ЯДРА =

# ИЗОМЕРНЫЕ ОТНОШЕНИЯ ПРОДУКТОВ ФОТОЯДЕРНЫХ РЕАКЦИЙ НА ЕСТЕСТВЕННОЙ СМЕСИ ИЗОТОПОВ СЕРЕБРА

© 2015 г. С. С. Белышев<sup>1)</sup>, Б. С. Ишханов<sup>1),2)</sup>, А. А. Кузнецов<sup>2)\*</sup>, А. А. Мартынов<sup>1)</sup>, К. А. Стопани<sup>2)</sup>

Поступила в редакцию 30.03.2015 г.

Активационным методом исследуются фотоядерные реакции на естественной смеси изотопов серебра при энергии электронов ускорителя 55 МэВ. Получены выходы фотоядерных реакций с вылетом до четырех нейтронов. Получены изомерные отношения <sup>104</sup>Ag и <sup>106</sup>Ag. Полученные изомерные отношения сравниваются с результатами других работ и расчетами по каскадно-испарительной модели.

DOI: 10.7868/S0044002715100037

#### 1. ВВЕДЕНИЕ

Изучение изомерных состояний атомных ядер позволяет получить информацию о природе возбужденных состояний атомных ядер [1-6]. Явление изомерии атомных ядер связано с большой разницей в спинах или деформации изомерного состояния относительно основного состояния атомного ядра. Вероятность заселения изомера в результате фотоядерных реакций зависит от энергии реакции, орбитального момента вылетевших частиц, момента и четности конечного состояния. Орбитальный момент вылетевших частиц зависит как от их энергии, так и от структуры оболочек в возбужденном ядре. С изомерными состояниями обычно связана система вышележащих уровней с похожей структурой. Поэтому вероятность заселения изомерного состояния зависит также от вероятностей каскадных переходов на него с вышележащих состояний.

Возбужденные состояния ядер часто изучаются во взаимодействиях с пучками реальных фотонов. Использование  $\gamma$ -квантов в качестве пробных частиц имеет ряд преимуществ: возможность изучать ядерные реакции, начиная с порога реакции, при фотопоглощении спектр передаваемых ядру угловых моментов ограничен. Так, для фотопоглощения тяжелых ядер характерно поглощение в основном дипольных  $\gamma$ -квантов.

Измерение выходов фотоядерных реакций и изомерных отношений на изотопах Ад в диапазоне

энергий от 18 до 84 МэВ на пучках тормозного излучения ранее было выполнено в работах [7–16]. В работе [9] проводилось измерение изомерных отношений <sup>104</sup>Ag и <sup>106</sup>Ag на естественной смеси изотопов при энергиях 45-55 МэВ с тормозной мишенью из вольфрама толщиной 0.1 мм. В работе [16] было измерено изомерное отношение изотопа <sup>106</sup>Ад при энергии 50 МэВ. В работах [10, 11] были измерены изомерные отношения изотопа <sup>104</sup>Ад при энергиях 33–38.5 МэВ с тормозной мишенью из тантала толщиной 1.05 мм. Отдельно было измерено изомерное отношение в реакции вылета пяти нейтронов на мишени из серебра, обогащенного изотопом <sup>109</sup>Ag при энергии 84 МэВ [10]. В работе [8] были измерены изомерные отношения для реакции  $^{107}{
m Ag}(\gamma,n)^{106}{
m Ag}$  при энергиях от 14 до 24 МэВ с тормозной мишенью из вольфрама толщиной 0.3 мм. Измерения в этой же области энергий проводились в работах [12] (20 и 30 МэВ), [13] (18 МэВ) и [14] (30 МэВ). При анализе результатов, полученных в вышеперечисленных работах, необходимо учитывать, что они были выполнены на тормозных мишенях из различных материалов и разной толщины. В результате этого тормозные спектры различались, что сказывалось на выходах фотоядерных реакций.

#### 2. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Для измерения выходов продуктов фотоядерных реакций на изотопах Ag использовался метод наведенной активности [17, 18]. Эксперимент проводился на пучке тормозных  $\gamma$ -квантов разрезного микротрона РМ-55 НИИЯФ МГУ [19]. Мишень из фольги естественной смеси изотопов серебра (51.839% изотопа <sup>107</sup>Ag и 48.161% изотопа <sup>109</sup>Ag)

Московский государственный университет им. М.В. Ломоносова, Россия.

<sup>&</sup>lt;sup>2)</sup>Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына МГУ им. М.В. Ломоносова, Россия.

<sup>\*</sup>E-mail: kuznets@depni.sinp.msu.ru



**Рис. 1.** Спектр  $\gamma$ -квантов  $I(E_{\gamma})$  от облученного образца Ag, измеренный HPGe-спектрометром через 4 мин после облучения. Время измерения — 2 часа. Надписи над пиками — энергии  $\gamma$ -линий в кэВ и соответствующие им радиоизотопы серебра.

массой 0.1826 г и поверхностной плотностью 0.028  $\pm$  0.001 г/см<sup>2</sup> облучалась в течение 10 мин пучком  $\gamma$ -квантов тормозного спектра электронов ускорителя с энергией 55 МэВ. Средний ток пучка электронов в процессе облучения составлял 60.4 нА. Для генерации тормозного пучка  $\gamma$ -квантов использовалась мишень из вольфрама толщиной 2.1 мм, которая полностью перекрывала пучок. Вплотную к тормозной мишени располагался монитор из меди — пластинка 40 × 40 мм поверхностной плотностью 0.321  $\pm$  0.009 г/см<sup>2</sup>. Вплотную к монитору располагалась исследуемая мишень из серебра. Спектр тормозных фотонов рассчитывался по программе GEANT4 [20].

Спектры остаточной активности облученной мишени из Ag измерялись с помощью детектора из сверхчистого германия с эффективностью 30%. Энергетическое разрешение детектора составляло 0.9 кэВ для энергии  $\gamma$ -квантов 122 кэВ и 1.9 кэВ для энергии  $\gamma$ -квантов 1.33 МэВ. Эффективность детектора определялась с помощью калиброванных источников <sup>133</sup>Ba, <sup>137</sup>Cs, <sup>60</sup>Co, <sup>241</sup>Am, <sup>152</sup>Eu и модели детектора, рассчитанной по GEANT4 [20]. Измерение  $\gamma$ -спектров остаточной активности начиналось через 3 мин после окончания облучения. Общая продолжительность измерения  $\gamma$ -спектров наведенной активности мишени составила 30 сут.

