
© 2017. M. V. Korovina. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

 

  
 

   

 
 
Asymptotic Solutions of Second Order Equations with 
Holomorphic Coefficients with Degeneracies and Laplace’s 
Equations on A Manifold with A Cuspidal Singularity          

By M. V. Korovina 

Abstract- In this paper, we construct the asymptotics for second order linear differential equations 
with higher-order singularity for the case where the principle symbol has multiple roots. In 
addition, we solve the problem of constructing asymptotic solutions of Laplace’s equation on a 
manifold with a second order cuspidal singularity.        

Keywords:
 
differential equations with cuspidal, singularitus, laplas-borel transformation, resurgent 

function, laplace’s equation.
 

GJSFR-F Classification: MSC 2010: 44A10
 

 

AsymptoticSolutionsofSecondOrderEquationswithHolomorphicCoefficientswithDegeneraciesandLaplacesEquationsonAManifoldwithACuspidalSingularity 
 
 

Strictly as per the compliance and regulations of:

 
 

 
 

     

  

Global Journal of Science Frontier Research: F
Mathematics and Decision Sciences
Volume 17 Issue 6 Version 1.0  Year 2017
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 & Print ISSN: 0975-5896



 
 
 

Asymptotic Solutions of Second Order 
Equations with Holomorphic Coefficients 

with Degeneracies and Laplace’s Equations 
on a Manifold with a Cuspidal Singularity 

M. V. Korovina 

  

 

Abstract-

 

In this paper, we construct the asymptotics for second order

 

linear differential equations with higher-order 
singularity

 

for the case where the principle symbol

 

has multiple roots. In addition, we solve the problem of constructing 
asymptotic solutions of Laplace’s equation on a manifold with a second order cuspidal

 

singularity.
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I.

 

Introduction

 
This paper is devoted to asymptotic expansions for solutions to equations with 

higher-order degeneracies, namely, to equations of the form
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),( rxa jl

 

holomorphic

 

coefficients

 

in the neighbourhood 
of zero in

 

variable r.

 

Here Cr∈

 

and x

 

belongs to a compact manifold without

 

edge. 
Such equations are referred to as equations with cuspidal singularitus

 

of order k+1,

 

for

 

0=k , such singularitus are said to be conical. The case of conical singularitus was 
studied dy Kondratev in [1]. Here we

 

consider the

 

case of cuspidal singularitus

 

. Note 
that any linear differential equations of

 

second order

 

with holomorphic coefficients with

 

singularitus in

 

one of the variables

 

is

 

representable in the form (1). 

 

Laplace’s equation 
on a manifold with 

 

cuspidal singularity

 

is a typical example of such an equation.
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In the first part of the article we construct asymptotic solutions of ordinary 
differential equations of second order with coefficients ( ) 2,1,0, =irai which is
holomorphic in some neighborhood of the point 0=r
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( ) 2,1,0, =irai

 

are is holomorphic in some neighborhood of the point 0=r

 

In paper

 

[5] received asymptotic solutions

 

of equation 

 

                                              0, 2 =





 − u

dr
drrH ,                                         (3)

 

where ( ) ( ) i
n

i
i praprH ∑

=

=
0

, , 

 

with the roots of  principle operator symbol ( )pHpH ,0)(0 =

 

being

 

simple. The asymptotic solutions of

 

the above equation have the form
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where

 

nii ,...,1, =α -are 

 

the roots of ( )pH ,0

 

and 

 

iσ

 

and

 

k
ia –are 

 

some complex 
numbers. However, if the asymptotic expansion has at last two terms corresponding to 
values 1α

 

and

 

2α

 

with distinct real parts (to be definite, we assume that 21 ReRe αα > ), 

then it becomes quite difficult to interpret

 

the rights hand part of (4). The point is that 
all terms of the first

 

element corresponding to the value 1α

 

(the dominant component) 
have a higher order as 0→r

 

then any term of the second (the recessive element). If the 
argument r moves in the complex plane, then

 

the role of the

 

components can be 
changed. Therefore, to interpret the expansion (4), one should sum the (not necessarily 
convergent)

 

series (3), the analysis of asymptotic expansions of solutions of equations 
(1) requires the introduction of regular summation method

 

for

 

divergent series for the 
construction   of  uniform  asympto tic expansions of  solutions  with  respect  to the 
variable r.

 

In paper

 

[2] and [5] author examined the

 

conditions

 

of

 

infinite continuable for

 

Laplace-Borel k-transforms

 

of

 

solutions

 

to

 

these

 

equations

 

and

 

proved their 
continuability

 

along

 

any path on the Riemann surface not passing through a certain 
discrete set of points depending on the function, the exact definition of

 

resurgent 
function is given in below.

