd 3.

Proposition 4 Let Condition 2 be satisfied. Then, fér> 0 sufficiently small, the
following assertions are valid.

(i) Assumption 2 holds if th@-property at ? is additionally satisfied.
(i) Assumption 3 holds.

Proof (i) Since Condition 2 and th@-property are satisfied, Condition 1 holds as
well due to Proposition 3. The validity of Assumption 2 @r> O sufficiently small
follows by Proposition 2.

(i) Let 0 € (0, &, be small enough so that (s) C <7 (z*) holds for alls€ %5 (Z").
Moreover, letC > 0 be a constant such that

IF'(s) +3F'(9)(z—5) ~ F' ()|l < Cllz—s||? (11)

is valid for alli € o7 (Z") and alls,z € %,5(z"). Such a constant exists since the se-
lection functions are differentiable and have locally ldpgz-continuous Jacobians.

For anys € %5(z°) N Q leti be an element af7(s) with G(s) = JF'(s). More-
over, letsbe an element of; such that (9) is satisfied. As in the proof of the last
proposition we obtain (10) by Condition 2. Dueita </ (s) this yields

Is— 8] < w[IF()]- (12)

Because of
[s—Z'[| < Is—sl| +[[s—Z'|| < 2[|s—Z|| < 29,

we can apply (11) and (12) and obtain
IF () +G(s)(5— )| = |F'(s) +IF (8)(5~9) —F'(|
< Cls—9?
< Cax|F(9))%
Sinceswas arbitrarily chosen, Assumption 3 is valid with= max{«,,Cw?}. O

Note that item (ii) of Proposition 4 had been establishedjrCjorollary 3]. How-
ever, the proof there is indirect. In particular, nothingsvepecified about the value
of 8. The simpler and direct proof presented above seems useful.

We next consider Assumption 4. To this end, we introducedheviing.
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Condition 3 (Residual bounded above by residuals of active pieces) There exist
03 > 0 andK > 0 such that _
[F(9) < K|F' ()l

holds for alli € </ (z") and alls€ %5,(Z°) N Q.

We show that Condition 3 is sufficient for Assumption 4 to hold

Proposition 5 Let Condition 3 be satisfied. Then, Assumption 4 hold$ for0 suf-
ficiently small.

Proof Let o € (O, %63] be small enough so tha¥/ (s) C «7(z*) holds for alls €
Ps(z°). Since all selection functions are differentiable and haweally Lipschitz-
continuous Jacobians, thereGs> 0 such that (11) holds for alle </ (z*) and all
S,z€ $Brs5(Z°). Now leta € [0,0] ands € (As(z°) N Q) \ Z be arbitrarily chosen and
leti be an element af7 (s) such thatG(s) = JF'(s) holds. Moreover, lez € Q be a
point for which the inequalities

IF(9)+G(s)(z-9l <a® and [z-s|<a (13)

are satisfied. Then,
lz—Z| < llz—s| +[s—Z|| < a + 5 < 25
holds. Using (11) and (13), we obtain
IF'@| < [F'(s)+IF'(8)(z—8)[| +Clz— 8 < (1 +C)a®.
This together with Condition 3 yields
IF@ < (1+C)Ka.

Therefore, Assumption 4 is valid with:= (1+ C)K. O

It can be easily seen that Condition 3 implies fReproperty atz*, i.e., that the
zeros of the selection functions which are not zero§ pflo not belong ta2 (at
least in a sufficiently small neighborhood ). This assertion is proven in the next
proposition.

Proposition 6 If Condition 3 is satisfied, then the-property holds atz

Proof Letdqg € (0,8], 1 € #/(Z"), ands € Z;N X5, (Z°) be arbitrarily chosen. Then,
by s € Z;, Condition 3 yields

IF(s)l <K|IF'(s) =0,
so thatF (s) = 0 and, thuss € Z follow. O

However, theQ-property is not sufficient for Assumption 4 to hold. This dan
shown by a simple example.
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Fig. 1 The setQ from Example 2.

Example 2Let us consider the functioR : R? — R defined byF (2) := F(x,y) :=
min{x,y}, which is a P&-function with the selection functiong'(x,y) := x and
F2(x,y) :=y. Let G : R? — R™? be any function satisfyin@(z) € {JF'(2) | i €
</ (2)}. Throughout this example, we use the Euclidean vector nblote that the
choice of the norm does not influence the validity of our agstions and conditions,
respectively, it might only change the values of some catsté et us defin€ by

Q :=R2U{(xy)" €R?|y>x*}.

Figure 1 shows anillustration @. Obviously, the points on the negative half axes do
not belong taQ, i.e., the zeros of ! andF2 which are not zeros df are excluded.
Therefore, theQ-property holds az* := (0,0)" (for arbitrary & > 0). However,
Assumption 4 is not satisfied at for this choice ofQ. In order to show this, let us
assume the contrary, i.e., that Assumption 4 is valid witma@onstant® > 0 and
k > 0. Furthermore, let us define sequen¢gs c Q\ Z, {Z} ¢ Q, and{ax} C
(0,0) as follows:s*:= (5, %) ", 2= (—%. &) " ax = .

Obviously, the sequencgs’} converges t* and the sequencgay} to zero.
Therefore, for sufficiently larglk, we haveay < & ands* € (%5(z°)N Q) \ Z. More-
over,
||zkfsk|\z:%+32§2:ak (14)
is satisfied for alk > 1. Furthermoregr () = {2} holds for allk and therefore

=~

F($) = F2(s) 1 G(s°) = JF2(s) = (0,1).

:E7

This implies

F($)+ G(E)(Z &) = | 5+ = —

1.9
e e ke

2 <K (15)

for all k > 1. Taking into account (14) and (15), Assumption 4 yields

9
F@) <Ko=k i3

for all sufficiently largek > 1. On the other hand(Z) = —# holds for allk which
provides a contradiction. Therefore, Assumption 4 is ntstad. O
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Y Y

Fig. 2 The setQ, from Example 3 — on the left for < 1 and on the right foe > 1.

Next, we present two examples where Condition 3 (and thexéfesumption 4)
are satisfied. In particular, it will turn out that Assumptib holds for system (3) with
Q defined by (4).