### 3. МЕТОДИКА ОБРАБОТКИ ДАННЫХ

На основе анализа  $\gamma$ -спектров остаточной активности и изменения интенсивности пиков полного поглощения  $\gamma$ -квантов идентифицировались изотопы, образующиеся в результате фотоядерных реакций, и рассчитывались их выходы. На рис. 1 показан один из измеренных спектров  $\gamma$ -квантов распада радиоизотопов, образовавшихся в облученной мишени Ag.

При энергии облучения 55 МэВ возможны фотоядерные реакции с вылетом до пяти нейтронов. При этом образуются изотопы серебра с массовыми числами от 102 до 108. В табл. 1 представлены реакции, приводящие к образованию данных изотопов, и характеристики основного и изомерного состояний изотопов серебра. В первом столбце перечислены радиоизотопы серебра, образующиеся в мишени из естественной смеси изотопов Ад при облучении тормозным спектром у-квантов с верхней границей 55 МэВ. Во втором столбце перечислены основные реакции, приводящие к образованию данного изотопа. В третьем и четвертом столбцах приведены спины J, четности P и периоды полураспада  $T_{1/2}$  соответственно для основного и изомерного состояний. Большинство изомерных состояний имеют канал радиационного распада в основное состояние. Приведена доля этого канала р в общем числе распадов изомерного состояния.

Наблюдаемые пики в спектре образующихся в фотоядерных реакциях с вылетом нуклонов радионуклидов были идентифицированы и сопоставлены с известными  $\gamma$ -линиями конечных ядер. Исходя из цели нашей работы были определены выходы изотопов <sup>106</sup>Ag и <sup>104</sup>Ag в изомерных и основных состояниях. В табл. 2 перечислены энергии наиболее интенсивных  $\gamma$ -линий от распада радиоизо-

ЯДЕРНАЯ ФИЗИКА том 78 № 11 2015

**Таблица 1.** Фотонейтронные реакции при облучении естественной смеси изотопов серебра тормозным излучением с верхней границей спектра 55 МэВ ( $E_{\rm thr}$  – порог исследуемой фотоядерной реакции,  $J_{\rm g.s}^P$ ,  $J_{\rm m.s}^P$  – спин и четность основного и изомерного состояний изотопа,  $T_{1/2}^{\rm g.s}$ ,  $T_{1/2}^{\rm m.s}$  – период полураспада основного и изомерного состояний изотопа,  $E_{\gamma}^{\rm g.s}$  – энергия изомерного состояния над основным)

| Изотоп            | Реакция,<br>порог <i>E</i> <sub>thr</sub> , МэВ                                                                        | $J^P_{\rm g.s}, T^{\rm g.s}_{1/2}$ | $J_{\mathrm{m.s}}^P, T_{1/2}^{\mathrm{m.s}}$ | $E_{\gamma}^{\mathrm{m.s}}$ , кэ $\mathrm{B}$ | Доля изомерного $\gamma$ -распада $p,\%$ |
|-------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------|-----------------------------------------------|------------------------------------------|
| <sup>108</sup> Ag | $^{109}\mathrm{Ag}(\gamma,n)^{108}\mathrm{Ag},9.19$                                                                    | 1 <sup>+</sup> ,<br>2.382 мин      | 6 <sup>+</sup> ,<br>438 лет                  | 109.5                                         | 8.7                                      |
| <sup>106</sup> Ag | $^{107}\mathrm{Ag}(\gamma,n)^{106}\mathrm{Ag},9.54$<br>$^{109}\mathrm{Ag}(\gamma,3n)^{106}\mathrm{Ag},26.0$            | 1 <sup>+</sup> ,<br>23.96 мин      | 6 <sup>+</sup> ,<br>8.28 сут                 | 89.7                                          | 0                                        |
| <sup>105</sup> Ag | $^{107}\text{Ag}(\gamma, 2n)^{105}\text{Ag}, 17.48$<br>$^{109}\text{Ag}(\gamma, 4n)^{105}\text{Ag}, 33.95$             | 1/2 <sup>-</sup> ,<br>41.29 сут    | 7/2 <sup>+</sup> ,<br>7.23 мин               | 25.5                                          | 99.66                                    |
| <sup>104</sup> Ag | ${}^{107}\mathrm{Ag}(\gamma,3n){}^{104}\mathrm{Ag},27.51$<br>${}^{109}\mathrm{Ag}(\gamma,5n){}^{104}\mathrm{Ag},43.98$ | 5 <sup>+</sup> ,<br>69.2 мин       | 2 <sup>+</sup> ,<br>33.5 мин                 | 6.9                                           | <0.07                                    |
| <sup>103</sup> Ag | ${}^{107}\mathrm{Ag}(\gamma,4n){}^{103}\mathrm{Ag},35.90$<br>${}^{109}\mathrm{Ag}(\gamma,6n){}^{103}\mathrm{Ag},52.37$ | 7/2 <sup>+</sup> ,<br>65.7 мин     | 1/2 <sup>-</sup> ,<br>5.7 c                  | 134.5                                         | 100                                      |
| <sup>102</sup> Ag | $^{107}\mathrm{Ag}(\gamma, 5n)^{102}\mathrm{Ag}, 46.50$                                                                | 5+,<br>12.9 мин                    | 2+,<br>7.7 мин                               | 9.4                                           | 49                                       |

топов <sup>106</sup>Ag и <sup>104</sup>Ag, образовавшихся в мишени. По этим линиям идентифицировались фотоядерные реакции, приводившие к образованию соответствующего радиоизотопа, и определялся их выход.

Результатом экспериментов с тормозным  $\gamma$ излучением является выход фотоядерной реакции  $Y(E_e)$ , т.е. свертка сечения фотоядерной реакции  $\sigma(E_{\gamma})$  с плотностью распределения числа тормозных фотонов с энергией  $E_{\gamma}$  на один электрон пучка ускорителя  $\phi(E_{\gamma}, E_e)$ :

$$Y(E_e) = \int_{E_{\text{thr}}}^{E_e} \phi(E_{\gamma}, E_e) \sigma(E_{\gamma}) dE_{\gamma}, \qquad (1)$$

где  $E_e-$ кинетическая энергия электронов, падающих на радиатор;  $E_\gamma-$  энергия тормозных  $\gamma-$ 



Рис. 2. Схема образования и распада основного и изомерного состояний.

ЯДЕРНАЯ ФИЗИКА том 78 № 11 2015

квантов, испущенных из радиатора; *E*<sub>thr</sub> — порог исследуемой фотоядерной реакции.