 

Based on the concept of resurgent function

 

first introduced by

 

J. Ecalle

 

[3], 
apparatus for summing expressions of the form (4), based on the Borel-Laplace 
transformation

 

is called resurgent analysis.

 

The fundamentals of

 

resurgent analysis

 

and 
of the Borel-Laplace transform

 

are

 

based on can be found in

 

[4].

 

In articles [7], [8] asymptotic solutions

 

of equations

 

( ) ( ) ( ) ( ) ( ) 001

2

=+





+






 xuxaxu

dx
dxaxu

dx
d

 

are constructed in

 

the neighborhood of infinity, provided that the coefficients ( )xai

 

are 
holomorphic in the neighborhood of infinity.

 

This equation

 

is reduced to the

 

second 
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order equations with cuspidal singularitus in the neighborhood  of the point 0=r , by 

substituting 
r

x 1
= , which is a private case of tasks which are considering in that paper, 

that is equations of any order singularitus.
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In the second part of the paper we consider

 

partial differential equations

 

with 
cuspidal singularitus.

 

As an example we construct asymptotic solutions of Laplace’s 
equation on a manifold with

 

a second order caspidal singularity.

 

The paper continues the

 

research into asymptotic behaviour of solutions

 

to 
equations with singularit carried out in a series of articles [2], [5], [6] and so on.

 

In [5], asymptotic expansions for solutions to equations

 

of type (1) are 
constructed for 1=k , and, in [6], they are constructed for 1>k

 

if the roots of the 
principle

 

operator symbol are simple. The problem of asymptotic solutions in the case of 
multiple roots is much more complicated and is still an open problem. This paper 
proposes a method for obtaining asymptotic solutions of second order equations with 
higher-order singularity

 

in the case of multiple roots. The method is also applicable to 
some types of higher-order ordinary or partial differential equations.

  

II.

 

Basic

 

Definitions

 

In this section we introduce

 

some notions

 

of

 

resurgent analysis for further use.

 

Let ε,RS denote the sector { }RrrrSR <<<−= ,arg, εεε .

 

We say that the function f

 

analytic at ε,RS

 

has at most k-exponential growth if there exist

 

nonnegative

 

constants С

 

and α

 

such that

 

the inequality

  

kr
a

Cef
1

<

 

holds
 
in

 

the

 

sector ε,RS .

 

Let ( )ε,Rk SE

 

denote the space of holomorphic functions of

 

k-exponential growth, 

and let ( )ε,
~

RE Ω

 

denote the space of holomorphic functions of

 

exponential growth in 

ε,
~

RΩ .The domain ε,
~

RΩ

 

is shown in Fig1. ( )CE

 

will denote the space of entire

 

functions 

of

 

exponential growth.

 

The Laplace-Borel

 

k-transform of the function ( )ε,)( Rk SErf ∈

 

is given

 

by

  

∫ +
−=

0

0
1

/ .)(
r

k
rp

k r
drrfefB

k

 

We can show that ( ) )/E(C)~

 

E(: ,, εε RRkk SEB Ω→ . The inverse

 

-transform

 

is defined by 

 

.)(~
2

~
~

/1 ∫=−

γπ
dppfe

i
kfB

krp
k

 

where

 

γ~

 

is shown in Fig. 1.
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Fig. 1: The Laplace-Borel transform domain of holomorphism and the reverse transform 
calculation 

We can now give the definition of a k-resurgent function. 

Definition 1. The function f~  is called k-endlessly continuable, if for any R there exists a 
discrete set of points ZR 

in C
 
such that the function

 
f~
 
can be  analytically continued 

from the initial 
 
domain along any path of length < R

 
not passing through ZR.

 
Definition 2.

 
The element f

 
of the space ( )ε,Rk SE

 
is called a k-resurgent

 
function, if its 

Borel k-transform

 

fBf k=~

 

is

 

endlessly continuable.

 
III.

 

Asymptotic

 

Solutions

 

of

 

Ordinary

 

Differential

 

Equations

 In this section we consider second-order homogeneous ordinary differential 
equations with cuspidal

 

singularitus, that is 

 

the equations of the form

 
0)1,( 1 =+

dr
dr

n
rH n ,

 
where the symbol ),( prH

 

is second-order polynomial in p

 

with holomorphic coefficients.

