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Number of common sites visited by N random walkers
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We compute analytically the mean number of common sites, WN (t), visited by N independent random walkers
each of length t and all starting at the origin at t = 0 in d dimensions. We show that in the (N − d) plane, there
are three distinct regimes for the asymptotic large-t growth of WN (t). These three regimes are separated by two
critical lines d = 2 and d = dc(N ) = 2N/(N − 1) in the (N -d) plane. For d < 2, WN (t) ∼ td/2 for large t (the N

dependence is only in the prefactor). For 2 < d < dc(N ), WN (t) ∼ t ν where the exponent ν = N − d(N − 1)/2
varies with N and d . For d > dc(N ), WN (t) → const as t → ∞. Exactly at the critical dimensions there are
logarithmic corrections: for d = 2, we get WN (t) ∼ t/[ln t]N , while for d = dc(N ), WN (t) ∼ ln t for large t . Our
analytical predictions are verified in numerical simulations.
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Computing the average number of distinct sites visited by
a single t-step random walker on a d-dimensional lattice,
denoted by S1(t), is by now a classic problem with a variety of
applications ranging from the annealing of defects in crystals
to the size of the territory covered by a diffusing animal during
the foraging period. First posed and studied by Dvoretzky and
Erdös in 1951 [1], this problem was solved exactly in a number
of papers in the 1960s [2,3]. It is well established (see [4] for a
review) that asymptotically for large t , S1(t) ∼ td/2 for d < 2,
∼t/ ln(t) for d = 2, and ∼t for d > 2. These results have been
widely used in a number of applications in physics [5–7],
chemistry [8], metallurgy [9–11], and ecology [12,13]. In
1992, Larralde and co-workers generalized this problem to
the case of N independent random walkers (each of t steps)
all starting at the origin of a d-dimensional lattice [14]. They
computed analytically SN (t), the mean number of sites visited
by at least one of the N walkers in d dimensions, and found
two interesting time scales associated with the growth of
SN (t). In the ecological context, SN (t) represents the mean
size of the territory covered by an animal population of size
N . The original results of Larralde et al. have subsequently
been corrected [15], used, and generalized in a number of
other applications [16–26].

In this paper, we study a complementary question: what
is the average number of common sites, WN (t), visited by N

independent walkers, each of them consisting of t steps and
starting at the origin of a d-dimensional lattice? A typical
realization in d = 2 for N = 3 walkers is shown in Fig. 1.
Our exact results demonstrate that WN (t) exhibits a rather rich
asymptotic behavior for large t . In the (N -d) plane (N being
the number of walkers, or the population size in an ecological
context, and d the space dimension) we find an interesting
phase diagram where two critical lines d = 2 and dc(N ) =
2N/(N − 1) separate three phases with different asymptotic
growth of WN (t) (see Fig. 2). For large t , we show that

WN (t) ∼ td/2 for d < 2,

∼tν for 2 < d < dc(N ) = 2N

N − 1
,

∼const for d > dc(N ), (1)

where the exponent ν = N − d(N − 1)/2 varies with N and
d. Exactly at the two critical dimensions, there are logarithmic
corrections. In particular, for large t , WN (t) ∼ t/[ln t]N in d =
2, and WN (t) ∼ ln t in d = dc(N ) (with N > 1). The existence
of the intermediate phase 2 < d < dc(N ) = 2N/(N − 1),
with a growth exponent ν varying with N and d, is perhaps
the most striking of our results. For instance, for N = 2 we
have dc(2) = 4 and so in 2 < d = 3 < 4 our result predicts
ν = 1/2, i.e., W2(t) ∼ t1/2, a prediction that is verified in our
numerical simulations.