Образующиеся в результате фотоядерных реакций изотопы серебра  $\beta$ -радиоактивны и приводят к появлению соответствующих изотопов палладия, в большинстве случаев в возбужденном состоянии ( $^{108}$ Аg также имеет канал  $\beta$ -распада в кадмий), которые, в свою очередь, распадаются с испусканием каскада  $\gamma$ -квантов.

На рис. 2 показана общая схема образования и распада основного и изомерного состояний радиоактивных изотопов в результате фотоядерной реакции. Изомерное состояние образуется как непосредственно в результате фотоядерной реакции, так и после каскада  $\gamma$ -распадов с испусканием преимущественно электрических дипольных E1, электрических квадрупольных E2 или магнитных дипольных  $M1 \gamma$ -квантов за время  $10^{-9} - 10^{-17}$  с. Распад изомерного состояния может происходить либо с вылетом  $\gamma$ -квантов на основное состояние изотопа, либо в результате  $\beta$ -распада на возбужденные состояния дочернего ядра.

Образование основных состояний исследуемых изотопов может происходить непосредственно в результате фотоядерных реакций и за счет накопления при  $\gamma$ -распаде изомерных состояний, образованных в результате фотоядерной реакции. Поэтому в расчетах выхода реакции с образованием

/ 137

**Таблица 2.** Выходы изомерных и основных состояний  $^{106}$  Ag и  $^{104}$  Ag на естественной смеси изотопов серебра, полученные в настоящей работе ( $E_{\gamma}$  — энергия  $\gamma$ -квантов, по которым проводилась идентификация радиоизотопа,  $I_{\gamma}$  — квантовый выход  $\gamma$ -квантов,  $Y_{\text{отн}}$  — выход радиоизотопа)

| Изотоп                         | $E_{\gamma}$ , кэ ${ m B}$              | $I_{\gamma}, \%$ | $Y_{ m oth}$                       |
|--------------------------------|-----------------------------------------|------------------|------------------------------------|
| $106 \text{g.s} \Delta \alpha$ | 616                                     | 0.142            | $217 \pm 11$                       |
| 118                            | 622                                     | 0.316            | $211 \pm 11$<br>$232 \pm 10$       |
|                                | 873 5                                   | 0.010            | $202 \pm 10$<br>$215 \pm 6$        |
|                                | 1050.5                                  | 0.133<br>0.167   | $210 \pm 0$<br>210 $\pm 8$         |
|                                | 1100.0                                  | 0.107            | $210 \pm 8$<br>$222 \pm 10$        |
|                                | 1120                                    | 0.0721           | $252 \pm 10$                       |
|                                | 1194.5                                  | 0.0398           | $191 \pm 17$                       |
|                                | 1562                                    | 0.0172           | $236 \pm 14$                       |
|                                | 1797                                    | 0.0082           | $211 \pm 25$                       |
| <sup>106m.s</sup> Ag           | 222                                     | 6.6              | $2.75\pm0.14$                      |
| _                              | 229                                     | 2.1              | $2.80\pm0.17$                      |
|                                | 391                                     | 3.68             | $2.68\pm0.25$                      |
|                                | 406                                     | 13.4             | $2.92\pm0.10$                      |
|                                | 429.5                                   | 13.2             | $2.83 \pm 0.10$                    |
|                                | 451                                     | 28.2             | $2.90 \pm 0.08$                    |
|                                | 601                                     | 1.61             | $3.11 \pm 0.25$                    |
|                                | 616                                     | 21.6             | $2.82 \pm 0.09$                    |
|                                | 703                                     | 4.47             | $2.97 \pm 0.15$                    |
|                                | 717                                     | 28.9             | $3.02 \pm 0.09$                    |
|                                | 748 5                                   | 20.6             | $2.88 \pm 0.00$                    |
|                                | 793                                     | 5.9              | $3.05 \pm 0.10$                    |
|                                | 848                                     | 2.8              | $2.00 \pm 0.10$<br>$2.9 \pm 0.7$   |
|                                | 1046                                    | 29.6             | $2.0 \pm 0.1$<br>2.91 + 0.11       |
|                                | 1128                                    | 11.8             | $2.91 \pm 0.11$<br>2 99 + 0 15     |
|                                | 1120                                    | 11.0             | $2.00 \pm 0.10$<br>$3.01 \pm 0.16$ |
|                                | 199                                     | 7.0              | $3.01 \pm 0.10$<br>$2.78 \pm 0.10$ |
|                                | 1220<br>1597 5                          | 16.3             | $2.10 \pm 0.19$<br>$2.07 \pm 0.26$ |
|                                | 1527.5                                  | 10.5             | $2.97 \pm 0.20$<br>$2.75 \pm 0.24$ |
|                                | 1972                                    | 0.0              | $2.73 \pm 0.24$                    |
|                                | 1009                                    | 2.0              | $3.3 \pm 0.0$                      |
| 104                            | $804 \pm 808$                           | 12.4             | $3.03 \pm 0.19$                    |
| <sup>104g.s</sup> Ag           | 741                                     | 7.2              | $0.46 \pm 0.08$                    |
|                                | 759                                     | 6.4              | $0.53 \pm 0.08$                    |
|                                | 768                                     | 65.7             | $0.496 \pm 0.019$                  |
|                                | 786                                     | 9.5              | $0.46 \pm 0.08$                    |
|                                | 858                                     | 10.4             | $0.44 \pm 0.07$                    |
|                                | 863                                     | 6.9              | $0.41 \pm 0.07$                    |
|                                | 942                                     | 25.0             | $0.45\pm0.05$                      |
|                                | 1342                                    | 7.3              | $0.50\pm0.09$                      |
|                                | 923.5                                   | 6.9              | $0.43\pm0.09$                      |
| $104$ m.s $\Delta \alpha$      | 1238                                    | 3.87             | $0.49 \pm 0.05$                    |
| лg                             | 1791                                    | 1 73             | $0.49 \pm 0.00$<br>$0.49 \pm 0.00$ |
|                                | 2130                                    | 1 50             | $0.40 \pm 0.00$<br>$0.51 \pm 0.10$ |
|                                | 2109<br>9977                            | 2.03             | $0.01 \pm 0.10$<br>$0.61 \pm 0.08$ |
|                                | 2720 5                                  | 2.40             | $0.01 \pm 0.00$<br>$0.57 \pm 0.22$ |
|                                | 2129.0<br>2019 5                        | 1.10             | $0.01 \pm 0.22$<br>0.52 $\pm$ 0.11 |
|                                | 3408                                    | 1.40             | $0.55 \pm 0.11$<br>0.61 $\pm$ 0.22 |
|                                | • • • • • • • • • • • • • • • • • • • • | 1.40             | $\mathbf{U}$                       |

