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A method is proposed for analytically solving the Usadel equations for an interleaved system of 
superconducting (S) and ferromagnetic ( F )  metals. In the case of a strong exchange field I s  T,  
(where T, is the transition temperature ofthe bulk superconductor), the transition temperature 
of the superlattice, T ,*, is a nonmonotonic function of the thickness of the F layers and of the 
quantity I. In SFS Josephson junctions, the exchange field in the F layer leads to oscillations of the 
critical current I,. This current vanishes at certain values of the effective thickness of the layers. 
The possibility of experimentally observing these effects is briefly discussed. 

1. INTRODUCTION 

It has now become possible to fabricate superconduct- 
ing structures of a new type: superlattices in which layers of a 
superconductor alternate with layers of a magnetic materi- 
al.1-5 Such structures are extremely interesting for research 
into the mutual effects of superconductivity and magnetism. 
Another promising direction is the use of a ferromagnet as 
an interlayer material in Josephson junctions. 

The results of a numerical solution of a self-consistent 
equation for the superconducting parameter in the case of a 
superconductor-ferromagnet (SF) superlattice were report- 
ed in Ref. 6. It was pointed out there that the transition 
temperature might be an oscillatory function of the thick- 
ness of the F layers and of the strength of the ferromagnetic 
exchange field. Unusual properties of SFS Josephson junc- 
tions were studied in Refs. 7 and 8. It was pointed out that 
the critical current can oscillate as a function of the param- 
eters of the F interlayer in the clean limit. In the present 
paper we develop a general analytic formalism for describing 
SF structures on the basis of the Usadel  equation^.^ The 
approach offered here makes it possible to describe the oscil- 
lation effects and to formulate requirements on the param- 
eters of suitable structures for experimental observation of 
these effects. Some of the results in the present paper have 
been published previously as brief comrn~n ica t i ons .~~~~ '  

The origin of these effects lies in an oscillatory spatial 
variation of the anomalous Green's function in the presence 
of an exchange field. Essentially the same factor is responsi- 
ble for the appearance of an inhomogeneous Larkin-Ovchin- 
nikov-Fulde-Ferrell state12'13 when the paramagnetic effect 
is taken into account in superconductors: In this case a spa- 
tial modulation of the superconductivity order parameter 
corresponds to the ground state in the strong Zeeman field. 
An exact solutionI4 for a model SF system of alternating 
atomic superconducting and ferromagnetic layers also 
shows that an inhomogeneous superconducting state, in 
which the sign of the order parameter alternates from one 
superconducting layer to the neighboring one, corresponds 
to the ground state in sufficiently strong exchange fields. 

2. BASIC EQUATIONS 

We assume that the dirty-limit conditions hold for the S 
and F metals which make up the SF structure, and we as- 
sume that the transition temperature of the ferromagnet is 
zero (i.e., the Cooper pairing constant is A = 0 in an F re- 
gion). A strong exchange field I s  T,, where T, is the transi- 

tion temperature of the bulk superconductor, is applied to 
the electrons in the F regions. The value of I in a ferromagne- 
tic metal is typically lo2-lo3 K, so the latter requirement 
does not impose any serious restriction. It is essentially al- 
ways satisfied in typical experimental  situation^.'^ As in 
Ref. 15, we will ignore the orbital effect of the magnetic field 
in the ferromagnet in comparison with the exchange effect in 
the calculations. 

Directing the quantization axis for the electron spin 
along the direction of the exchange field, we write the Usadel 
equations for the S and F metals: 

=Gn,+  (r, a ) A n V s  (r) -@~"~*Fn,a (rq a ) ,  (1)  

where n labels a ferromagnetic region, s labels a supercon- 
ducting region, D, and D, are the diffusion coefficients in 
the F and S regions, 3 = w = rT(2n + 1) are the Matsu- 
bara frequencies, Gn = w + iI, As ( r )  = A  ( r ), A, ( r )  = 0, and 
A is the superconductivity parameter. As can be seen from 
( 1 ), the presence of the exchange field acting on the electron 
spins is described in the Usadel equations by the replacement 
w-w + iI. 

