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Equations with Holomorphic Coefficients
with Degeneracies and Laplace’s Equations
on a Manifold with a Cuspidal Singularity

M. V. Korovina

Absiract- In this paper, we construct the asymptotics for second order linear differential equations with higher-order
singularity for the case where the principle symbol has multiple roots. In addition, we solve the problem of constructing
asymptotic solutions of Laplace’s equation on a manifold with a second order cuspidal singularity.

Keywords: differential equations with cuspidal, singularitus, laplas-borel transformation, resurgent function,

laplace’s equation.
[.  INTRODUCTION

This paper is devoted to asymptotic expansions for solutions to equations with
higher-order degeneracies, namely, to equations of the form

H(r, 1rk+1g x—|8ju:0, (1)
k dr OX
where
d 0 d
Hfr,rt—= x—i— a., (xr kel
g f) S a1 ) (g

k —integer non-negative number, a;(X,r) holomorphic coefficients in the neighbourhood
of zero in variable r. Here r e C and x belongs to a compact manifold without edge.
Such equations are referred to as equations with cuspidal singularitus of order k+1, for
k=0, such singularitus are said to be conical. The case of conical singularitus was
studied dy Kondratev in [1]. Here we consider the case of cuspidal singularitus. Note
that any linear differential equations of second order with holomorphic coefficients with
singularitus in one of the variables is representable in the form (1). Laplace’s equation
on a manifold with cuspidal singularity is a typical example of such an equation.

In the first part of the article we construct asymptotic solutions of ordinary
differential equations of second order with coefficients a,.(r ),i =012 which is
holomorphic in some neighborhood of the point r =0
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a(r),i=012 are is holomorphic in some neighborhood of the point r =0
In paper [5] received asymptotic solutions of equation

H(r,—rz(;jju:o, (3)

"
where H(r,p)= Zn:a. (r)p', with the roots of principle operator symbol Hy(p)=H (0, p)
i=0

being simple. The asymptotic solutions of the above equation have the form

uzzn:eai/rroiiaikrk (4)
i=1 k=0

where ¢;,i=1..,n-are the roots of H(O, p) and o, and aik —are some complex
numbers. However, if the asymptotic expansion has at last two terms corresponding to
values ¢, and a, with distinct real parts (to be definite, we assume that Reo, > Req, ),
then it becomes quite difficult to interpret the rights hand part of (4). The point is that
all terms of the first element corresponding to the value ¢, (the dominant component)
have a higher order as r — 0 then any term of the second (the recessive element). If the
argument r moves in the complex plane, then the role of the components can be
changed. Therefore, to interpret the expansion (4), one should sum the (not necessarily
convergent) series (3), the analysis of asymptotic expansions of solutions of equations
(1) requires the introduction of regular summation method for divergent series for the
construction of uniform asympto tic expansions of solutions with respect to the
variable r.

In paper [2] and [5] author examined the conditions of infinite continuable for
Laplace-Borel k-transforms of solutions to these equations and proved their
continuability along any path on the Riemann surface not passing through a certain
discrete set of points depending on the function, the exact definition of resurgent
function is given in below.

Based on the concept of resurgent function first introduced by J. Ecalle [3],
apparatus for summing expressions of the form (4), based on the Borel-Laplace
transformation is called resurgent analysis. The fundamentals of resurgent analysis and
of the Borel-Laplace transform are based on can be found in [4].

In articles [7], [8] asymptotic solutions of equations

[djzu(x% ai(x)(i(ju(xp 8, (X)u(x)= 0

dx

are constructed in the neighborhood of infinity, provided that the coefficients a,.(x) are
holomorphic in the neighborhood of infinity. This equation is reduced to the second
order equations with cuspidal singularitus in the neighborhood of the point r =0, by

substituting X==, which is a private case of tasks which are considering in that paper,

that is equations of any order singularitus.
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In the second part of the paper we consider partial differential equations with
cuspidal singularitus. As an example we construct asymptotic solutions of Laplace’s
equation on a manifold with a second order caspidal singularity.

The paper continues the research into asymptotic behaviour of solutions to
equations with singularit carried out in a series of articles [2], [5], [6] and so on.