основного состояния необходимо учитывать вклады распадов изомерных состояний. Для определения выходов изотопов в таких случаях необходимо решать системы дифференциальных уравнений, описывающих последовательность радиоактивных распадов с учетом коэффициентов ветвления по различным каналам распада:

$$\begin{cases} \frac{dN_{\rm m.s}}{dt} = -\lambda_{\rm m.s}N_{\rm m.s} + I(t)Y_{\rm m.s}, \\ \frac{dN_{\rm g.s}}{dt} = -\lambda_{\rm g.s}N_{\rm g.s} + p\lambda_{\rm m.s}N_{\rm m.s} + I(t)Y_{\rm g.s}, \end{cases}$$
(2)

 $\lambda_{\rm m.s}, \lambda_{\rm g.s}$  — постоянные распада изомерного и основного состояний ядра;  $Y_{\rm m.s}$  — независимый выход образования ядра в изомерном состоянии;  $Y_{\rm g.s}$  — независимый выход образования ядра в основном состоянии;  $N_{\rm m.s}, N_{\rm g.s}$  — количество ядер в метастабильном и основном состояниях на момент окончания облучения; p — вероятность распада метастабильного состояния на основное; I(t) — ток ускорителя во время облучения.

Решение первого уравнения системы для выхода ядер, образующихся напрямую в результате фотоядерной реакции или после каскада  $\gamma$ -квантов:

$$Y = \frac{S}{Ck(e^{-\lambda(t_2 - t_1)} - e^{-\lambda(t_3 - t_1)})},$$
 (3)

где S — площадь фотопика в спектрах остаточной активности, соответствующего  $\gamma$ -переходу при распаде конечного ядра за время измерения;  $t_1$  — время облучения;  $t_2$  — время начала измерения;  $t_3$  — время окончания измерения;  $\lambda$  — постоянная распада; k — коэффициент, равный произведению эффективности детектора, коэффициента каскадного суммирования и квантового выхода  $\gamma$ -кванта при  $\gamma$ -переходах; C — коэффициент, учитывающий изменение тока ускорителя во время облучения,  $C = \int_0^{t_1} I(t) e^{-\lambda(t-t_1)} dt$ .

На рис. З приведена диаграмма протекания реакции  $^{107}\mathrm{Ag}(\gamma,n)^{106}\mathrm{Ag},$  показана схема распада основного и изомерного состояний ядра <sup>106</sup>Ag. В результате поглощения  $E1 \gamma$ -квантов ядром  $^{107}$ Ag возбуждается гигантский дипольный резонанс с моментом  $1/2^+$  либо  $3/2^+$ . Распад гигантского дипольного резонанса с моментом  $J^P = 1/2^+, 3/2^+$ в результате реакции с вылетом одного нейтрона приводит к образованию ядра <sup>106</sup>Ag в основном и возбужденных состояниях. Каскады ү-переходов из возбужденных состояний приводят к образованию изомерного либо основного состояния <sup>106</sup>Ag. В случае образования изомерного состояния выход определяется соотношением (3). Распад изомерного состояния <sup>106m.s</sup> Ag происходит по каналу  $\beta^+$ распада или электронного захвата. Вероятность р изомерного перехода в основное состояние равна нулю, поэтому выход образования основного состояния <sup>106g.s</sup> Ag в результате фотоядерной реакции также можно определить из соотношения (3).



**Рис.** 3. Диаграмма протекания реакции  ${}^{107}_{47}$  Ag $(\gamma, n){}^{106}_{47}$  Ag. Распад основного и изомерного состояний ядра  ${}^{106}_{47}$  Ag.

Распад изомерного и основного состояний  $^{106}\mathrm{Ag}$  можно идентифицировать по нескольким  $\gamma$ линиям. Наиболее интенсивная у-линия с энергией 511.9 кэВ появляется в результате  $\gamma$ -перехода из первого возбужденного состояния <sup>106</sup>Pd в основное состояние. Первое возбужденное состояние <sup>106</sup>Pd образуется с вероятностью 16.3% в результате β-распада <sup>106</sup>Ag из основного состояния. Это состояние также образуется в результате каскада  $\gamma$ -переходов возбужденных состояний  $^{106}$ Pd с высоким спином, образующихся в результате *β*распада изомерного состояния <sup>106m.s</sup>Ag. Кроме того, образующиеся в результате фотонейтронных реакций радиоизотопы серебра  $\beta^+$ -радиоактивны, поэтому их распад также сопровождается вылетом аннигиляционных  $\gamma$ -квантов с энергией 511.5 кэВ. Для того чтобы более надежно разделить линии 511.9 и 511.5 кэВ, выходы образования изомерного и основного состояний <sup>106</sup>Ag определялись и по другим менее интенсивным у-пикам. Используемые при расчете у-линии и соответствующие относительные выходы приведены в табл. 2. На основе этих данных рассчитывались средневзвешенные значения выходов образования соответствующих состояний.

На рис. 4 показана схема распада основного и изомерного состояний изотопа <sup>104</sup>Ag. Спин и четность изомерного состояния  $J^P(^{104m.s}Ag) =$ = 2<sup>+</sup>, а основного –  $J^P(^{104g.s}Ag) = 5^+$ . На рис. 4





**Рис. 4.** Распад основного и изомерного состояний ядра <sup>104</sup><sub>47</sub> Ag.

приведена только часть уровней конечного ядра  $^{104}$ Pd,  $\beta$ -распад на которые имеет наибольшую вероятность. Изомерное состояние с вероятностью 99.93% распадается путем  $\beta^+$ -распада или электронного захвата на состояния <sup>104</sup>Pd со спинами  $2^+$ . Вероятность  $\gamma$ -распада изомерного состояния <sup>104m.s</sup> Ад в основное оценивается как <0.07%. Поэтому при расчете выхода образования основного состояния ядра <sup>104g.s</sup> Аg также можно пользоваться формулой (3). С ў-распадом основного состояния <sup>104g.s</sup> Аg связана система высоколежащих уровней в ядре <sup>104</sup>Pd со спинами 4-6. После каскадов γ-переходов между этими уровнями заселяется первое возбужденное состояние <sup>104</sup>Pd с  $J^P = 2^+$ и энергией 555.8 кэВ. Это состояние заселяется также непосредственно при  $\beta$ -распаде изомерного состояния <sup>104m.s</sup> Ag и в результате каскадов  $\gamma$ переходов. Поэтому выход основного и изомерного состояний <sup>104</sup>Ag определялся по другим менее интенсивным  $\gamma$ -линиям (табл. 2).

