⁶¹Ni Nuclear Resonance Scattering Study of Magnetic Hyperfine Interactons in the Double-Perovskites A₂NiMnO₆ (A = Sc, In, Tl)

Sobolev A.V.¹, Glazkova I.S.¹, Akulenko A.A.¹, Sergueev I.², Chumakov A.I.³, Belik A.A.⁴, Presniakov I.A.¹

1 - Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
2 - Deutsches Electronen - Synchrotron, D-22607, Hamburg, Germany
3 - ESRF-The European Synchrotron, CS40220 38043 Grenoble Cedex 9, France
4 - National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan

alex@radio.chem.msu.ru

The relationship between hyperfine interactions and magnetism in fully ordered double-perovskites A_{2} NiMnO₆ (A = Sc, In, Tl) is investigated by nuclear resonance scattering (NRS) with the ⁶¹Ni transition, and compared to neutron diffraction measurements [1,2]. In these perovskite-like oxides, the increased octahedral (Ni²⁺O₆) and (Mn⁴⁺O₆) tilting associated with decreasing A-site ionic radius (Tl³⁺ \rightarrow In³⁺ \rightarrow Sc³) is a key ingredient in changing the sign of the nearest-neighbor (NN) Ni-O-Mn magnetic interactions. In the case of Sc₂NiMnO₆ with antiferromagnetic NN-interactions, exhibiting two magnetic transitions at 35 K and 17 K, the magnitude and sign of the magnetic hyperfine field $(B_{\rm hf})$ on 61 Ni nuclei is determined using NFS measurements with and without external magnetic field $B_{\rm ex} = 5$ T. The small absolute value of the field $B_{\rm hf,2.5K} \approx 6.1$ T on Ni²⁺ ions in the octahedral oxygen coordination is explained by the large positive orbital contribution ($B_L > 0$) due to the 3d-4p orbital mixing via spin-orbit coupling. The negative sign of $B_{\rm bf}$ in the external field underlines that the core polarization ($B_{\rm F} \approx -40$ T) is the most important partial contribution to the experimental magnetic hyperfine field. The temperature evolution of the reduced hyperfine fields $B_{\rm hf}(T)$ is reproduced by the Brillouin function with S=1 and magnetic transition temperature of 38(2) K, that is incompatible with the earlier assumption [1] that the low temperature transition at $T_{N2} \approx 17$ K arises from the antiferromagnetic ordering in Ni²⁺ sublattice. The significantly lower values of the hyperfine field in the ferromagnet Tl_2NiMnO_6 ($B_{hf.5K} \approx 1.7$ T) and In_2NiMnO_6 $(B_{\rm hf.5K} \approx 2.1 \text{ T})$ with a cycloidal magnetic structure [2] are entirely associated with the supertransferred hyperfine field (B_{STHF}) from the nearest Mn⁴⁺ neighbors via an intermediate O²⁻ ions. Taking into account the angular dependence of the $B_{\text{STHF}}(\vartheta)$ field on the Ni-O-Mn bond angle ϑ , we have shown that, in opposite to Sc_2NiMnO_6 , the B_{STHF} field in A = In, Tl perovskites have the positive sign, thus drastically reducing the resulting $B_{\rm hf}$ value.

The European Synchrotron Radiation Facility is acknowledged for provision of synchrotron radiation facilities at beamline ID18.

References

- 1) W. Yi, A. J. Princep, Y. Guo et al., Inorg. Chem. 54(16), 8012 (2015)
- 2) N. Terada, D. D. Khalyavin, P. Manuel et al., Phys. Rev. B91, 104413 (2015)

ICAME 2017 151