The function p i n  (2)  is determined by the condition 
?;;(a) = F*( - w). It is important to note that we have 
F( - w) #F(w) in our case, in contrast with the standard 
situation with p(w) = F * ( a ) .  

As usual, Eqs. ( 1 ) and (2)  are to be supplemented with 
a self-consistency equation in the S region, 

and with boundary conditions at the SF boundaries,16 

Here as and a, 'are the conductivities in the S and F regions 
in the normal state, and the x axis runs along the normal to 
the boundary. 

Near the transition temperature T, we can linearize 
Eqs. ( 1 ) and (2 )  in terms of A - 0. The normal function G is 
replaced by its value in the absence of superconductivity, i.e., 
G = signw. In an S region, the Usadel equation is written in 
the form 
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lw iF , ( r ,  a )  -'/2D,V2F. ( r ,  w )  = A  ( r )  . (5)  

In an F region, by virtue ofthe condition I) Tc we can ignore 
the frequency I w 1 in comparison with I, and we can write an 
equation for F as follows: 

il sign oF,, ( r ,  w )  - 1/2D1, \  ' F n  ( r .  a) =O. (6 )  

The term I signw in (6)  makes it convenient to switch from 
the ordinary anomalous Usadel functions to the functions 

As a result, the system of equations for the functions F * 
becomes 

Here S + = 1,S- = 0, 2dh and 2d, are the thicknesses of the 
F and S regions, g,, = (Dh,,/2aTc)'/2 are the correlation 
lengths in the S and F regions, and T: is the transition tem- 
perature of this SF system. 

3. TRANSITION TEMPERATURE OF AN SF SUPERLATTICE 

In the calculation of the transition temperature of a su- 
perlattice of alternating S and F layers, shown schematically 
in Fig. 1, the order parameter A and the functions F must 
satisfy "Bloch" conditions for a translation equal to the peri- 
od of the structure, A = 2 (d, + d, ), by virtue of the trans- 
lational invariance of the problem: 

In other words, they differ only by a constant phase factor 
exp(ip). 

Assuming that the superconducting properties of the 
structure in the plane of the layers are spatially uniform, we 
can easily write a general solution of Eqs. (8)  and (9) for the 
case under consideration here: 

F,,'=A, ch [k , ,  ( x f d , ) ]  +A,  sh [ k ,  (.t.+d,) ] + B ,  ch[k , , '  ( x + d , , )  ] 
+Bz sh[k , ' (x+d , )  I ,  

Fa-=A,  c h [ k , , ( x + d , ) ] + A ,  s h [ k , ( x + d , , ) ]  
- B ,  ch (k , ' (x+d , , ) ] - -B ,  sh [ k n e ( x + d , , )  1 ,  

F . - = C ,  ch [ k ,  ( 2 - d , )  ] S-C, sh [ k ,  ( x - d , )  1. ( 12) 

where k, = (1  + i) ( I /Dh ) I / , ,  k, = (21wl/Ds ) ' I 2 ,  and the 
constants A, , , ,  B ,,,, and C,,, are determined from the 
boundary conditions at the SF boundaries, 

and from requirement ( 1 1 ) . 
We seek a solution of the Usadel equations for the func- 

tions F: in the class of functions 

4Y 

The parameter 

in ( 14) is related to the superlattice transition temperature, 
T : by the self-consistency condition 

i 

($is the digamma function). In general, this parameter de- 
pends on the phase factor exp(ip). 

Among the many solutions corresponding to the var- 
ious values of p, that which is realized is the one which corre- 
sponds to the maximum value of T: for the structure. 