The statistics of the number of most popular sites, i.e.,
the sites visited by all the walkers, arises quite naturally
in a number of contexts such as sociology, ecology, artifi-
cial networks (e.g., the internet, transport, and engineering
networks), and polymer networks just to name a few. For
example, in a multiple-user network such as the internet,
the most popular “hub” sites visited by all the users are
known to play a very important role in the dissemination of
information [27]. The knowledge of how many of them are
there is fundamental for many applications. In the tourism
industry, it is important to know the number of the most
popular sites in a given area or city that are visited by all
the tourists. Motivated by this general question, in this paper
we study the statistics of the number of most popular sites
in perhaps the simplest model, namely, for N independent
random walkers in the d-dimensional space, and show that
even in this simple model, the asymptotic temporal growth
of the mean number of common sites frequented by all N

walkers exhibits surprisingly rich behavior. We show that
our results also have close connections to the probability of
nonintersection of random walks studied in the mathematics
literature [28,29]. Given the abundance of random walks used
as fundamental models to study numerous natural and artificial
systems, and the richness of our exact results, we believe that
they will be useful in more specific applications in the future.

We consider N independent t-step walkers on a d-
dimensional lattice, each starting at the origin. To compute
the number of common sites visited by all the N walkers, it
is first useful to introduce a binary random variable σk,N (�x,t)
associated with each site �x such that σk,N (�x,t) = 1 if the site
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FIG. 1. (Color online) A realization of three random walks, each
of six steps [denoted respectively by solid (blue), dashed (purple),
and dash-dotted (green) lines] on a square lattice, all starting at the
origin O. There are two sites [each marked by a filled (red) circle]
that are visited by all three walkers.

�x is visited by exactly k of the N walkers and σk,N (�x,t) = 0
otherwise. Then the sum Vk,N (t) = ∑

�x σk,N (�x,t) represents
the number of sites visited by exactly k of the N walkers,
each of t steps, in a particular realization of the walks. Clearly,
Vk,N (t) is a random variable that fluctuates from one sample
to another. Taking the average gives the mean number of sites
visited by exactly k walkers, 〈Vk,N (t)〉 = ∑

�x Pk,N (�x,t), where
Pk,N (�x,t) = 〈σk,N (�x,t)〉 is the probability that the site �x is
visited by exactly k of the N walkers. Since the walkers are
independent, one can write

Pk,N (�x,t) =
(

N

k

)
[p(�x,t)]k[1 − p(�x,t)]N−k, (2)

where p(�x,t) is the probability that the site �x is visited by a
single t-step walker starting at the origin. Thus,

〈Vk,N (t)〉 =
(

N

k

) ∑
�x

[p(�x,t)]k[1 − p(�x,t)]N−k . (3)

W (t) ~ constN

W (t) ~ tN
(d-(d-2)N)/2

W (t) ~ tN
d/2

d

N

d (N) = 2N/(N-1)c

FIG. 2. (Color online) In the (N -d) plane, there are two critical
lines d = 2 (lower horizontal line) and dc(N ) = 2N/(N − 1) [upper
dashed (red) curve]. The mean numbers of common sites WN (t)
visited by N walkers, each of t steps and all starting at the origin
at t = 0, have different asymptotic behaviors for large t in the three
regimes d < 2, 2 < d < dc(N ), and d > dc(N ).

Finally, the mean number of common sites visited by all the N

walkers is simply

WN (t) = 〈VN,N (t)〉 =
∑

�x
[p(�x,t)]N. (4)

Hence, once the basic quantity p(�x,t) for a single walker is
known, we can determine 〈Vk,N (t)〉 and, in particular, WN (t)
just by summing over all sites as in Eq. (4). Note that, by
definition, p(0,t) = 1 for all t � 0 since the walker starts at
the origin.

The probability p(�x,t) can be fully determined for a lattice
walker with discrete time steps using the standard generating
function technique [3]. However, since we are interested here
mainly in the asymptotic large-t regime, it is much easier to
work directly in the continuum limit where we treat both space
�x and time t as continuous variables. Consider then a single
Brownian motion of length t and diffusion constant D in d

dimensions starting at the origin. We are interested in p(�x,t),
the probability that the site �x is visited (at least once) by the
walker up to time t . Let τ denote the last time before t that the
site �x was visited by the walker. Then, clearly,

p(�x,t) =
∫ t

0
G(�x,τ )q(t − τ )dτ, (5)

where G(�x,τ ) = e−x2/4Dt/(4πD t)d/2 (where x = |�x|) is the
standard Green’s function denoting the probability that the
particle is at �x at time τ and q(τ ) denotes the persistence,
i.e., the probability that, starting at �x, the walker does not
return to its starting point up to time τ . Note that q(τ ) does
not depend on the starting point �x and is the same as the
probability of no return to the origin up to time τ . Indeed,
q(τ ) = ∫ ∞