Example 3We consider the function from Example 2 again, iFgz) := F(x,y) :=
min{x,y}. As before,F1(x,y) := x andF?(x,y) :=y denote the selection functions.
Fore > 0, define

Qe :={(xy)" €R?||y| >¢lx if x<O0, |x > gly| if y<O0}.

Figure 2 shows illustrations d®, for two different values of.
Forall(x,y)" € Q we have, using the Euclidean norm,

[F(x,y)| = |min{xy}| < max{%,l} || = K|Fl(x,y)| and
. 1
F )] = Iminxy}] < max] 2.2 i =KIF2x)l

whereK := max{%,1}. Therefore, Condition 3 is satisfied with tt{sand an arbi-
trary &3 > 0. Condition 3 stays true faR, := Ri. By Proposition 5 we know that
Condition 3 implies Assumption 4. O

Example 4Let us consider the PEfunctionF : R" — R" defined by

F(2) :=min{c(2),d(z)}

with given continuously differentiable functiomsd : R" — R". As in the previous
examples, the Euclidean vector norm is used. Once agaia {inat the choice of the
norm does not influence the validity of Condition 3. For

QCQ,:={zeR"|c(z) >0, d(z) >0}
Condition 3 is satisfied at every solution of the syste(m) = 0 s.t.z€ Q because

IFi(2)| = [min{ci(2),di (2)}| = min{|ci(2)], |di(2) |} (16)
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holds for alli € {1,...,r} and allze Q. By a similar argument it can be seen that
Condition 3 and, thus, Assumption 4 are valid for problemwh Q given by (4).

Condition 3 stays true at every solution of the systefm =0 s.t.ze Q, if Q is
chosen according to

QC Qy:={zeR"|c(z)+d(z) > 0}.

In order to show this, lete Q andi € {1,...,r} be arbitrary but fixed. Without loss
of generality, we assume thatz) < d;(z) holds. Ifci(z) is nonnegative, we have

IFi(2)| = |min{ci(2),di(2)}| = |ci(2)| = min{]ci ()], |di(2)]}-

Otherwise, ifci(z) < 0 holds, therd;(z) > |ci(z)| must be valid due to the choice of
Q and therefore we obtain

Fi(2)| = |min{ci(2),di(2)}| = |ci(2)| = min{|ci(2)] |di(2)[},

too. Thus, Condition 3 and therefore Assumption 4 are satisfrhis recovers [7,
Corollary 5]. O

We next show that Condition 3 (and therefore Assumptiondjraplied by Con-
dition 2, together with th&-property, i.e., with a suitable choice &.

Proposition 7 Let Condition 2 and th&-property at Z be satisfied. Then, Condi-
tion 3 is valid and therefore, Assumption 4 holds&ox 0 sufficiently small.

Proof Choosed; € (0,min{J, %59 }]. By Proposition 1, there is> 0 such that
IF(2) =F(s)l <lljz—s9] (17)

holds for alls,z € %55,(Z°). Now, leti € «7(z") ands € %5, (Z°) N Q be arbitrarily
chosen. Moreover, letbe an element &; such that|s— §]| = dists, Z;] holds. Taking
into account Condition 2, .

Is—S] < w|[F'(s)] (18)

follows. Furthermore, sincg also belongs t@;, we have
I§= 2 < s8]+ s~ Z'|| < 2|ls—Z']| < 28 < 3.

Therefore, the2-property yields thas is a zero ofF, too. Using this, (17), and (18),
we obtain

IF (9l = IF(8) = F(S <Ills—§] < lx||F'(s)]-

Hence, Condition 3 is valid witK := | «,. Assumption 4 is satisfied due to Proposi-
tion 5. |

Combining now the assertions of Propositions 1, 4, and 7, tate she main
result of this section. Specifically, Condition 2 and Beproperty are sufficient for
Assumptions 1-4 to hold and, therefore, for the quadratiwemence of the Newton-
type methods discussed above.
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Theorem 2 Let F be a P@-function. Suppose that Condition 2 and teproperty
at z* are satisfied. Then, Assumptions 1-4 hold.

Let us summarize the results of this section. We introduoeditions and proved
relations to the convergence assumptions which we recailedction 2. In partic-
ular, it was shown that the validity of individual local erdoound conditions o2
for the active pieces (Condition 2) is sufficient for Assumps 1-4 to hold if addi-
tionally Q excludes all zeros of the selection functions which are eoaz ofF. We
also would like to mention two very influencing papers. Thstfis [23] for solving
systems of equations with P@unctions under the nonsingularity assumption for all
the elements o65(z*). The second paper [22] provides conditions for the quadrati
convergence of the constrained Levenberg—Marquardt rddthhe functionF is
smooth but may have nonisolated zeros. The results in therdysaper weaken the
classical convergence conditions from [22,23] but stililele to obtain superlinear
convergence.

Figure 3illustrates the relations which were proved in Hastion. Moreover, re-
lations between Condition 2 and Conditions 4 and 5 are arshdwn in Figure 3.
The latter conditions will be introduced in sections 4 an@éndition 4 is an exten-
sion of Condition 2. It will turn out that Condition 4, togethwith the Q-property,
does not only imply Assumptions 1-4 for system (2) but algodbunterparts of As-
sumptions 1—4 for the reformulation of (2) with slack vatégh Such a reformulation
is advisable from the computational point of view; see tisedssion at the beginning
of section 4. Condition 5 is equivalent to Condition 4 for Iplem (3) withQ from

(4).