In [5], asymptotic expansions for solutions to equations of type (1) are
constructed for k=1, and, in [6], they are constructed for k>1 if the roots of the
principle operator symbol are simple. The problem of asymptotic solutions in the case of
multiple roots is much more complicated and is still an open problem. This paper
proposes a method for obtaining asymptotic solutions of second order equations with
higher-order singularity in the case of multiple roots. The method is also applicable to
some types of higher-order ordinary or partial differential equations.

[I.  BAsiCc DEFINITIONS
In this section we introduce some notions of resurgent analysis for further use.

Let S, denote the sector S;, = {r\— g<agr<e,r< R}. We say that the function £

analytic at S;, has at most k-exponential growth if there exist nonnegative constants C

r

and o« such that the inequality

a
[f|<ce
holds in the sector S; , .
Let E, (SRE) denote the space of holomorphic functions of k-exponential growth,
and let E(ﬁRyg) denote the space of holomorphic functions of exponential growth in
ﬁR’g.The domain £~)R’g is shown in Figl. E(C) will denote the space of entire functions

of exponential growth.
The Laplace-Borel k-transform of the function f(r)eE, (SRS) is given by

B,f =[e”"f(r) ar

0

We can show that B, :E, (SRE)—> E(ﬁRy‘g )/E(C). The inverse -transform is defined by

rk+l '

4~ k ‘=
B, 'f =—[e”" f(p)dp.
’ 2m'7[ (p)dp

where 7 is shown in Fig. 1.
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Fig. 1: The Laplace-Borel transform domain of holomorphism and the reverse transform
calculation

We can now give the definition of a k-resurgent function.

Definition 1. The function f is called k-endlessly continuable, if for any R there exists a
discrete set of points Zy in C such that the function f can be analytically continued
from the initial domain along any path of length < R not passing through Zj.

Definition 2. The element f of the space Ek(SR’S) is called a k-resurgent function, if its
Borel k-transform f =B, f is endlessly continuable.
[11. ASYMPTOTIC SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

In this section we consider second-order homogeneous ordinary differential
equations with cuspidal singularitus, that is the equations of the form

H(r,lr“*lg)zo,
n dr

where the symbol H(r, p) is second-order polynomial in p with holomorphic coefficients.
In [2] it is proved that solutions of these equations are resurgent functions as formulated
in Definition 2. Here we assume that the principle symbol H,(p)=H(0,p) has a
multiple root. In the case of simple roots of a principle symbol such equations are
discussed in [6]. In other words, we consider the equations of the form

l n+li ? 1 n+1i l n+1i ? _
(nr drj u+a1(r)(nr dr)u+a0(r)u+rv(r)(nr drj u=0, (5)

where a (r) are holomorphic coefficients.
ay(r) =br* +rp(r),
ag(r)=cr® +r"c(r)

Here by(r),c,(r) are holomorphic functions, with non-zero ¢ and b.
Thus we rewrite equation (5) as

2
(1rn+ldj u+brk(1rn+1ddju+cr pu+rk+1b|-(r)(lrn+ldju+
r n

n dr n dr
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+rp+1 1 n+1g ? _
c,(r)u+rv(r) nr ar u=0. (6)

Since for any m:0<m<n+1 the relation

2 2
r n+l i] =mr n+m(r n-m+1 i +r 2m r n-m+1 i) ,
dr dr dr

holds, then equation (6) can be rewritten in the form
2
I,2m lrn—mﬂi u +mrn+m lrn—mﬁ-li u+ bl’ k+m lrn—mﬁ-liju_'_cr pu +
n dr n n dr n dr
1 d 1 d )
+rk+l+m r _rn—m+l_ u+rp+1 r u_i_r2m+lvr (_rnrml_j U+
by( )[n drj &(r) | (7)
+ m r m+n+1v(r)(£ r n—-m+1 iju — O
n n dr

The following two cases are considered.

1. §Znand k>n.

This is the simplest case. We set m=n, then equation (7) has the form

2
an(Eri) u+r2”(1riju+br"*"(1r i]u+cr"u+
n dr n dr n dr
1 d 1 .dY
rk+n+1 N =r— r e (r r2n+1vr —Ir— 8
+ b.L()(n drju+ c(ru+ ()(n drj u+ (8)

+ r2“+1v(r)(1r%Ju =0

n

Dividing (8) by r*", we obtain the equation

2
(lri) u+(1riju+brk‘“(1r iju+cr TS
n dr n dr n dr
1 d 1 dY
rk—n+l Nl =r— rp—2n+l r r N =r—
+ bl()(n dr]u+ C (Nu+rv( )(n drj u+