τ
f (τ ′)dτ ′ where f (τ ) = −dq/dτ is the standard

first-passage probability to the origin [30].
The no-return probability q(τ ) for a Brownian walker has

been studied extensively, and it is well known that for large τ ,
q(τ ) ∼ τ d/2−1 for d < 2, and q(τ ) ∼ 1/ln τ for d = 2, while it
approaches a constant for d > 2 since the walker can escape to
infinity with a finite probability for d > 2 [30]. One can show
that to analyze the large-t behavior of p(�x,t) in Eq. (5) in
the scaling regime where x → ∞, t → ∞ but keeping x/

√
t

fixed, it suffices to substitute only the asymptotic behavior of
q(τ ) in Eq. (5). This gives, for large t ,

p(�x,t) ∼
∫ t

0
G(�x,τ )(t − τ )d/2−1dτ for d < 2, (6)

p(�x,t) ∼
∫ t

0
G(�x,τ )dτ for d > 2, (7)

where we have dropped unimportant constants for con-
venience. For d = 2, p(�x,t) ∼ ∫ t

0 G(�x,τ )dτ/ln(t − τ ). Sub-

stituting the exact Green’s function G(�x,τ ) = e−x2/4Dτ/

(4πDτ )d/2 one finds that p(�x,t) has the following asymptotic
scaling behavior:

p(�x,t) ≈ f<

(
x√
4Dt

)
for d < 2, (8)

p(�x,t) ≈ t1−d/2 f>

(
x√
4Dt

)
for d > 2, (9)

021135-2



NUMBER OF COMMON SITES VISITED BY N RANDOM . . . PHYSICAL REVIEW E 86, 021135 (2012)

where the scaling functions for d < 2 and d > 2 can be
expressed explicitly as

f<(z) =
∫ 1

0
e−z2/uu−d/2 (1 − u)d/2−1du, (10)

f>(z) =
∫ 1

0
e−z2/uu−d/2du. (11)

Exactly at d = 2, one gets p(�x,t) ≈ (1/ln t)f2(x/
√

4Dt)
where f2(z) = ∫ 1

0 du e−z2/u/u.
It is easy to derive the asymptotic tails of the scaling

functions. One finds

f<(z) ≈ const as z → 0,

≈ z−de−z2
as z → ∞, (12)

and

f>(z) ≈ z−(d−2) as z → 0,

≈ z−2e−z2
as z → ∞. (13)

At d = 2, one finds f2(z) ∼ −2 ln(z) as z → 0, and f2(z) ∼
e−z2

/z2 as z → ∞. Note that the scaling forms postulated in
Eqs. (8) and (9) do not, in general, hold for very small x. For
d < 2, the scaling regime can actually be extended all the way
to x → 0, and indeed, the exact relation p(0,t) = 1 is actually
part of the scaling regime. This is seen by taking the x → 0
limit in Eq. (8) and using the asymptotic small-z behavior of
f<(z) in Eq. (12). In contrast, for d > 2, one cannot recover
p(0,t) = 1 by taking the x → 0 limit in Eq. (9). This is a
manifestation of the fact that for d > 2 one always needs a
finite lattice cutoff a > 0 (see, e.g., Ref. [4]). Thus, for d > 2,
the continuum scaling result in Eq. (9) does not hold for x < a.

We next substitute Eqs. (8) and (9) in Eq. (4) and replace
the sum by an integral over space. Note that even though
we started out with d and N being integers, the general
formula (4) can be analytically continued to real d > 0 and
real N > 0. So from now on we will consider d and N to be
continuous real positive numbers as, e.g., represented in the
phase diagram in Fig. 2. Indeed, noninteger values of d can be
interpreted in terms of random walks on fractal manifolds with
noninteger dimensions. Consider first the case d < 2 where we
get, dropping unimportant prefactors, for large t

WN (t) ∼ td/2
∫ ∞

0
[f<(z)]Nzd−1dz. (14)

From the tails of the scaling function f<(z) in Eq. (12), it is
evident that the integral in Eq. (14) is convergent and is just
a constant, and hence for d < 2, WN (t) ∼ bN td/2 for large t ,
with only the prefactor bN , but not the exponent, depending
on N . Exactly at d = 2, using p(�x,t) ∼ [1/ ln t]f2(x/

√
4Dt),

and following a similar analysis we get for large t

WN (t) ∼ t

[ln t]N

∫ ∞

0
[f2(z)]Nzdz. (15)

Using the exact form of the scaling function f2(z) described
before, one can check that the integral above is convergent
and, hence, for d = 2, WN (t) ∼ t/[ln t]N for large t .