Substituting the sought solutions (12) and (14) into 
boundary conditions ( 13), we find a system of linear equa- 
tions for the coefficients A,  B, C, and D. The condition under 
which this system is compatible leads to the following equa- 
tion for the wave vector k in expression ( 14): 

1 all a , ,  - - U I I *  am* 1 

2ds -- 
S N S N S N S  

2d, 

where 

o l l = i  l g ( (p l2 )  [yE,,k,, t h ( k n d n )  +E,k c t g ( k d , )  I .  
a,,=yE,k,, c th (k ,d , )  + Esk c t g ( k d , ) .  
a, ,=yg,k,  th (k ,d , ) - -g8k  t h ( k d , ) ,  

ubl=i t g ( (p l2 )  [yg ,k ,  c th  (k ,d , )  -E,k t h ( k d , )  I ,  
a, ,=yt ,k ,  Ih (k ,d , )  +E&,  t h  ( k , d , ) ,  

(18) 

aj.=i tg ( ~ 1 2 )  [yE,,k.,, ctll ( k n d n )  +E.k th ( k d . ) ]  , 
ar l=i  tg((p12) [ y t , , k , ,  th (k ,d , )+E,kc th (kd , )  I. 

a,,=yE,,k,, c th  (k ,d , )  +E,k, c th  ( k , d , ) .  

t 
x 

This approach to the solution of the problem is self- 
consistent only if k is independent of the Matsubara frequen- 
cies w. It follows from the structure of expressions ( 18) that 
at small values of y, specifically, 

y e -  I min (1, +), 
lknl%n 

all the elements of the third and fourth rows of the matrix 
contain an identical factor [k, tanh (k,d, ) and 
k, coth (k,d, ), respectively] in the zeroth approximation in 
this small parameter. Canceling this factor out, and ignoring 
the terms with y in the first row, we find for k an equation 
which does not contain w: 

FIG. 1. 
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we again find fork an equation which is independent of w in a 
first approximation: 

E,k tg (kds)  

FIG. 2. Parameter 3 9, = (d ,d , /y&{,  ) ( T ,  - T:) /T ,  vs effective 
thickness; solid line-main state; dot-and-dash line-0-phase; broken 
line-II-phase. 

where 

SO (v, krZdn)=sinL(cp/2) [ knd,, ctll (k,d,) +k,'d, cth (k,, 'd,,)] 
+cos2 ( ~ 1 2 )  [kndn t h  (kndn)+kn'dn th(knmd,) 1. 

The superlattice transition temperature T :  corre- 
sponds to the smallest value of k .  Depending on which of the 
expressions in square brackets in ( 2 0 )  is larger, this will be 
either the 0 phase (q, = 0 )  or the a phase (q, = a)  . Working 
from ( 15)  and (201,  we easily find an expression for the 
transition temperature T:: 

It is plotted in Fig. 2. 
In the thickness interval 

where 

The .rr phase is realized if n is an odd integer, while the zero 
phase is realized if n is even. The oscillatory behavior of p 
leads to oscillations of the superlattice transition tempera- 
ture as a function of the parameter I k ,  Id,. Our approxima- 
tion in ( 1 9 )  corresponds to a small change in Tc 
( Tc - T :  4 Tc  ), but it is clear that the oscillatory 
T r  ( 1 k ,  Id, behavior persists at a qualitative level at values 
y-d,/l k ,  I{,{ , ,  at which the deviation of T: from T, is not 
small. Numerical calculations6 also indicate that the oscilla- 
tions in T :  persist in this regime. 

Expression ( 2 0 )  is evidence that the transition between 
the 0 phase and the .rr phase occurs abruptly as d ,  is varied. 
However, if we take the terms of the next order in y into 
account in solving ( 17), we find that a narrow transition 
region with 0 < q, < a appears between the 0 and a phases, 
and the plot of Fig. 2 is smoothed out slightly. This result 
again is seen in the numerical calculations of Ref. 6.  