+ rv(r)[% r %ju =0

This is an equation with a conic singularity. In other words, it is not the case of
a cuspidal singularity. This case is have been studied extensively (e.g. [1]). It is
reasonable to search for the solutions of these equations in weighted Sobolev spaces
H*?(0,0). For nonhomogeneous equations a solution can be represented in the form of
conormal asymptotics. For homogeneous equations, it is identically equal to zero.
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2. Let E< nork<n, and if k<-—, then, similarly to the conic case, we set m=Kk in

2
(7). Divide the equation (7) by r®* and multiplying by (nkj we obtain the

equation

2
( 1 rn—k+1ij U+ n rn—k( 1 rn_k+liJU+b n [ 1 rn—k+liju+
n-k dr n-k n-k dr n-k\n-k dr

2

n n 1 d n \’
+C—— P u+rb(r) —| ——r"* = U+ —— | ¢ (ru+
(n—k)? A )n—k(n—k dr} (n—k} a(")

2 2
+ rv(r)(—l p kel i) Ut rv(r)[—1 p kel ij u=0
n—k dr n-k n-k dr

The principle symbol in this case is equal to Ho(p)= p2+bnk p, and has
n_

simple roots. In [6], the solution of this equation is shown to belong to the space
E. . (SRS) Asymptotic solutions for this equation has the form

- n—k-1 On—— o b n—k-1 14
e 8 e - )

In this case V,(r),i =01 denotes, in general, divergent series
— el i —
v, (r)= Z;vjr i=01
j=

and o, (r ),i =01 and @i denote corresponding numbers. The method to calculate them
is outlined in [6].
Now assume that P <k then, we set m=§, in equation (7) and divide it by rP,

thus obtain the equation

1 n2ad) p (1 nlad «?(1 n-Puad
=r 2 —|u+—r 2|=r 2 —u+br 2% =r 2 u+cu+
n dr 2n n dr n

dr
o 2 D qouenf 238 )
+ = — lu+ u+rv(r) = — | u+
! n dr “ n dr
n-Py
+£r“*1‘qV(r)[—1 ro2 11jU=0
2n

n—-g dr

If p=2q is an even number, then the equation takes the form

2
[ 1 rn—q+1 d j u -+ q r.n—q[ 1 rn—q+1 d ju+
n—q dr n—q n—q dr
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generations,

1 d
4 rkap (py 1 roat — lu+r
B ( )n—q[n—q drj [

1 d
+rv(r)[ r”q”—j u -+

JFexors

n—q dr

4+ r”‘q”v(r)[ 1 r”‘“liju:O
n—q n—q dr

2
Then the symbol is equal toH,(p)= p2+(nj c. Its roots are simple. The

solution of this equation belongs to the spaceE |, (SRS) In this case, as shown in the

article [6], the asymptotics has the form

. N . N
LN 1 LN 2
n—q a1l g n—q a1l o h g
n—q -

+ 3 = roey(r)exp g

rmvl(r)eXp - R

i=1

1
If p is odd, we make the change (of) x=r? and by substituting

r ”‘g*l i _ 1 X2n— p+l %
da 2 dx

into equation (9) we obtain

2
( 1 X2n+1—p ij u+ p X2np[ 1 X2n+l—p EJU + bxzk—p 2 2n [ 1 X2n+1—p EJU-}-

2n—p dx 2n—p 2n—p dx

2
N 2n cu+x2k+2‘pbl(x2) 2n 1 X2n+l—pi U+
2n—p 2n—-pl2n-p dx

2 2
+X° 2n ¢, (X*)u+ x*v(x?) sz”ﬂ"’i u+
2n—-p 2n—p dx

2
+ 2 p X2n+2—pv(x2) 1 X2n+1—p i u= 0
2n—-p 2n—-p dx

2
: . . 2 2n
In this case the principle symbol is equal to Ho(p) =p + n— o C. The
asymptotic solution of the last equation has the form n-p

exp(— —Zﬂiﬁ +2n72p717a1i jx"ivo(x)+ exp(zm‘ﬁ +2n_2p_17a2” ]xazvl(x)z

(2n _ p)Xan p = X2n— p—i (2n _ p)XZn— p = X2n7 p-i
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Since

1 0 i 0 © 1 0 1 »
= — . I+= . — .
Uzvlzvl D VT 2= Var 12y Vi
o1 i—1 i=0 i=1 i=0

then the asymptotic solution can be rewritten in the form

{ n-p- 1 o1 1
exp _2m—ﬁ+2 ol el 2(v11(r)+ rzvf(r)}r

n-P =1 n-P_!