For d > 2, a similar manipulation is a bit more delicate. We
recall that the scaling result for p(�x,t) in Eq. (9) holds only for
x > a where a is a lattice cutoff, while p(0,t) = 1 identically.
Thus, in the sum in Eq. (4) we separate the x = 0 term and

replace the rest of the sum by an integral over the scaling
form,

WN (t) ≈ 1 + Ad tN(1−d/2)
∫ ∞

a

[
f>

(
x√
4Dt

)]N

xd−1dx,

(16)

where Ad is a volume-dependent constant and a is the lattice
cutoff. This gives, after rescaling z = x/

√
4Dt ,

WN (t) ≈ 1 + Adt
N−(N−1)d/2

∫ ∞

a/
√

4Dt

[f>(z)]Nzd−1dz. (17)

We now have to check how the integral behaves as t →
∞, i.e., its lower limit approaches 0. This is controlled
by the small-z behavior of the integrand. From Eq. (13),
we get [f>(z)]N ∼ z−N(d−2) as z → 0. Hence, the integrand
behaves as zd−(d−2)N−1 as z → 0. Thus, two situations arise. If
d − (d − 2)N > 0, i.e., d < dc(N ) = 2N/(N − 1) (recall that
d > 2 already), the integral is convergent at the lower limit,
and one can safely take the t → ∞ limit, and then Eq. (17)
predicts that for large t and 2 < d < dc(N ) = 2N/(N − 1)

WN (t) ∼ tν, ν = N − d(N − 1)/2. (18)

In contrast, if d − (d − 2)N < 0, i.e., d > dc(N ) = 2N/

(N − 1), the lower limit of the integral behaves as
∼t (N−1)d/2−N for large t , which precisely cancels the power-
law prefactor, and

WN (t) → const, d > dc(N ) = 2N/(N − 1), (19)

where the constant evidently depends on the cutoff, i.e., on
the details of the lattice, and is thus nonuniversal. Physically
this means that for d > dc(N ), the common sites visited by all
the walkers are typically close to the origin and are visited at
relatively early times. At late times, the walkers hardly overlap
and hence WN (t) does not grow with time. Finally, exactly at
d = dc(N ), a similar analysis shows that WN (t) ∼ ln(t) for
large t . The upper phase boundary in Fig. 2 depicts the critical
line dc(N ) = 2N/(N − 1) as a function of N . Alternatively,
for fixed 2 < d < dc(N ), this critical line can also be described
as Nc(d) = d/(d − 2). For 1 � N � Nc(d), we have WN (t) ∼
tν with ν = N − d(N − 1)/2.

To check our analytical predictions, we have computed
WN (t) numerically for d = 1, 2, 3 and for several values
of N . In d = 1, our result predicts that WN (t) ∼ bN t1/2 for
large t where the exponent 1/2 is independent of N and only
the prefactor bN depends on N . The results in Fig. 3(a)
are consistent with this prediction. In d = 2, our results
predict that WN (t) ∼ t/[ln t]N which is verified numerically
in Fig. 3(b). For d = 3, our result predicts that there is a
critical value Nc = 3 such that WN (t) ∼ t (3−N)/2 for N < 3,
WN (t) ∼ ln(t) for N = 3, and WN (t) ∼ const for N > 3. The
simulation results for d = 3 in Fig. 3(c) are consistent with
these predictions.