 
In [2] it is proved that solutions of these equations are resurgent functions

 

as formulated 

in

 

Definition 2. Here

 

we assume that the principle

 

symbol

 

),0()(0 pHpH =

 

has a 
multiple root. In

 

the case of

 

simple roots of a principle

 

symbol

 

such equations are 
discussed in [6]. In other words, we consider the equations of the form

 
            ( ) ,01)(1)(1 2

1
0

1
1

2
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 +++ u

dr
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n
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where

 

)(rai are holomorphic coefficients.
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Here

 

)(),( 11 rcrb

 

are  holomorphic functions, with non-zero

 

с

 

and

 

b.

 
Thus we

 

rewrite

 

equation (5) as
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The following two cases are considered.

 1. np
≥

2
and

 

nk ≥ .

 This is the simplest case. We set nm = , then equation (7) has the form
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Dividing  (8) by

 

nr 2 , we obtain the equation 
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This is an equation with a conic singularity. In other words, it
 
is not the case of 

a cuspidal
 
singularity. 

 
This case is have been studied extensively

 
(e.g.

 
[1]).

 
It is 

reasonable to search
 
for

 
the solutions of these equations in weighted Sobolev spaces 
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( )∞,0,σkH . For nonhomogeneous equations a solution can be represented in the form of
conormal asymptotics. For homogeneous equations, it is identically equal to zero. 
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or nk < , and if 
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pk < , then,

 

similarly

 

to the conic case,

 

we set km =

 

in

 
(7).

 

Divide 

 

the equation (7) by kr 2

 

and multiplying by 
2
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The principle

 

symbol in this case is equal to

 

( ) p
kn

nbppH
−

+= 2
0 , and has 

simple roots. 

 

In [6],

 

the solution of this equation is shown to belong to

 

the space

( )ε,Rkn SE − . Asymptotic

 

solutions for this equation has

 

the form 
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In this case ( ) 1,0, =irvi

 

denotes,

 

in general,

 

divergent

 

series
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and

 

( ) 1,0, =iriσ

 

and

 

i
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denote corresponding numbers. The method to calculate them 

is outlined in [6].
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then, we set 
2
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 If

 

qp 2=

 

is an even number, then the equation takes the form 
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+= . Its roots are simple.

 

The 

solution of this equation belongs to the space ( )ε,Rqn SE − . In this

 

case, as shown in the 

article [6],

 

the asymptotics
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then the asymptotic solution can be rewritten in the form
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In this case we have obtained a  new 

asymptotic type, namely the asymptotics with nonintegral degrees r in their exponents.
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symbol in this case has the form ( )
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has two roots 21, cc

 

and the 

asymptotics has the form 
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nbp , then by replacing ueu r

c
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n
−=~ we 

obtain the equation with a multiple root at zero. The asymptotic solution of this 
equation is constructed in the same way as is shown above and depends on the degrees
of degeneracy of the functions )(),( 11 rcrb .  

Thus we have cuspidal degeneracies in the case where np
<

2
or nk < . The 

obtained results are written in the table
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Now we proceed to examine

 

the

 

higher-order equations
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are entire functions. We assume that 0≠im

ic . The 

number im
 

will be called a degree of degeneracy of
 

the coefficient )(rbi . Suppose that 
zero is the root of this equation principle symbol

 
and the degree of degeneracy of the 

coefficients )(1 rb
 

or )(0 rb
 

is

 

no more

 

than the degree of degeneracy for

 

any of

 

the 

coefficients .1,...,2),( −= kirbi

 

The above method is also applicable to this case.

 Specifically, the equation is to be divided by pr , where ( )10 ,min mmp = , then we have

 the equation with a symbol of the form 






 −

dr
drrH k

pn
, , which is solved similarly to the 

previous one.

 
IV.

 

Partial

 

Differential

 

Equations

 
We consider a second-order partial differential equation with holomorphic 

coefficients. It can be represented

 

in

 

the form
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∂
∂

−− + u
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 where x

 

varies on some compact manifold without boundary. These equations
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interpreted as

 

equations with respect to the functions with values

 

in Banach spaces,

 

namely
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Here 2,1, =iBi

 

denote some Banach

 

spaces

 

(e.g. 

the space ( )ΩsH ).
 

The degree k of the
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u

 

grows exponentially for

 

0→r ,

 

for
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and

 

p

 ( ) 21:,ˆ BBprH →

 is a bounded operator acting in Banach
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which

 

is

 

polynomial

 

dependent on p

 
and holomorphic in the neighbourhood of zero.