Изомерное отношение определялось как отношение выхода образования состояния с большим спином к состоянию с меньшим спином:

$$IR(^{106}Ag) = \frac{Y(^{106m.s}Ag^{6^+})}{Y(^{106g.s}Ag^{1^+})},$$
(4)

$$IR(^{104}Ag) = \frac{Y(^{104g.s}Ag^{5^+})}{Y(^{104m.s}Ag^{2^+})}.$$
 (5)

Полученные изомерные отношения <sup>106</sup>Ag и <sup>104</sup>Ag, а также результаты, полученные в других работах [7–16], представлены в табл. 3 и 4 соответственно.

#### 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Зависимость изомерных отношений для изотопов <sup>104</sup>Ag и <sup>106</sup>Ag от максимальной энергии тормозного спектра показана на рис. 5. Изомерные отношения IR(106 Ag) были получены в основном в результате реакции  $^{\mathrm{nat}}\mathrm{Ag}(\gamma,xn)^{106}\mathrm{Ag}$  на естественной смеси изотопов серебра [7-12, 16]. Порог реакции  ${}^{109}$ Ag $(\gamma, 3n){}^{106}$ Ag равен 26 МэВ, поэтому можно сказать, что изомерные отношения IR(<sup>106</sup>Ag) до энергии электронов ускорителя 26 МэВ получены для реакции  ${}^{107}\text{Ag}(\gamma, n){}^{106}\text{Ag}$ . Изомерные отношения IR(<sup>104</sup>Ag) получены в результате реакций  $^{nat}Ag(\gamma, xn)^{104}Ag$  на мишенях из естественной смеси изотопов серебра. Порог реакции  ${}^{109}$ Ag $(\gamma, 5n){}^{104}$ Ag составляет  $\approx 44$  МэВ, поэтому до этой энергии электронов ускорителя можно считать, что изотоп <sup>104</sup>Аg образуется в результате реакции  ${}^{107}{
m Ag}(\gamma,3n){}^{106}{
m Ag}$ . В табл. 4 и на рис. 5 также приведены изомерные отношения IR(104Ag) для фотоядерной реакции  $^{106}$ Cd $(\gamma, pn)^{104}$ Ag при энергии электронов ускорителя 23.5 [21] и 55 МэВ [22]. В работе [10] при энергии 84 МэВ получено изомерное отношение  $\mathrm{IR}(^{104}\mathrm{Ag})$  в результате реакции  $^{109}\mathrm{Ag}(\gamma,5n)^{104}\mathrm{Ag}$ на мишени из обогащенного <sup>109</sup>Ag.

Изомерное отношение IR(<sup>106</sup>Ag) уменьшается в области энергий электронов ускорителя до ≈25-30 МэВ, после чего начинает увеличиваться. Для выяснения причины такого поведения изомерного отношения были проведены расчеты сечений образования основного и изомерного состояний <sup>104</sup>Ag и <sup>106</sup>Ag с помощью программы TALYS [23]. В программе TALYS применяется комбинация испарительного механизма Хаузера-Фешбаха и экситонного предравновесного механизма распада составного ядра с вылетом нуклонов и ү-квантов [24]. На рис. 6 показаны сечения реакций  $^{107}{
m Ag}(\gamma,n)^{106}{
m Ag}$  и  $^{109}{
m Ag}(\gamma,3n)^{106}{
m Ag}$  в зависимости от энергии у-квантов и также смоделированная плотность распределения числа тормозных фотонов  $\phi(E_{\gamma}, E_e)$  на один электрон ускорителя при энергии электронов ускорителя 55 МэВ для геометрии облучения в нашей работе и работе [9]. Сечение образования основного состояния в результате реакции  ${}^{107}\mathrm{Ag}(\gamma,n){}^{106}\mathrm{Ag}$  выше сечения образования изомерного состояния. В результате преимущественного поглощения дипольных уквантов ядром <sup>107</sup>Ag возбуждается гигантский дипольный резонанс с моментом 1/2+ либо 3/2+

**Таблица 3.** Изомерное отношение  $IR(^{106}Ag) = \frac{Y(^{106m.s}Ag^{6^+})}{Y(^{106g.s}Ag^{1^+})}$  в результате фотоядерных реакций в зависимости от энергии электронов ускорителя  $E_e$ 

| <i>Е</i> <sub><i>e</i></sub> , МэВ             | IR                  | Литература       |  |  |  |  |
|------------------------------------------------|---------------------|------------------|--|--|--|--|
| $^{ m nat}{ m Ag}(\gamma,xn)^{106}{ m Ag}$     |                     |                  |  |  |  |  |
| 14                                             | $0.026 \pm 0.0017$  | [8]              |  |  |  |  |
| 15                                             | $0.021 \pm 0.0014$  | [8]              |  |  |  |  |
| 16                                             | $0.016 \pm 0.0011$  | [8]              |  |  |  |  |
| 17                                             | $0.015\pm0.0010$    | [8]              |  |  |  |  |
| 18                                             | $0.014 \pm 0.0009$  | [8]              |  |  |  |  |
| 19                                             | $0.013 \pm 0.0009$  | [8]              |  |  |  |  |
| 20                                             | $0.012\pm0.0008$    | [8]              |  |  |  |  |
| 20                                             | $0.015 \pm 0.0045$  | [12]             |  |  |  |  |
| 21                                             | $0.011 \pm 0.0007$  | [8]              |  |  |  |  |
| 22                                             | $0.010 \pm 0.0006$  | [8]              |  |  |  |  |
| 23                                             | $0.011 \pm 0.0007$  | [8]              |  |  |  |  |
| 24                                             | $0.010 \pm 0.0006$  | [8]              |  |  |  |  |
| 30                                             | $0.010\pm0.002$     | [12]             |  |  |  |  |
| 40                                             | $0.019 \pm 0.002$   | [7]              |  |  |  |  |
| 45                                             | $0.022\pm0.002$     | [7]              |  |  |  |  |
| 45                                             | $0.025\pm0.003$     | [9]              |  |  |  |  |
| 50                                             | 0.023               | [16]             |  |  |  |  |
| 50                                             | $0.023 \pm 0.002$   | [7]              |  |  |  |  |
| 55                                             | $0.025\pm0.002$     | [7]              |  |  |  |  |
| 55                                             | $0.0134 \pm 0.0014$ | Настоящая работа |  |  |  |  |
| 55                                             | $0.028 \pm 0.003$   | [9]              |  |  |  |  |
| 60                                             | $0.025\pm0.002$     | [7]              |  |  |  |  |
| $^{107}\mathrm{Ag}(\gamma,n)^{106}\mathrm{Ag}$ |                     |                  |  |  |  |  |
| 18                                             | $0.06\pm0.010$      | [13]             |  |  |  |  |
| 30                                             | 0.044               | [14]             |  |  |  |  |
| 30                                             | 0.042               | [15]             |  |  |  |  |
| 34                                             | $0.08\pm0.015$      | [13]             |  |  |  |  |