Interestingly, the critical dimension dc(N ) = 2N/(N − 1)
has also appeared in the probability literature [29] in the
context of the probability of no intersection of N random
walkers up to t steps all starting at the origin [28]. To make a
precise connection with our work presented here, consider the
random variable VN,N (t) that denotes the number of common
sites visited by all the N walkers up to t steps. Since all the
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(a) (b) (c)

W (t)(ln t)NN
W (t)NW (t)N

FIG. 3. (Color online) Numerical results for WN (t) vs t for different values of N and d: (a) In d = 1, the black lines (from top to bottom)
correspond to WN (t) vs t for N = 1,2, . . . ,7 averaged over 100 000 realizations, and the dashed (red) lines have slope 1/2. (b) In d = 2, we
plot aNWN (t)[ln t]N vs t for N = 1,2,3,4 (from bottom to top) averaged over 100 000 realizations. The prefactor aN is chosen so that the curves
start at the same point to make the visualization better. (c) In d = 3, the black lines correspond to N = 1,2,3,4 (from top to bottom) averaged
over 7000 realizations. Analytical results predict WN (t) ∼ t (3−N)/2 for N < 3, WN (t) ∼ ln t for N = 3, and WN (t) ∼ const for N = 4. The
dashed (red) lines have slopes 1 (N = 1), 1/2 (N = 2), and 0 (N = 4); the dotted (blue) line is proportional to ln t (N = 3).

walkers start at the origin, clearly the number of common
sites visited must be at least 1, implying VN,N (t) � 1. When
VN,N (t) = 1, it corresponds to the event that the walkers do
not intersect further up to step t and the origin at t = 0
remains the only site visited by all of them up to step t .
Thus, the probability of no further intersection up to step t is
FN (t) = Pr[VN,N (t) = 1]. Lawler studied the decay of FN (t)
for large t rigorously in special cases [28], and Duplantier
showed [29] that FN (t) approaches a constant as t → ∞ for
d > dc(N ) = 2N/(N − 1). For d < dc(N ), FN (t) ∼ t−ζ and
the exponent ζ was computed using an ε expansion around
the critical dimension [29]. In contrast, in this paper we
have computed the mean of the random variable VN,N (t),
i.e., WN (t) = 〈VN,N (t)〉. Note that while FN (t) is not exactly
computable in all d, WN (t) is, as we have shown here.

Another interesting related problem is to compute the mean
number of N -fold self-intersections of a single ideal polymer
chain of length t . In Ref. [31], it was stated that in d = 3 this
grows as t (3−N)/2, which looks similar to our result WN (t) ∼
t (3−N)/2 in the intermediate phase in d = 3 and for 1 < N < 3.
However, the two problems are not exactly identical, and even
the single-chain result in Ref. [31] was qualitatively argued
for, not rigorously proved, and the logarithmic correction for
N = 3 was not mentioned.

In summary, we have presented exact asymptotic results
for the mean number of common sites WN (t) visited by
N independent random walkers in d dimensions. We have
shown that, as a function of N and d in the (N -d) plane,
there are three distinct regimes for the growth of WN (t),
including, in particular, an anomalous intermediate regime
2 < d < dc(N ) = 2N/(N − 1).

We conclude with a few additional remarks. In this paper,
we have computed analytically the scaling behavior of p(�x,t),
the probability that the site �x is visited by a single t-step walker.
This result turns out to be the key ingredient to address other
related questions. For instance, it would be easy to compute the
mean number of sites visited exactly by k walkers (out of N ) up
to time t using our result in Eq. (2). Here we have restricted our
attention only to the k = N case for simplicity. Furthermore, it
follows by putting k = 0 in Eq. (2) that the probability a site �x is
not visited by any of the N walkers is simply P0,N (�x,t) = [1 −
p(�x,t)]N . Hence, the probability that a site �x is visited by at
least one of the walkers is 1 − P0,N (�x,t) = 1 − [1 − p(�x,t)]N .
Summing over �x, one then gets the mean number of distinct
sites visited by the walkers, SN (t) = ∑

�x[1 − {1 − p(�x,t)}N ].
Thus, knowing the behavior of p(�x,t), one can fully
analyze SN (t) and recover rather simply the results of
Ref. [14].

There are several directions in which our work can be
generalized. It would be interesting to consider cases where
the walkers have different step lengths or when they start at
different positions [32]. Also, computing the full distribution
of the number of common sites visited by all walkers remains
a challenging open problem.
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