(2n—p)r 2 ro22

i1 -t

; n-p— 2 o3 1
+exp w)+2 A [vzl(r)+r2v22(r)}
(2n-p)y" 2 roz2

Here V= szlr V2 ZV2|+1 , ]=12. In this case we have obtained a new

i=1
asymptotic type, namely the asymptotics with nonintegral degrees r in their exponents.

Let us consider the last case. Suppose k = g <n. We set m=k :g and dividing

2
N
by r*™ we obtain and multiplying on (nk] then

2 2
L r"*k+li Utk ! r“’k*11 u+b— L r”’k+li u+| | cu+
n-k dr n-k n-k dr n-kin-k dr n-k

+rbl(r)—(n—lkr“ kit ;ju”[n ) c(ru+

2
+rv(r) L r”’k+1i U+ " hy(r) L r“*k+li u=0
n—-k dr n—k n—-k dr

2
The principle symbol in this case has the form H (p) p’ +b7k p+C( kj
n-—

2
If b=2/c, then the polynomial p? +b7k p+C( n kj has two roots c;, ¢, and the
n_

asymptotics has the form

C n—k-1 0[0i C nk1 ali
o 1 O 2
r OVO (r)exp( r n-k r n—k—i +r 1Vl(r)exp r n-k S n—k—i

i=1

2 n e
If b=2yc, namely p2+bnnkp+c(nnkj then by replacing T=e"*"u we

obtain the equation with a multiple root at zero. The asymptotic solution of this
equation is constructed in the same way as is shown above and depends on the degrees
of degeneracy of the functions b (r),c,(r).

Thus we have cuspidal degeneracies in the case where B<n or k<n. The
obtained results are written in the table 2

© 2017 Global Journals Inc. (US)
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Theorem 1: Let §< n or k<n then

Conditions Space Asymptotics
p nk-1 aon—k—l
; r °v0(r)exp( Ejl i j+
k<—
2 ue Enfk (SR,E) . ( ) bn neko1 O{lk_i
+rov(r)expl —————~ + :
nER r"*(n-k) & r"
.n
LR
rUlVO(r)eXp - rn-a + le rn—qq—l
p
kK>—,
2 UeE, ,(S:.)
p=29,qeN |”q% -
o, n-— a1t n-g-i
i 2n-p-1 1 91 1
exp _M)+ 3 apl i rz(vil(r)+r2vf12
p "y F T
k>—=, 2n—p)r r
2 | uee, (s, | L @P
p is odd ; 2n-p-1 2 o2 1
+exp —Zmﬁ =+ v ap' —r 2 [Vgl(r)+r2\722
(2n-pr'z Tz
o C1 n—k-1 aon—k—l
P r vo(r)exp[rn_k + Isz S |t
ue En—k—l(SR,g) c k1 oy
oy -
b+ 2y v (e 1+ 3 4

Now we proceed to examine the higher-order equations
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Kk k-1
(%r“”%) u+ b“(r)(%r””%} Ut...+ bl(r)(%r””%jm b, (Nu=0

where b (r)= Z(:ljrj,i =0,..,k—1 are entire functions. We assume thatc” #0. The
j=m

number m will be called a degree of degeneracy of the coefficient b(r). Suppose that

zero is the root of this equation principle symbol and the degree of degeneracy of the

coefficients b (r) or by(r) is no more than the degree of degeneracy for any of the

coefficients b (r), i =2,..,k—1. The above method is also applicable to this case.

Specifically, the equation is to be divided by rP, where p=mi n(mo,ml), then we have
p

the equation with a symbol of the form H{r, rn_kdi , which is solved similarly to the
r

previous one.

IV.  PARTIAL DIFFERENTIAL EQUATIONS

We consider a second-order partial differential equation with holomorphic
coefficients. It can be represented in the form

H (r,—ir"”i, X,—i iju =0,
k dr OX

where X varies on some compact manifold without boundary. These equations can be
interpreted as equations with respect to the functions with values in Banach spaces,

namely
i 1 k+1 d _
H (r,—k r dr)u =0, (10)

where H :Ek(SR’S,Bl)—> E, (Sng,BZ). Here B,i=12 denote some Banach spaces (e.g.
the space H*(Q)). The degree k of the function u grows exponentially for r — 0, for
fixed r and p

H(r,p): B, > B,

is a bounded operator acting in Banach spaces which is polynomial dependent on p
and holomorphic in the neighbourhood of zero.