Assumption 1
always satisfied
Condition 5
(for complementarity systems) Condition 1
dists.Z ;) < ws([a(9)] +..) dists,Z) < wn[[F (9
V(A, S2)Vs€ B (Z) Vie o (Z)Vse B (2)NQ
Q-property
Condition 4 Condition 2
dists Z] < au([F(9)| +...) [ distsZ] < pF(9)]
Vie o/ (Z)Vse B, () Vie o (Z)Vse B, (2)NQ
Q-property
Condition 3
Q-property <—  [F(s)]| <K||Fi(s)]
Vie o (Z)Vse Bs,(2)NQ

Fig. 3 Scheme on relations of the conditions and assumptions.
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4 Slacksreformulationsof inequalities

The feasible se® often involves inequality constraints. For instance, inproblem
(3), the inequalitied(z) > 0, c(z) > 0, andd(z) > O are present. If any of those
functions is nonlinear2 need not be a polyhedral set so that the subproblems of the
LP-Newton as well as of the constrained Levenberg—Marduaethod would not be
computationally acceptable (unless further structuregsgnt and can be exploited).
To alleviate this complication, slack variables can be use@duce the problem to
that with simple (bound) constraints.

Consider the problem (2) witf? given by

Q:={zeR"|a(z) >0, B(z) >0},

with an affine functionar : R" — R¥t and a nonlinear functiop : R" — R*2. The

latter is assumed to be differentiable with a locally Lipgscitontinuous derivative.
Then, from the algorithmic point of view, it is advisable tonsider the following
reformulation of (2):

F(zw):= (B(Z)(ZJ W) =0 st (zw)eQ, (19)

whereQ is given by
Q:={(zw) eR"xR* | a(z) >0, w> 0}.

Obviously, a poinzis a solution of (2) if and only ifz,w) with w:= 3(Z) solves (19).
By Z we denote the solution set of (19). As beforezbgn arbitrary but fixed solution
of (2) is indicated and byz*, w*) with w* := 3(z") the counterpart for problem (19).
The advantage of problem (19) compared to (2) is fhd polyhedral.

Assuming again th&t is a PG-function with the selection functiors!, ... F,
the functionF is also a P&function with the selection functions

Flzw) = (ﬁE:Zi)(i)W) ,

i =1,...,0. Obviously, (z,w) = ./ (z) holds for all(z,w) € R" x R¥. For every
i =1,...,¢ we denote the set of all zeros Bf belonging toQ by Zi. Note that at
least fori € «7(z*) the setZ; is nonempty sincéz*,w*) belongs to it.

The counterparts of Assumptions 1-4 for problem (19) ardiedpaccording to
Theorem 2, by the counterparts of Condition 2 and®property for (19). It is easy
to see that the counterpart of tiae-property for (19) is satisfied if and only if the
Q-property itself holds at*. The counterpart of Condition 2 for problem (19) says
that there aré, > 0 and@, > 0 such that

dist(s.w), Zj] < @||F'(s,w)]|

holds for alli € «7(Z") and all(s,w) € %32(2",\/\/*) N Q. Unfortunately, this counter-
part of Condition 2 for (19) is in general not implied by Cotiain 2 itself because
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the former requires that the inequality also holds for d¢erpointss where some
components of (s) might be negative. That was not needed in Condition 2.

This motivates to consider the following Condition 4 for plem (2) which is an
extension of Condition 2.

Condition 4 (Individual error boundsfor active pieces) There existd; > 0 and
wy > Osuch that

dists. Z] < awu (|[F'(3)[| + | min{0, a(s)}|| + || min{0, B(s)}||)
holds for alli € <7 (z*) and alls € %5,(Z").

Obviously, for alls€ Q, the inequality in Condition 4 coincides with the inequal-
ity in Condition 2. Thus, Condition 4 implies Condition 2. Bunlike Condition 2,
Condition 4 makes a requirement also for points which do mdorilg to Q. The
counterpart of Condition 4 for the constrained system widicls variables (19) can
be stated as follows. There ex&t > 0 anddy > 0 such that

dist(s,w), 2] < &u (||IF'(8)] + |B(S) — | + || min{0, ar(s)}| +|| min{va}H)( )
20
holds for alli € &7 (z") and all(s,w) € %34(2*,\/\/*). The next proposition shows that
Condition 4 is valid if and only if its counterpart for systé®) is satisfied.

Proposition 8 Condition 4 is satisfied if and only if there ex'&t >0anday >0
such that(20) holds for all i€ <7 (z") and all (s,w) € %34(2",\/\/*).

Proof Letl > 0 be a Lipschitz constant of the functifron % (z*) with a sufficiently
largee > 0, i.e., the inequality

IB(s) = B(2)l2<l[s— 2|2 (21)

holds for all s,z € %,(z*). Assume that Condition 4 is satisfied and let a vector
(sw) € #5,(Z°,w") and an index € «7(z°) be arbitrarily chosen. In particular,
s€ %5,(Z°) holds. Lets€ Z be a point with the property

Is—§]2 = distls, z].
Then, Condition 4 implies
Is— 82 < s ([IF' ()2 + [ min{0,a(9)} |2+ | min{0.B(8)}|2) . (22)

To estimate the right-hand side of the latter inequalityj le {1,...,k»} be arbitrary
but fixed. If 3;(s) > 0 holds, we obviously have

[min{0, Bj(s)}| < [B;j(s) —wj[ +[min{0,w;}|.
Otherwise, this inequality also holds, because

|min{0, Bj(s) }| = —Bj(s) +Wj —wj < |Bj(s) —w;j| —wj < |Bj(s) —Wj| -+ min{O,w; }|.
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Sincej € {1,...,ko} was arbitrarily chosen this implies
[[min{0, B(s)}[2 < [IB(S) — wl|2+ [ min{O, w} 2. (23)
Combining (22) and (23) yields
Is—8]2 < cn (IIF'(8)lI2+ [|B(S) = wll2+ | min{0, ar(s)} ]2+ | min{O,w} 2) . (24)
Now, let us setv:= f(S). Obviously,(§w) € Z holds and therefore
dist(s,w), Z] < [|s— §2+ [w— Wil (25)
follows. Using the triangle inequality and (21), we obtain
Iw—wW2 < [[w=B(s)[[2+[|B(s) = B(Sl|l2 < [W—B(S)[|2+]|s— S]|2-
Thus, (25) yields
dist(s,w), 2] < (I +1)[|Is— 2+ | B(s) — w2
This together with (24) implies

dist/(s,w), Z] < (14 (I + Daw)([IF () 2+ 1 B(s) — w2
+[[min{0, a(s)} |2+ || min{O, w}|[2).
Therefore, (20) is satisfied wit& = O andéy =1+ (I +1)wy.
Now we assume that there adg > 0 anddy > 0 such that (20) is valid for all

i€a/(z) and all(s,w) € #; (z,w"). Let us defined; according tad, := 16—+4| and let

avectorsc€ %g,(z°) and an index € <7 (z*) be arbitrarily chosen. We set:= B(s).
Taking into accoun{z*,w*) € Z;i and (21) we obtain

[w—wll2=[[B(s) = B(Z)[[2 <ls=Z[]2 < 10a.