(рис. 3). При низкой энергии возбуждения составного ядра, а следовательно и низкой энергии испаряющихся нейтронов, они уносят угловой момент l = 0, 1. Поэтому в результате распада гигантского дипольного резонанса заселяются в основном уровни, связанные с основным состоянием. Согласно каскадно-испарительной модели **Таблица 4.** Изомерное отношение  $IR(^{104}Ag) = \frac{Y(^{104g.s}Ag^{5^+})}{Y(^{104m.s}Ag^{2^+})}$  в результате фотоядерных реакций в зависимости от энергии электронов ускорителя  $E_e$ 

| $E_e$ , МэВ                                         | IR                | Литература       |  |  |  |  |
|-----------------------------------------------------|-------------------|------------------|--|--|--|--|
| $^{ m nat}{ m Ag}(\gamma,xn)^{104}{ m Ag}$          |                   |                  |  |  |  |  |
| 33                                                  | $0.88\pm0.14$     | [10]             |  |  |  |  |
| 34.5                                                | $1.04\pm0.10$     | [10]             |  |  |  |  |
| 35                                                  | $0.88\pm0.14$     | [11]             |  |  |  |  |
| 36.5                                                | $1.26\pm0.05$     | [10]             |  |  |  |  |
| 38.5                                                | $1.39\pm0.08$     | [10]             |  |  |  |  |
| 40                                                  | $1.26\pm0.12$     | [7]              |  |  |  |  |
| 45                                                  | $1.34\pm0.12$     | [7]              |  |  |  |  |
| 45                                                  | $1.45\pm0.13$     | [9]              |  |  |  |  |
| 50                                                  | $1.36\pm0.12$     | [7]              |  |  |  |  |
| 55                                                  | $1.43\pm0.12$     | [7]              |  |  |  |  |
| 55                                                  | $1.53\pm0.13$     | [9]              |  |  |  |  |
| 55                                                  | $0.95\pm0.21$     | Настоящая работа |  |  |  |  |
| 60                                                  | $1.49\pm0.12$     | [7]              |  |  |  |  |
| $^{109}\mathrm{Ag}(\gamma,5n)^{104}\mathrm{Ag}$     |                   |                  |  |  |  |  |
| 84                                                  | $1.88\pm0.08$     | [10]             |  |  |  |  |
| ${}^{106}\mathrm{Cd}(\gamma,pn){}^{104}\mathrm{Ag}$ |                   |                  |  |  |  |  |
| 23.5                                                | $0.096 \pm 0.010$ | [21]             |  |  |  |  |
| 55                                                  | $1.89\pm0.49$     | [22]             |  |  |  |  |

снятие возбуждения будет происходить в основном за счет E1, E2 или M1  $\gamma$ -переходов [1, 2]. С ростом энергии возбуждения составного ядра

растет энергия испаряющихся нейтронов, а следовательно изменяется спектр их угловых моментов, также растет энергия возбуждения дочернего ядра, и спектр доступных уровней и соответственно каскадных  $\gamma$ -переходов изменяется. Конкуренция этих факторов приводит к тому, что изомерное отношение в зависимости от энергии налетающих  $\gamma$ -квантов будет изменяться. Уменьшение изомерно-го отношения на изотопе <sup>106</sup> Ag, т.е. относительное уменьшение выхода изомерного состояния <sup>106</sup> Ag с  $J^P = 6^+$ , при увеличении энергии возбуждения составного ядра в рамках каскадно-испарительной модели можно объяснить только структурой возбужденных состояний ядра. Увеличивается число уровней, связанных с основным состоянием.

Выше порога реакции  ${}^{109}\text{Ag}(\gamma, 3n){}^{106}\text{Ag}$  изомерное отношение начинает расти. Расчеты по TALYS показывают меньшее различие в сечениях образования изомерного и основного состояний в реакции  ${}^{109}$ Ag $(\gamma, 3n){}^{106}$ Ag по сравнению с реакцией с вылетом одного нейтрона. Это связано с тем, что нейтроны уносят больший орбитальный момент, и спектр доступных возбужденных состояний в дочернем ядре <sup>106</sup> Ag расширяется. При энергии выше 45 МэВ сечение образования изомерного состояния становится выше сечения реакции с образованием основного состояния. На рис. 7 показана зависимость отношения сечений образования основного и метастабильного состояний <sup>106</sup>Ag от энергии у-квантов, рассчитанного по программе TALYS для различных каналов образования <sup>106</sup>Ag. Отношение суммарных сечений образования изотопа <sup>106</sup>Ag в основном и изомерном состояниях на изотопах  $^{107}$ Аg и  $^{109}$ Аg в результате реакций  $(\gamma, n)$ и  $(\gamma, 3n)$  соответственно с учетом их процентного содержания в естественной смеси определяется соотношением

$$\frac{\sigma(^{106\text{m.s}}\text{Ag}^{6^+})}{\sigma(^{106\text{g.s}}\text{Ag}^{1^+})} = \frac{\eta(^{107}\text{Ag})\sigma(^{107}\text{Ag}(\gamma, n)^{106\text{m.s}}\text{Ag}) + \eta(^{109}\text{Ag})\sigma(^{109}\text{Ag}(\gamma, 3n)^{106\text{m.s}}\text{Ag})}{\eta(^{107}\text{Ag})\sigma(^{107}\text{Ag}(\gamma, n)^{106\text{g.s}}\text{Ag}) + \eta(^{109}\text{Ag})\sigma(^{109}\text{Ag}(\gamma, 3n)^{106\text{g.s}}\text{Ag})},\tag{6}$$

где  $\eta(^{107}\text{Ag})$  и  $\eta(^{109}\text{Ag})$  — процентное содержание соответствующих изотопов в естественной смеси.