In what follows, we will assume that the operator family |:|O(p)= I:I(O, p) is a
Fredholm family. This implies that the operator H,(p) is a Fredholm operator for each
fixed p, and there exists p, € C such that the operator H,(p,) is invertible.

In addition to the requirement of the Fredholm property for the family H,(p)
we assume that there exists a cone in C containing the imaginary axis and does not
contain the points of the spectrum of H,(p) for a sufficiently large 'p. The spectrum of
a Fredholm family is a set of points peC such that ﬁo(p) is irreversible.

Suppose that the point p, € Specl:lo(p) is such that the following conditions hold :

© 2017 Global Journals Inc. (US)

Notes



Ref

5. Korovina M. V. and Shatalov V. E., Differential Equations with Degeneration and
Resurgent Analysis, Differ. Uravn, 2010, vol. 46, no 9, p 1259-1277.

1. The operator-valued function H ’1o(p) has the second-order pole at the point p,.
2. The dimensionality of the ker H,(p,) is equal to one.
In this case theorem 1 is also true. The proof is analogous to that of Theorem 9

in [5] In this case the coefficients of the series Z:Vijrj are the elements of the space B;.
i1

V. LAPLACE'S EQUATION ON A MANIFOLD WITH A CASPIDAL SINGULARITY

We consider the Laplace equation Au=0 on the 2D-Riemannian manifold with

a second order caspidal singularity. The Riemannian metric induced from R® with the
help of embedding which is defined as the surface by the rotational of the parabolic
branch y=r? around axis Or.in R®. We choose local coordinates r, ¢ on the manifold
in the neighbourhood of zero. The metrics on this manifold is given by

ds? = dr? + 4r?dr? + r'de? = (1+ 4r?)Jdr? + r'de?,

hence
1 ou 1 ou
radu=(A,A)=| ———, |
and

1 (0 0 1 0 (., 1
hh, (g(thl)-F%(hlAz)J = mg(r A&)Jfr—z% A.

Finally, for the Laplace operator we obtain

divu =

Au = divgradu =

r2ar2 4100 AJarzror ) rt\oe
Thus Laplace’s equation on a manifold has the form

1 0u 2 2+1 ou 1 0% _

Hu= += =
4r? +1or? r(4r2+1)28r r* 0g?

In other words

H:E,(Se. . H(S)) > Ei(Se. . H**(S),

We rewrite equation (11) in the form

2 2 2 3
(rzij u+—a li = —4r? 0 li + jr (rzﬁj (12)
dr o op® (ar+1) U or

Obviously this case does not satisfy condition 2 who formulated in part 3, (see
of the paper) Therefore, the results formulated there is not applicable. We perform the
Laplace-Borel transform
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2
_ (0 0\~
W+| — | O=-Br® )(rZ—J —~ 13
o+ 2 | oot afrf e (13
where al(r): m, and ?( p,p) denotes a holomorphic function.

2
The principle symbol of this operator is equal H (0, p) = p® + [Gij . Therefore
@

the corresponding operator family ﬁo(p) is a Fredholm one. The existence of resurgent
solution of this equation follows from the results of [2], [3]. We denote " =Br"B™, as
was done in [5]. If a(r) is holomorphic in the neighbourhood of r = 0, vanishing at the
origin, and

a(r):iakrk (14)
k=
is its Taylor expansion, then the function
pkt
acp) = Z k 0 (15)

is called a formal Laplace-Borel transform of (14), then as shown in the article [5] the
equation

Boa(r)o B sz a(p- p)f (p')dp (16)

Equality (16) implies that the right-hand part of equation (13) can be transformed

0 \~
—Br’B*Bra,(r) r>= |0 -
a1(>( arj

0% oy, T
_—rj (p- p)pU(p,@)dp' —4—%U(p,¢)+ f(p @)
op°

Equation (13) is ultimately transformed into following

2

2
o 0
pzu{@(pj o=-r*[ a(p- p)pa(p’p)dp' ~4r*

a(p.e)+ T(p.p) (17)

2

Decompose functions Uand f into a series on eigen function of operator

- Y Alpe*

k=—o0

2

f(p.p) =2 a(p)e" (18)
Substituting (18) into equation, (17) we obtain
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p Z& e -3 k2A,(p)e" =

—rI (p-p ZA( p')e*dp’ +4rA22k2 p)eik‘”+iak(p)e““/’
k=1

k=—00

This equality is equivalent to the system of equations

(p* = Kk?)A(p)=—7[" &(p - p)P'A(P)dp’ + 47°k*A(p) + 2 () |

Here Kk is an integer. The cases k=0 and k # 0 should be considered separately.