This implies -
[s=Z 2+ [W—wW]2 < (1+1)0s =4

and thereforgs,w) € %; (z',w"). Let(s,w) € Z; be a point with the property

%)

Obviously,s € Z holds. Furthermore, (20) and the definitiorvofield

= dist(s,w), Z].
2

dists, Z] < [[s— ]2
< disf(s,w), 2]
< @4 (|IF'(9)l|2+ |IB(S) —wil2+| min{0, a(s)} |2+ || min{O,w}|2)
=0

= @u(|[F'(s)l|2+ [Imin{0, a(s)}[l2 + [ min{0, B(9)} ||2).

Therefore, Condition 4 is satisfied with := f—jl andwy ;= Q. a
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The essence of Proposition 8 is the following. Every conditivhich implies
Condition 4 is also sufficient for its counterpart for systgi) to hold and therefore,
assuming that th@-property is additionally satisfied, guarantees that thestide-
type methods described in the Introduction applied to (b®yerge locally quadrat-
ically to a solution; see Theorem 1. We emphasize that the&ghatic convergence
rate obtained this way is in the aggregated varidble), which includes slacks. In
principle, it does not imply the same convergence rate irotigenal variablez sep-
arately, or even monotonic decrease of the distance fror-itieeates to their limit.
However, it implies R-quadratic rate of convergence irariable, which still means
that this convergence is fast.

In the next section we specify Condition 4 for problem (3wt defined accord-
ing to (4). In sections 6—8, we present conditions implyiran@ition 4 for special
problem classes.

5 Individual error bounds for active piecesin case of complementarity systems

In this section, we analyze Condition 4 above for the casenilire constrained equa-
tion arises from the complementarity system (1). As alreméytioned, in this set-
ting F defined in (3) is a PE&function, and the Newtonian methods emp®yvith
G(s) € {JFi(s) |i € &7(s)}, s€ R". Let us define the index sets related to “activity”
of the selection functions at:

Je = I(Z)i={ie{L,....,1} |0=c(Z) < di(Z)),
Iy = Ig(Z) = {i € {L....r} | 0=di(Z) < Gi(Z)},
Jo = Io(Z) i={i€{L,....,r} | 0=c(Z) = &i(2)}.

Obviously, these index sets are a partition of the{4et..,r}, i.e., they are pairwise
disjoint and their union is the sdtl,...,r}. It can be easily seen that a selection
functionF!' is active atz* (i.e.,i € «7(z")) if and only if there is a partitiof.#y, .%) of

4o such thaF' has, after some row permutations, the same structure asribtdn
F“1-"2 defined by

a(2)
F22(z) = [ crun(@ |. (26)
d/dU/z(Z)
We define the set of all zeros Bf"1”2 belonging toQ by Z., 1, i.e.,
Zs.5,={2€R"|F/172(2) =0, b(2) > 0, ¢(2) > 0, d(2) > 0}.

Condition 5 below was already considered in [20] and is exjaivt to Condition 4
for problem (3) withQ given by (4).

Condition 5 (Piecewise error bound) There existds > 0 andws > 0 such that

dists,. 25, .| < w5 ([la(s)]| + [Ic.0.5 () + A0 ()| + | Min{O, b(s) } |
+ [[min{0,C 7407 ()}l + | min{0, d .4 () )

holds for all partitiong.#1, .%,) of %y and for alls€ %5 (Z*).



20 Andreas Fischer et al.

In other words, Condition 5 requires that, for all partisqn/y, %) of %, the
local error bound condition is satisfiedzitfor the following system:

a.(Z) = Oa Cﬂcuﬂl(z) = 07 dﬂdu,ﬂg(z) = O; (27)
b(Z) Z Oa Cfdufz(z) Z 07 dﬂcufl(z) Z O

The following theorem is an application of Theorem 2 to penibk(3). Recall that the
definition of Q by (4) implies theQ-property for system (3); thus, this property need
not be required explicitly in the following theorem.

Theorem 3 Let F andQ be given by(3) and (4). If Condition 5 is satisfied, then
Assumptions 1-4 hold.

As is explained in [20], if, for each partitio(i#1,.#2) of .%, some constraint
qualification implying the local error bound condition f&7() is satisfied at*, then
Condition 5 holds. For example, if MFCQ or RCRCQ holdg'afor system (27) for
each partition( .71, .%,) of %, then Condition 5 is valid. In [20], it is actually stated
that Condition 5 implies Condition 1 for system (3) and sousption 2. However,
the relation between Condition 5 and Assumption 3 was ndyaed in [20].

By Theorems 1 and 3 we know that the LP-Newton method as weheason-
strained Levenberg—Marquardt method converge locallgratecally to a solution of
(3) if Condition 5 is satisfied. It follows from the last sewiithat the local quadratic
convergence is preserved if Condition 5 (which is Condiddior system (3)) holds
and one of those methods is applied to the following refoatioh with slack vari-
ables:

a(z)
min{c(2),d(2)}
F(zu,v,w) = b(z) —u =0 st (zuvw)eQ
c(z)—v
d(z) —w

with Q 1= R" x Ri X R_Z{. Moreover, if we replace problem (3) by

a(z)
min{v,w}
F(zuvw):=| bz)—u | =0 st (zuvw) eQ, (28)
c(z)—v
d(z) —w

we find that the counterpart of Condition 4 for problem (28géiivalent to Con-
dition 4. This follows easily from Proposition 8 and the féttat, for any(z,v,w) €
R" x R and anyi € {1,...,r}, we have

Imin{ci(2),di(2)}| < |ci(2) —vi| + |di(2) —wi| + | min{vi, wi }|

and
Imin{vi,wi }| < [ci(2) — vl +[di(2) — wi| +[min{ci(2), di(2) }].