Видно, что отношения сечений ведут себя аналогично отношениям выходов при больших энергиях, важную роль в росте изомерного отношения на <sup>106</sup>Ag при энергиях выше 25 МэВ имеет реакция <sup>109</sup>Ag( $\gamma$ , 3n)<sup>106</sup>Ag. Мы оценили вклад реакции <sup>109</sup>Ag( $\gamma$ , 3n)<sup>106</sup>Ag в выход образования основного состояния <sup>106</sup>Ag в наших условиях эксперимента при энергии электронов ускорителя 55 МэВ как 2%, вклад этой реакции в выход изомерного состояния <sup>106</sup>Ag — 12.5%. При низких энергиях (до 25 МэВ) изомерное отношение теоретических сечений растет, тогда как экспериментальные выходы падают. В TALYS для расчета сечений фотоядерных реакций используется статистическая модель



**Рис. 5.** Зависимость изомерных отношений IR(<sup>106</sup>Ag) (вверху) и IR(<sup>104</sup>Ag) (внизу) от энергии облучения.

распада составного ядра и предравновесная модель вылета нейтронов, полупрямой механизм не учитывается. Полупрямой механизм вылета нейтрона может играть большую роль [3]. В этом случае изомерные отношения будут зависеть от спектра входных состояний и не будут увеличиваться.

Зависимость изомерного отношения на изотопе <sup>104</sup> Ag от максимальной энергии тормозного спектра показана на рис. 5. Изомерное отношение

$$IR(^{104}Ag) = \frac{Y(^{104g.s}Ag^{5^+})}{Y(^{104m.s}Ag^{2^+})}$$

растет в области энергий электронов ускорителя до 55 МэВ. Изомерное отношение на <sup>104</sup> Ад примерно на два порядка выше, чем на <sup>106</sup> Ад. В данном случае в результате преимущественного поглощения дипольных  $\gamma$ -квантов ядром <sup>109</sup> Ад также возбуждается гигантский дипольный резонанс с моментом  $1/2^+$  либо  $3/2^+$ , но изомерное состояние с энергией возбуждения  $E_{\gamma} = 6.9$  кэВ и  $J^P = 2^+$ имеет меньшую разницу в спинах с основным состоянием  $J^P = 5^+$ . Такая зависимость изомерного отношения ( $\approx$ 1 в районе порога реакции) обусловлена тем, что радиоизотоп <sup>104</sup> Ад образуется преимущественно вследствие вылета трех нейтронов в результате реакции <sup>107</sup> Ад( $\gamma$ , 3n)<sup>104</sup> Ад.



Рис. 6. Плотность распределения числа тормозных фотонов  $\phi(E_{\gamma}, E_e)$  на один электрон ускорителя при энергии электронов ускорителя 55.5 МэВ, рассчитанная с помощью GEANT4, тормозной мишени из вольфрама толщиной 2.2 мм (сплошная кривая) и 0.1 мм (штриховая кривая). Вверху — сечение реакции <sup>107</sup> Ag( $\gamma, n$ )<sup>106</sup> Ag, рассчитанное с помощью программы TALYS, с образованием основного состояния ( $\Diamond$ ) и изомерного состояния <sup>106</sup> Ag ( $\blacklozenge$ ), сечение реакции <sup>109</sup> Ag( $\gamma, 3n$ )<sup>106</sup> Ag с образованием основного состояния ( $\Diamond$ ) и изомерного состояния <sup>106</sup> Ag ( $\bigstar$ ). Внизу — сечение реакции <sup>107</sup> Ag( $\gamma, 3n$ )<sup>104</sup> Ag, рассчитанное с помощью программы TALYS, с образованием основного состояния ( $\bigtriangleup$ ) и изомерного состояния <sup>106</sup> Ag ( $\bigstar$ ). Внизу — сечение реакции <sup>107</sup> Ag( $\gamma, 3n$ )<sup>104</sup> Ag, рассчитанное с помощью программы TALYS, с образованием основного состояния ( $\square$ ) и изомерного состояния <sup>104</sup> Ag ( $\blacksquare$ ).

Порог реакции <sup>109</sup>Ag( $\gamma$ , 5n)<sup>104</sup>Ag составляет ≈44 МэВ, поэтому выход этой реакции при облучении тормозным спектром с верхней границей  $E_e = 55$  МэВ значительно меньше, чем выход реакции <sup>107</sup>Ag( $\gamma$ , 3n)<sup>104</sup>Ag. Рост изомерного отношения показывает роль энергии возбуждения составного ядра в образовании изомерного состояния. Значение, полученное нами, ниже других экспериментальных данных как в случае <sup>104</sup>Ag, так и в случае <sup>106</sup>Ag. Это объясняется тем,



Рис. 7. Зависимость отношения сечений образования изомерного к основному состоянию <sup>106</sup> Ag от энергии  $\gamma$ -квантов, рассчитанного по программе TALYS. Кривые: сплошная — отношение сечений основного и изомерного состояний в результате реакции <sup>107</sup> Ag( $\gamma$ , n)<sup>106</sup> Ag, штрихпунктирная — <sup>109</sup> Ag( $\gamma$ , 3n)<sup>106</sup> Ag, штриховая — отношение суммарных сечений на изотопах <sup>107</sup> Ag и <sup>109</sup> Ag с учетом их процентного содержания в естественной смеси.

что в нашем эксперименте в качестве тормозной мишени использовался вольфрам толщиной 2.2 мм, тогда как, например, в работах [7, 9] использовалась тормозная вольфрамовая мишень толщиной 0.1 мм. Спектр тормозных фотонов, рассчитанный с помощью программы GEANT4, для этих условий эксперимента представлен на рис. 6. Видно, что для тонкой тормозной мишени тормозной спектр более жесткий и средняя энергия возбуждения ядра будет выше.

При энергии 55 МэВ в наших условиях эксперимента изомерное отношение  $IR(^{106}Ag) = 0.081$ , рассчитанное с помощью программы TALYS, существенно выше экспериментального значения. Рассчитанное теоретическое изомерное отношение  $IR(^{104}Ag) = 0.60$  отличается от экспериментального незначительно. Укажем на возможные причины расхождений в оценках.