In the first case the singular point of the function A)(p) is p=0, being a pole of second

order. We solve this equation by the method of successive approximations.

Alp)

2 o P~ ! ! ! 1
A(P)=-—5 ], &lp— p)p' ==’ + - a(p)

Substitute A)(p)zizao(p) into the integral in right-hand part side of (19).
p

Applying successive approximation method. Obtain the equality

1 .,00~ ! 1 o2pp G(p,P)
— 2| a(p-p')S—a,(p)dp’ == 7| —="dp
- J al )p 20(p') > N )

where G(p,p)=a(p-p’a,(p’). We represent this function as the
G(p,p)= Zli(p) p”, then similarly to [5] we obtain
i—0

Zl(p)p" -
fpo B p'zéfozfp:(bl(pl)'”P1+n(p1))dp1dpz=

=C_1%+C0In p+Y.C.p Inp+g(p)

i=1

series

where g(p) denotes the function holomorphic in the zero neighbourhood, and C,

denotes corresponding constants. The proof of convergence of the successive
approximation method is the same as analogous to the proof in [6]. Thus we obtain that

the function A)(p) with an accuracy of a holomorphic summand in the neighbourhood of

the point p=0 has the form

A(p)=—F+—2+> M?p'Inp
p p i—0

Here by M we denote corresponding constants.

Now we consider the second case k0. In this case the points p=k and p=-k

are first-order poles of the function A((p) Here we have the equation
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3, (p)
p2_k2

1 P ~ ! ! ! ’ 1 P
A(P) =~z ], AP PIPA(PR + 4T A(p)+

Equations of this form have been studied in [5]. The asymptotics of the function
A<(p) in the neighbourhood of the singular point p=Kk, with an accuracy of a
holomorphic function, will take the form

+> M¥(p-k) In(p-k)

A(p) ok

Here by M/ we denote corresponding constants. Thus we have demonstrated

that, with an accuracy of a holomorphic function, the solution of equation (17) has the
form

j=0

~ N o _ M 5
U(p,(ﬂ):k;ﬁ(p)e P kZ;o(

M k i ik
p_k+z M¥(p-k) In(p—k))e

Hence it follows that singular points of the function T(p,e) lie in any half-plane
Rep> A>0. In order to construct the solution of problem (17) we represent the
function T(p,¢) as a sum of two functions U (p,¢) and T, (p,¢)such that the

singularities of the first one lie to the left of the line Rep> A, and the singularities of
the second one lie to the right of this line Rep> A, where ReAg Z. Then the solution

can be constructed as the inverse transformation of the function T (p,p) (see [5]). To
put it differently the equality

u(r,p)=B"0 (p.p)= B'l[ '\2);2 + i (M—‘kl+i'\/',-k(p—k)" ln(p—k))e“‘*]

p-k =

holds with an accuracy of an entire function.
Hence it follows that the asymptotic solution of Laplace’s equation (13) has the form

C N, X S p g K
u(r,(p):T*1+ D e d* > M
k=—o0 i=0

We should note that the solution depends on the representation
U(p,¢)=0_(p,@)+0.(p,p). One solution differs from the other solutions by an operator
kernel. Thus we have proved

Assertion. Any solution of equation of exponential growth (12) can be represented as

o)~ T ro)sofe” |

where A is an arbitrary positive number, and the sum contains a finite number of
summands, each of which corresponding to a point p=K located in the half-plane
Rep>-A, and uj(r) have asymptotic expansions
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Notes

j 0
r A7) k.l
u,(r,p)=ee?” |§—o M,

In conclusion, I would like to express my deep gratitude to V.E. Shatalov for
permanent discussions throughout the work. This work was supported by the Russian
Foundation for Basic Research (project 14-01-00163-a).
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