Thus, the LP-Newton method and the constrained Levenbeagghrdt method ap-
plied to system (28) exhibit local quadratic convergen€aandition 4 is satisfied.
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6 KKT systems of optimization or variational problems

Consider the problem of solving the KKT system
O(x)+3gx)'A =0, 2>0, g(x)<0, A'g(x)=0, (29)

where® : R" — R"is differentiable and has a locally Lipschitz-continuoasdative,
andg: R" — R™Mis twice differentiable and has locally Lipschitz-contius second-
order derivatives. Equality constraints can easily beripemted; we do not consider
them here in order to simplify the presentation. For origifigroblems with the
primal-dual structure like (29), see [10, Chapter 1] and Riapter 1]. Let us define
the function’ : R" x R™ — R" by

W(x,A):=0(x)+Jg(x)"A.

Moreover, for a given solutiofx*, A*) € R" x R™ of the KKT system (29), we define
the index sets

o ={ie{l,....om|ag(Xx)=0} A :={ie{l,...,m}|gi(Xx*) <O},
o = {ied | A >0}, oy = {ied | A =0}

The seteZ consists of the indices of those constraints being activé.athe setse’
and.#" partition the sef{1, ..., m}. The critical cone of the system (29)>dtis

€ (x) :={& €R"[Jgy (X)E <0,0(x")TE =0}.
Forx* fixed and any choice of* such tha{x*,A*) satisfies (29) it holds that
¢ (x") ={& €R"|Jgu, (X)§ = 0,300 (x")§ < 0}, (30)

see, e.g., [21, p. 32].

Local quadratic convergence of the LP-Newton method agptiean appropriate
reformulation of the KKT system (29) is established in [7 r@fary 6] (thus, the
same also holds for the constrained Levenberg—Marquattiodgsee [6]). The only
assumption required in this result is the following seconder condition (SOC):

ETIW(X,A*)E#0 forall & e €(x")\ {0}, (31)

whereJy, denotes the partial Jacobian with respect to the variablge next show
that quadratic convergence is in fact guaranteed underdheriticality of the dual
partA* of the solution(x*, A*) of (29). Noncriticality is a weaker assumption than
SOC (31).

We note that the result on local quadratic convergence umalecriticality can
also be derived using [7, Theorem 5] and the local primal-duar bound which
is known to be implied for KKT systems by noncriticality (seeg., [21, Proposi-
tion 1.43]). Here, we give a different argument which is, isemse, more direct: we
demonstrate that Condition 5 implying the whole set of Asgtioms 1-4 holds un-
der noncriticality of the Lagrange multiplier. Observetttige error bound itself is an
immediate consequence of Proposition 9 below and of [20,rhar].
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In the terminology of [21, Definition 1.41] (see also [19,15 multiplier A*
associated to a primal solutioti of the KKT system (29), is calledoncritical if
there exists no paii€, n) € R" x R™, with £ # 0, satisfying

W (x*, A")E +Jg(x)'n =0,

‘]gm@ (X*)E = Oa (32)
ni >0, Jg(x)é <0, Nnidg(x)€ =0,ic .,
ny = 0.

It can be easily shown that if SOC (31) holds, thenis automatically noncritical;
see [19,15,21] for details. Also, it should be emphasized tisually, the class of
noncritical multipliers is much wider than the class of rpliers satisfying SOC.

To start, we write (29) in the form of (1) with:=n, q:=0,r :=m, and

z:=(x,A) eR™™ a2 :=¥XxA), c(2:=-9(), dz:=A.

In section 5, we partitioned the sgt, ..., r} into .%, .%4, and.%. Here, for a fixed
solutionz* = (x*, A*), these sets arg; = <, , Sy = A, % = 2. Therefore, Con-
dition 5 in the context of KKT systems means that there exist 0 andws > 0 such
that

dists, Zs1..7,] < @5([%(% M)+ 1190 [ + 1Ay 0zl
+[Imin{0, =gy ()} + [[MIn{0, Az v HI) - (33)

holds for all partitions(.#1, .#>) of .o and for alls= (x, A) € %5 (Z°), where by
Z 4, .7, we denote the solution set of the “branch” system

Yix A) =0,
un(X) =0, Ayus =0, (34)
grun(X) <0, Agusn >0.

Proposition 9 Let Z = (x*, A*) be a solution of the KKT syste(®9), and let the
multiplier A* be noncritical. Then, there exigg > 0 and ws > 0 such that the in-
equality

X=X+ disA, A, ., (X7, A7)] < @5([[P (X% A) |+ |Gz ([ + 1A 52|
+[[min{0, =g, (X) }[ + [ min{0, A, }[X35)

holds for all partitions(.#1, .2) of e and all (x, A ) € B, ("), where# 4, 7,(X*,A%)
is the solution set of the systdB4) with respect to\, for x = x*.

Proof Since the number of different partitions o4 is finite, it is sufficient to prove
the needed property for an arbitrary but fixed partitiofi, .%>).

Forany(x,A) € R"xR™, let ps (X, A) stand for the expression in brackets
on the right-hand side of (35). We first prove the primal eateni.e., the existence
of ws > 0 such that

[X=X[| < wsp.sy,. (X, A) (36)
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holds for(x, A) close enough tdx*, A*). We argue by contradiction. Suppose that
the assertion above is not true, which means the existereceafuencé(x¥, A¥)}
R" x R™ convergent tgx*, A*), with X £ x* for all k, and such that

Py, (X AK) = o [IX = x|} (37)

ask — . By the definition ofp.s, ., (X, A), the latter immediately implies
30, U3 (X) (= X) = Gy (X) + 0| [X = X)), (38)
A, = o(IX =) (39)

ask — oo, Furthermore, since the number of different partitionsefand.#; is finite,
passing onto a subsequence, if necessary, we can assumeupldtss of generality)
that there exist a partitions, .#2) of .#1, and a partition(.#3, .#2) of %5, such
that