Наблюдаемое различие экспериментального и рассчитанного значений изомерного отношения в реакции  $^{107}$ Ag( $\gamma, n$ ) $^{106}$ Ag может объясняться следующими факторами. Спин основного состояния  $^{107}$ Ag равен  $1/2^-$ , а основное состояние  $^{106g.s}$ Ag имеет  $J^P = 1^+$ , в то время как спин и четность изомерного состояния  $J^P = 6^+$ . Энергия изомерного состояния в  $^{106m.s}$ Ag лишь на E = 80 кэВ выше основного состояния, поэтому можно предположить, что на изомерное отношение влияет роль

прямых и полупрямых реакций выбивания нейтрона с кинетической энергией, близкой к максимальной, что приводит к преимущественному образованию <sup>106</sup>Ag в основном состоянии. Объяснить полученную разницу изомерных отношений можно, предположив примерно 5%-ный вклад прямых и полупрямых процессов при данной средней энергии возбуждения.

Расхождение также можно объяснить наличием дополнительной силы E1- и M1-переходов относительно переходов большей мультипольности в <sup>106</sup>Ag в диапазоне энергий 4—9 МэВ, что также будет приводить к преимущественному возбуждению основного состояния. Такое преобладание может быть связано с наличием, например, пигмирезонанса E1 в данной области энергий. Окончательный вывод об источнике отличий от статистической модели можно будет сделать с помощью дополнительной экспериментальной и теоретической информации о структуре уровней <sup>106</sup>Ag в этой области энергии.

#### 5. ЗАКЛЮЧЕНИЕ

С помощью  $\gamma$ -активационной методики получены изомерные отношения образования <sup>106</sup> Ag и <sup>104</sup> Ag в результате фотоядерных реакций <sup>nat</sup> Ag( $\gamma, xn$ )<sup>106</sup> Ag и <sup>nat</sup> Ag( $\gamma, xn$ )<sup>104</sup> Ag соответственно. Использовалось тормозное излучение с верхней границей 55 МэВ. Из сравнения с результатами других работ полученная зависимость изомерных отношений от верхней границы тормозного спектра объясняется разницей в спинах основного и изомерного состояний и средней энергией возбуждения составного ядра. Выполнено сравнение экспериментальных данных с расчетами по каскадно-испарительной модели.

Работа выполнена при поддержке гранта РФФИ № 15-02-05839.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. J. R. Huizenga and R. Vandenbosch, Phys. Rev. **120**, 1305 (1960).
- 2. R. Vandenbosch and J. R. Huizenga, Phys. Rev. **120**, 1313 (1960).
- H. Bartsch, K. Huber, U. Kneissl, and H. Krieger, Nucl. Phys. A 256, 243 (1976).
- Ю. П. Гангрский, А. П. Тончев, Н. П. Балабанов, ЭЧАЯ 27, 1043 (1996) [Phys. Part. Nucl. 27, 428 (1996)].
- 5. B. M. Masyp, ЭЧАЯ **31**, 385 (2000) [Phys. Part. Nucl. **31**, 188 (2000)].
- S. A. Karamian, *AΦ* **76**, 1522 (2013) [Phys. Atom. Nucl. **76**, 1437 (2013)].
- 7. N. Van Do *et al.*, Nucl. Instrum. Methods B **342**, 188 (2015).

БЕЛЫШЕВ и др.

- 8. T. D. Thiep *et al.*, J. Radioanal. Nucl. Chem. **299**, 477 (2014).
- 9. M. Tatari *et al.*, J. Radioanal. Nucl. Chem. **300**, 269 (2014).
- О. А. Бесшейко, А. Н. Водин, Л. А. Голинка-Бесшейко и др., Изв. РАН. Сер. физ. **75**, 997 (2011) [Bull. Russ. Acad. Sci. Phys. **75**, 941 (2011)].
- О. А. Бесшейко, А. Н. Водин, Л. А. Голинка-Бесшейко и др., Изв. РАН. Сер. физ. 73, 1556 (2009) [Bull. Russ. Acad. Sci. Phys. 73, 1461 (2009)].
- Н. А. Демехина, А. С. Данагулян, Г. С. Карапетян, ЯФ 65, 390 (2002) [Phys. Atom. Nucl. 65, 365 (2002)].
- 13. H. Fuchs, R. Kosiek, and U. Meyer-Berkhout, Z. Phys. **166**, 590 (1962).
- 14. T. Kato, J. Rad. Chem. 16, 307 (1973).
- 15. J. H. Carver, G. E. Coote, and T. R. Sherwood, Nucl. Phys. **37**, 449 (1962).
- A. A. Sorokin and V. N. Ponomarev, in Summaries of Report of XXVI Conference on Nuclear Spectroscopy and Structure, Baku, USSR, 3-6, Febr. 1976, p. 449.

- С. С. Белышев, К. А. Стопани, А. А. Кузнецов и др., Вестн. МГУ. Сер. 3, Физика, астрономия, № 4, 42 (2011) [Moscow Univ. Phys. Bull. 66, 363 (2011)].
- 18. S. S. Belyshev, A. N. Ermakov, B. S. Ishkhanov, *et al.*, Nucl. Instrum. Methods A **745**, 133 (2014).
- A. I. Karev, A. N. Lebedev, V. G. Raevsky, et al., in Proceedings of XXII Russian Particle Accelerator Conference, RuPAC-2010, Protvino, Russia, 2010, p. 316.
- 20. S. Agostinelli, J. Allison, K. Amako, *et al.*, Nucl. Instrum. Methods A **506**, 250 (2003).
- 21. Т. D. Thiep и др., Письма в ЭЧАЯ **6**, 209 (2009) [Phys. Part. Nucl. Lett. **6**, 126 (2009)].
- С. С. Белышев, Б. С. Ишханов, А. А. Кузнецов и др., ЯФ 77, 856 (2014) [Phys. Atom. Nucl. 77, 809 (2014)].
- 23. R. Capote, M. Herman, P. Obložinský, *et al.*, Nucl. Data Sheets **110**, 3107 (2009).
- 24. C. K. Cline and M. Blann, Nucl. Phys. A **172**, 225 (1971).

# ISOMERIC YIELD RATIOS FOR PHOTONUCLEAR REACTIONS OF NATURAL SILVER

## S. S. Belyshev, B. S. Ishkhanov, A. A. Kuznetsov, A. A. Martynov, K. A. Stopani

The photon activation technique is used to study the photodisintegration of isotopes of natural silver with end-point energy 55 MeV. Yields of photoneutron reactions with up to 4 outgoing neutrons and isomeric yield ratios for  $^{106}$ Ag and  $^{104}$ Ag are obtained. The experimental results are compared with the theoretical calculations using the cascade-evaporation model.

962