 
In what follows, we will assume that the operator family ( ) ( )pHpH ,0ˆˆ

0 =

 

is a 

Fredholm

 

family. This implies that the operator ( )pH0
ˆ

 

is a Fredholm operator for each 

fixed p ,

 

and there exists Cp ∈0

 

such that the operator ( )00
ˆ pH

 

is invertible.

 

In addition to the requirement of the Fredholm property for the family ( )pH0ˆ

 

we assume that there exists a

 

cone in C containing the imaginary axis and does not 

© 2017  Global Journals Inc.  (US)

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
II  

 I
ss u

e 
  
  
 e

rs
io
n 

I
V

V
I

Y
ea

r
20

17

66

  
 

( F
)

contain the points of the spectrum of ( )pH 0
ˆ for a sufficiently large p . The spectrum of 

a Fredholm family is a set of points Cp∈ such that ( )pH0
ˆ is irreversible.

Suppose that the point ( )pHspecp 01
ˆ∈ is such that the following conditions hold :
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Obviously   this case does not satisfy  condition 2 who formulated in part 3, (see 
of the paper) Therefore, the results formulated there is not applicable. We perform the 
Laplace-Borel transform
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Substituting (18) into equation, (17) we obtain

3.
J
. E

calle. C
in

q
 ap

p
lication

s d
es fon

ction
s resu

rgen
tes, 1984. P

rep
rin

t 84T
 62, O

rsay
.

Ref

Asymptotic Solutions of Second Order Equations with Holomorphic Coefficients with Degeneracies and 
Laplace’s Equations on a Manifold with a Cuspidal Singularity



                                

  

( ) ( ) ( ) ( ) ϕϕϕ ik

k
k

ik

k
k

ik

k
k

p

p
epaepAkrpdepAppar ∑∑∑∫

∞

=

∞

−∞=

∞

−∞=

++′′′−−=
1

223 ˆ4~ˆ
0

 

This equality is equivalent to the system of equations 

 

( ) ( ) ( ) ( ) ( ) )(ˆ4~ˆ 22222

0

papAkrpdpAppparpAkp kkk

p

pk ++′′′′−−=− ∫ ,

 

Here

 

k

 

is an integer.

 

The

 

cases

 

0=k

 

and

 

0≠k

 

should be considered separately. 

In the first case the singular point of the function ( )pA0
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where ( )pg

 

denotes the function holomorphic in the zero neighbourhood, and iC

 

denotes corresponding constants. The proof of convergence of the successive 
approximation method is the same as analogous to

 

the proof in

 

[6]. Thus we obtain that 

the function ( )pA0

 

with an accuracy of a holomorphic summand in the neighbourhood of 

the point 0=p

 

has the form
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Here by 0
iM we denote corresponding constants.

Now we consider the second case 0≠k . In this case the points kp = and kp −=
are first-order poles of the function ( )pAk . Here we have the equation
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Equations of this form have been studied in [5]. The asymptotics of the function 

( )pAk

 

in the neighbourhood of the singular point kp = , with an accuracy of a 

holomorphic function,

 

will take the form 
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Here by k
iM

 

we denote corresponding

 

constants. Thus we have demonstrated 

that, with an accuracy of a holomorphic function, the solution of equation (17) has the 
form 
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Hence it follows that singular points of the function ( )ϕ,~ pu

 

lie in any half-plane

0Re >> Ap . In order to construct

 

the solution of problem (17) we represent the 

function ( )ϕ,~ pu

 

as a sum of two functions ( )ϕ,~ pu−

 

and

 

( )ϕ,~ pu+ such that the 

singularities of the first one

 

lie to the left of the

 

line

 

Ap >Re , and the singularities of 
the second one lie

 

to the right of this 

 

line

 

Ap >Re , where

 

ZA∉Re .

 

Then the solution 

can be constructed as the inverse transformation of the function ( )ϕ,~ pu−

 

(see [5]). To 
put it differently the equality
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holds with an accuracy of an entire function.

 

Hence it follows that the asymptotic solution of Laplace’s

 

equation (13) has the form 
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We should note that the solution depends on the representation

 

( ) ( ) ( )ϕϕϕ ,~,~,~ pupupu +− += . One solution differs from the other solutions by an operator 

kernel.

 

Thus we have proved

 

Assertion.

 

Any solution of

 

equation

 

of exponential growth (12)

 

can be represented as
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where А is an arbitrary positive number, and the sum contains a finite number of 
summands, each of which corresponding to a point kp = located in the half-plane 

Ap −>Re , and ( )ru
j

have asymptotic expansions 
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