020X <0, gpe(x) >0, (40)
)\";11 >0, /\;12 <0 (41)

for all k. Then, according to the definition pf,, ,(x,A) and (37),

—gjzz(xk) = min{0, 7gj22(Xk)} = o(|[¥ = x*|)), (42)
’\,;f = min{0, /\;12} = o[} — x*|) (43)

follow for k — c0. Moreover, employing (37) again, we derive
0= WX AN) +o(x = x])
= JW(CAT) (XK =x) +3g0¢) T(AK =A%) +o(|[xX = x]))
= JW( AT (K= X) + 380, () TAK =A%), +ng11(X*)T/\;ll +o([[x = X)),

where the third equality is by (39) and (43). Taking into aguothe first inequality
in (41), we then conclude that

* * =¢l * * * *
307, () TR = 39,2 (¢) TR 5 340 (¢, A7) (= x) o IX— X)) (44)

ask — o. Passing onto a further subsequence, if necessary, we samashat the
sequence (X< — x*)/||X¢ — x*||} converges to somé € R", ||&|| = 1. Since the set
on the left-hand side of (44) is a closed cone (as a sum ofrlisglaspaces and a
polyhedral cone), dividing the right-hand side of this esgsion by]|x¥ — x*|| and
passing onto the limit as— o, we then obtain the inclusion

* * * * fl
JW(,A)E € —3gy, () TRIF = 3g () TR
This means the existence gfe R™ such that

JW(x, A*)& +3g(x) 'n =0,

45
Ns220 Nyus2s=0 (45)
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Furthermore, by similar manipulations, from (38), the firgtquality in (40), and
(42), we derive that

39, 002(X)E =0, Jgu(X)E <0. (46)

Combining (45) with (46) evidently yields th&f, n) is a solution of the system (32),
which contradicts the assumption thit is a noncritical multiplier. This shows that
(36) holds for all(x,A) close to(x*,A*) with somecws > 0.

To establish the remaining dual estimate, i.e.,

distA, A g, 7, (X', A7) < WP, 7 (X, A)

for (x, A) close enough t@x*, A*) (perhaps with a largess), observe that the set
M g, 7,(X*,A%) is given by linear constraints. The needed result is obteliryeHoff-
man’s Lemma (e.g., [3, Theorem 2.200]), and by the primainede (36). O

Since (35) evidently implies (33), we conclude by Proposi® that noncritical-
ity of the multiplierA* implies Condition 5. Therefore, according to Theorems 1 and
3, the methods considered in this paper converge quadhaticaler the assump-
tion that the starting point is close enough to a solufin A*) of the KKT system
(29) with A* being a noncritical multiplier. This distinguishes thesethods from,
say, the stabilized Newton method for variational problemgthe stabilized sequen-
tial quadratic programming for optimization, for which S@&1) cannot be replaced
by noncriticality when there are active inequality conistts(see [19] and [21, Sec-
tion 7.2]).

7 KKT systems of generalized Nash equilibrium problems

The aim of this section is to find conditions which are suffititor Condition 5 to
hold if the complementarity system (1) arises from a KKT sgsif a generalized
Nash equilibrium problem (GNEP for short). In particulag will recover a result
from [20] which says that the full row rank of a certain matirixplies Condition 5.
Moreover, this result is extended by showing that Condiiags even implied by the
constant rank of certain matrices.

We consider a GNEP witN playersv = 1,...,N where the constraints of the
players are described by inequalities. Bythe number of variables of playeris
denoted and by := 3 _; n, the number of all variables. For the sake of simplicity,
a GNEP with shared constraints only is considered so thaggtimization problem
of thev-th player is given by

min  6,(x",x") st gXx',x")<O0. (47)
XV

It is assumed that the functiors,..., 6y : R" — R andg: R" — R™ are twice
differentiable and have locally Lipschitz-continuous@ed-order derivatives. The
notation (x¥,x~") for a strategy vectok € R" is typically used in the context of
GNEPs to emphasize the variabi&sof the v-th player and the variablesV of all
the rival players. For more information on GNEPs see [9, 18] @ferences therein.
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The KKT system associated with teth player’s optimization problem (47) is given
by

(36 (x) " +(Jwg(x) A" =0, AY>0, g(x)<0, (A*)'g(x)=0

with some multiplier vectorV € R™. By concatenating the KKT conditions of all
players we obtain the KKT system of the GNEP:

O(X)+B(X)A =0, A>0, gx)<0, (AY)'gx)=0,v=1...,N, (48)

where
At (3aB1(x)"
A= : ;O = )
AN (InBn(x)"
and
Jag(x) 0 0 \'
B(X) := 0 Jeg(x) .
: .0
0 - 0 Jng(x

In order to shorten the notation, we use from now on blgcio denote a block
diagonal matrix. Therefore, we can write for instance

N
_ ’ T
B(X) = bIock((JX g(x) )H.
By z* = (x*,A*), an arbitrary but fixed solution of (48) is denoted. Let theex sets
4 and</ be defined as in section 6, and let us set

dy={ied |ve{l,... N}:A"Y >0}, opi=o\d,.

The sets#, and«) are a partition of7. Anindexi € {1,...,m} belongs to+; ifand
only if gj is active atx* and the corresponding multiplie;*"’ of at least one player

v is strictly positive. The set consists of the indices of those active constraints
where the corresponding multipliers of all players are étmaero. Moreover, for
everyv € {1,...,N}, we set

A ={icd | NV >0}, a={icd | AV =0).

Obviously, for anyv, the setsZ! and.e7y partition the set7 .
System (48) can be written as problem (1) with=n, g:=0,r := Nm, and

zi=(xA), a2 :=0(X)+BMA, o :=(-gx)\s d@=A.

In section 5, depending on the fixed solut@nwe partitioned the se€ftl, ..., r} into
S, A4, and.#. By means of these index sets we stated Condition 5 for pnofilé.
In order to formulate Condition 5 for system (48), we now ftiar, for each player
v,theset{1,.... m}jinto &Y = &, Iy = A, anddy = oy.
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Itis not difficult to see that Condition 5 is satisfied in thentext of GNEPs if and
only if there areds > 0 andws > 0 such that the following inequality is satisfied for
all partitions(.#7’, .#;’) of the setey’ (v =1,...,N) and alls= (x,A) € B (X", A7):

dists.Zy v sy ] < @5(10() + BOOA| + 1|8 (9
[ Min{0,~g.sur, 00} ()

N
v I Vv
43 (N0 + Imin0.A%, 1))

where.#; and.#, are defined by

N N
I = <U ff) \Z, and %= <U fﬁ’) \ (e, U.#), (50)
v=1 v=1
respectively. BY( (v ovyyN the solution set of the system

O(X) +B(X)A =0, 9,0 (X) =0, grun(x) <0, 51)
/\_"A/UJ,Z\, =0, AJ‘:Q"UJ”I’ >0, v=1....N

is indicated. Note thaZ, ,v ,v)n IS nonempty sincg" belongs to it. In other
words, (49) requires that the system (51) of equations aequialities satisfies the
local error bound condition &‘ = (x*,A*). In the rest of this section we look for
sufficient conditions for these error bound conditions dretéfore for Condition 5
to hold. At first it turns out that the full row rank of a certamatrix implies the
validity of Condition 5. This result was already proved if0[Zheorem 1] for the
case of two players.

Condition 6 The following matrix has full row rank:

N
X (©(x') +B(x")A*) |block((Jv g ()" )
v=1 |,
Jg.(X) | 0
whereJ,v g,y (x*) consists of those rows dfvg(x*) whose indices belong to”) .

Theorem 4 Let Condition 6 be satisfied. Then, Condition 5 holds‘at z

We omit the proof of Theorem 4 because it is an immediate apresgce of the next
result which shows that even the constant rank of certainicestin a neighborhood
of (x*,A*) is sufficient for Condition 5 to hold.

Condition 7 There existsy; > 0 such that, for each tuple#”,.#1,..., #N) of sub-
sets# C apandx”V C oy (v =1,...,N), the matrices

(JX (O(X) +B(x)A )‘b'OCk((JxV Garvunv (X))T) tl:1 )
J9u ux (X) | 0

have the same rank for dk,A) € %5 (x*,A").
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Note that Condition 7 is implied by Condition 6. In fact, Cdtiwh 6 implies
that the matrix from Condition 7 has full row rank zt for every (N + 1)-tuple
(o, N of subsets# C o and ¥V C &7y (v=1,...,N). Due to the
continuity of all functions involved in the matrices from @dition 7, the rows stay
linearly independent for all pointéx,A) in a sufficiently small neighborhood of
(X*,A7).

Theorem 5 Let Condition 7 be satisfied. Then, Condition 5 holds‘at z

Proof Let, for each playev = 1,...,N, a partition(.#},.%,’) of .27y be arbitrarily
chosen and let”; and % be defined according to (50). We are going to show that
the system (51) satisfies RCRCQzatsee section 1 for details on RCRCQ. For our
system (51), RCRCQ requires that, for eésht 1)-tuple(.Z, .27, ..., #N) of index
setsZ C SHand.z¥ C .7 (v=1,...,N), the matrices

N

3 (09 +B(A) block (30 rusyu2v ()" ) [€()
J9u, U (X) 0 0 (52)
N
0 blOCk(I‘WU'ﬂZ\’U‘XV‘)Vzl 0

have the same rank for alk,A) in a sufficiently small neighborhood dk*,A*),
where the index setst’,.#t,.... . ¢N are defined by# = A U.Z and.#" =
N
FY\ 2V, and the matrixC() is given byC(x) := bIock((Jxvg%XU v (x))T) -
V=
Generally, if the rank of some matry € RP*% equalsk € N, then the rank of
the matrix

_ (Aa (p+1)x (0+1)
Ao = ( 0 1> eR

equalsk+ 1 for any vectorr € RP, because the last column 8§ is obviously lin-
early independent of the other columns. Therefore, the malxhnumber of linear
independent columns is increased by one. Thus, the raAk of also increased by
one compared to the rank 8. With these observations we obtain that the rank of
the matrix in (52) equals the rank of the matrix

(JX(O(X) +B(x)A )\C(X>
| 0

53
J9ur, U (X) 3

plus N, |4 U2y UZY|. So, in particular, the matrices in (52) have the same
rank for all (x,A) near(x*,A*) if and only if the matrices in (53) have this property.
The matrices in (53) actually have the same rank fo(ald ) € %5,(x",A*) due to
Condition 7. Therefore, the RCRCQ is satisfied for system 54 . Hence, the local
error bound condition (49) also holds for this system sin€RRQ implies the local
error bound condition; see section 1 for details. Since #rétpns(.7}’, %) of <7y
(v=1,...,N) were arbitrarily chosen, Condition 5 is satisfied. O
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Let us summarize the results of this section. We stated @ond and Condition
7 which were shown to be sufficient for Condition 5 to hold. @ition 7 is implied
by Condition 6. Taking into account Theorems 1 and 3, the le€?Adn method as
well as the constrained Levenberg—Marquardt method, wiviehecalled in the In-
troduction, converge locally with a Q-quadratic rate to lton of (48) if Condition
7 is satisfied.

It can be easily shown that Condition 5 implies [8, Assump). Condition 7
is in particular satisfied if the objective®, of the players are quadratic functions
and the constraint functiorgs are affine. Thus, particularly in that case Condition 5
holds. From this result [8, Theorem 8] can be recovered. b\ag in our setting the
full row rank of the matrix in Condition 6 implies the full rovank assumption in [8,
Theorem 9] where strict complementarity is additionallyuizged. Hence, Theorem 4
improves [8, Theorem 9] since we do not require strict comgletarity.

8 An error bound result for another reformulation of the KKT system of a
GNEP

We still consider a GNEP withl players where the optimization problem of theh
player is given by (47). However, in this section the follaggsmooth and constrained
reformulation of the KKT system (48) is considered:

O(x)+B(x)A
g(x) +w
H(2) :=H(XA,w):= woAt =0 st z=XxA,w)eQ, (54)

wo AN
wherewo AV denotes the Hadamard product of the vecters R™ andAY € R™,
i.e., WoAY = (wiA¥)M,, andQ is defined byQ := R" x RYMx R™M. A reformula-
tion similar to (54) was used in [5]. In contrast to (54), difént slack variables for
repeated constraints were introduced there. Throughsuéietionz* = (x*,A*, w*)
denotes again an arbitrary but fixed solution of (54). In ghybrid algorithm for
the solution of (54) is described which, under appropriagienptions, is both glob-
ally and locally quadratically convergent. The local pdrtiis hybrid method is the
LP-Newton method from [7] which we recalled in section 1. Huvantage of the
smooth reformulation (54) of the KKT system is that Assummpt# is satisfied at
Z* and Assumption 3 holds if Assumption 2 is valid. This follofwsm [7, Corol-

lary 1]. Therefore, Assumption 2 is the only assumption Wwhcleft to guarantee.
Assumption 2 for system (54) at says that there ar@ > 0 andw > 0 such that

distls, Z] < w|H(s)||

holds for alls= (x,A,w) € #B5(Z") N Q. Of courseZ denotes the solution set of the
constrained system (54).

In [5], a condition implying Assumption 2 is provided. Hovaythis condition
is in general even stronger than Condition 6 from the lasti@®cThe aim of this
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section is to present a weaker condition which is relatedadition 5 and which is
sufficient for Assumption 2 to hold. Let the index sets, .« , o7, , %, <y, and.<7}
depending on the fixed soluti@h be defined as in section 7.

Condition 8 The setay is empty, i.e., for each active constraint the multiplieaof
least one player is strictly positive.

Assuming that Condition 8 is satisfied, we will show that Asgtion 2 for sys-
tem (54) is equivalent to Assumption 2 for the constrainesteaypHnmin(z) = 0 s.t.
z € Q with Hp,i, defined by

O(X) +B(x)A
g(x) +w
Hmin(2) := Hmin(X,A, W) := mln{WaAl}
min{w, AN}
Obviously, (54) anHmin(z) = 0 s.t.z€ Q have the same solution &t

Proposition 10 Let Condition 8 be satisfied. Then, the following assertamequiv-
alent.

(i) There exis® > 0andw > 0 such that
dists, Z] < w||H(9)||

holds for all s= (x,A,w) € Z5(z°)N Q.
(i) There exis® > 0andd > 0 such that

dist(s, Z] < &|[Hmin(9)||
holds for all s= (x,A,w) € #3(z")N Q.
Proof We show that constants> 0,C; > 0, andC, > 0 exist such that
C1[[H ()]l < [[Hmin(8)[leo < Co[|H(S) e (55)

holds for alls € %Z¢(z*) N Q. Obviously, this suffices to prove the proposition. We
first set

U= %min{{\/\ff|i€</V}U{/\i*"’|i€,qu‘r’,v€{1,...,N}}},
fr=2max{{w |ie /YU{A" [ie ! ve{l. .. N}}},

and choose some> 0 which is small enough such that the following relationshol
foralls= (X,A,w) € B ()N Q:

pg>w >u>0, forallie. s,

w < U, foralli € &,

pg>A">pu>0, foraliec .« andallv € {1,...,N},

A <u, forallie @y U/ andallv € {1,...,N}.
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Now, lets= (x,A,w) € #.(Z") N Q be arbitrarily chosen. At first, we prove the right
inequality in (55) by considering the componentsafi,(s). Obviously,
@10+ (BROA| < [H(S) (56)
holds foralli=1,...,nand
191 (%) +Wi| < [[H(S)[| (57)
isvalid foralli=1,...,m. Letsomd € .4 andv € {1,...,N} be given. Taking into
account the choice &, we have
. 1 1
[min{wi, A"} = (A7 ] = — Wi’ < = [H($)|eo. (58)
wi H
Moreover, fori € o7 we know from Condition 8 and the choice ®that there is/(i)
such that)\i"<') > i > 0. Therefore, due te,A¥ € RT,

. . 1 i 1
|minfug, A} = minfwi, A} < wi| = WWW“H < LIHEl-  (59)
i

holds fori € & and allv € {1,...,N}. By (56)—(59), we obtain

(9l < max{ 1. HH(S) (©0)
Next, we show that the left inequality of (55) is valid. Fijnsbte that
©1(X) + (B(X)A)i| < [[Hmin(S)|eo (61)
holds fori = 1,...,nand that
191 (%) +Wi| < [[Hmin(S)]|o» (62)
is valid fori = 1,...,m. Taking into account the choice of we obtain
(WA | < minfwi, A} < 1| Himin(S) [l - (63)
fori € {1,...,m}andv € {1,...,N}. Combining (61)—(63) yields
IH(8) [ < max{1, f1}|[Hmin(S)[[eo- (64)

Sinceswas arbitrarily chosen, (60) and (64) show that (55) holdb wi
Ci:=min{1,1/a} and Cy:=max{1,1/u}.
This completes the proof. O

Proposition 10 tells us that, if Condition 8 holds, any caiodiimplying item (ii)
of this proposition also yields that Assumption 2 is satsf@r system (54). This sig-
nificantly generalizes Theorem 2 in [4], at least for GNEPthwhared constraints.
Taking into account the results of the last sections, we kiawitem (ii) of Propo-
sition 10 is implied by Condition 5 or its equivalent formtiden in the context of
GNEPs from the last section. In fact, we showed that ConuBiaoes not only im-
ply Assumption 2 but also the counterpart of Assumption 2Herconstrained system
with slack variables; see the discussion at the end of sebtio
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9 Concluding remarks

We demonstrated that for a certain class of Newton-type oustfor PG-equations
with possibly nonisolated solutions, the only structursdamption required for lo-
cal quadratic convergence is the piecewise error boungdailecal error bound for
every branch of the solution set. The latter property is iethby various relatively
weak piecewise constraint qualifications, for example. idgeplied to KKT systems
arising from optimization or variational problems, ouruks imply local quadratic
convergence under the assumption that the dual part of thémois a noncritical
Lagrange multiplier. For generalized Nash equilibriumigenns, our results yield
local quadratic convergence under the relaxed constaktaamdition. In all these
cases, previous local convergence theories have beenvathro
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