At large values of y, 

/ {sin' (5) [ th(kndn) 
k ,  

+ C.C. ] 
cth (knd,) + C.C. I}, ( 2 3 )  

We also find an oscillatory T : ( 1 k ,  Id, ) dependence asso- 
ciated with transitions between the 0 and a phases: 

I" =->{I n E --[sin'(+)( E S  t h  (kndn)  ($1 2 d. 2yE.d. 
+ C.C. 

kn 

At large values of y, only superlattices with d,  2 ls need 
be considered, since the superconductivity will be complete- 
ly suppressed if the S layer is thin. In the case d,  % l s ,  the shift 
of T :  is small, as can be seen from ( 2 3 ) .  In this case the n- 

phase corresponds to the interval 

is n is an odd integer, while the 0-phase region corresponds 
to even values of n in ( 2 5 ) .  

Superlattices with d,  <{, and small values of 
y-d,/l k ,  If,l,  < 1 and d ,  - 1/1 k ,  1 are the most promising 
for an experimental test of this oscillation effect in the 
T : ( d , )  dependence. The reason is that in this case we 
should see a significant suppression of the transition tem- 
perature (AT,  - Tc ) . Our theory is applicable only at a 
qualitative level in this case, but the numerical calculations 
of Ref. 6 confirm that in this case there are again significant 
oscillations in T r .  

4. POSSIBLE METHODS FOR ESTIMATING THE PARAMETER 
Y 

We see that T :  depends strongly on not only the geo- 
metric factors but also on the transport properties of the 
materials making up the superlattice, i.e., on the parameter 
y. This coefficient can be estimated directly by substituting 
the numerical values of o and {into ( 13) .  Table I shows the 
results of such an analysis for the most suitable materials 
from our standpoint. We see that the parameter y is not large 
(yz0 .3) .  Consequently, the oscillation effects which we 
had been discussing here might be observed experimentally. 

A more accurate value of this parameter can be estimat- 
ed from indirect experiments, e.g., from the change of the 
transition temperature of a superconducting film in contact 
with a bulk ferromagnetic metal. It is not difficult to derive 
corresponding expressions for the transition temperature as 
a function of the film thickness. Letting d ,  + cc in ( 2 0 ) ,  and 
setting q, = 0, we find the following equation for small values 
of y: 

Correspondingly, for large values of y we find from ( 2 3 )  

Substituting k from (26a )  and ( 2 6 b )  into ( 16) ,  we find 
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TABLE I. Estimates of the parameter y for Nb/RE superlattices, where RE = Ho, Dy, or Gd. 

Here O is the Curie point, T ,  is the NCel point, l/u is the residual resistivity, and 1 is the 
exchange integral. 

an equation for the reduced temperature 7 = TF/T,. Figure ( 19) holds and the boundary conditions on the functions 
3 shows the results of a calculation of r as a function of d, for F,i are independent of w: 
various values of y. The dashed lines show the result in the 
region in which the theory presented here is only qualitative- 
ly valid. 

5. JOSEPHSON JUNCTION WITH A FERROMAGNETIC 
INTERLAYER 

Yet another interesting physical consequence of an os- 
cillatory behavior of the anomalous function F in a ferro- 
magnet [see Eq. (8)  ] is the existence of oscillations in the 
critical current of a Josephson SFS junction, with this cur- 
rent vanishing at certain points. 

Let us examine an SFS sandwich with the geometry 
shown in Fig. 4 for temperatures near the transition tem- 
perature. The x axis runs perpendicular to the interfaces, 
and the origin of coordinates is at the middle of the F layer. 
Switching to an analysis of the Usadel equations for the func- 
tions F ', as in Secs. 2 and 3, we can immediately write 
solutions for F: [see ( 1 1 ) 1. In the superconducting regions 
the solutions for the functions F [  are 

Fa-=C exp ( - k g ) ,  x>d,, 

F,-=C exp ( k , x ) ,  x<-a,. 

Using the joining conditions at the S - F interfaces, we find 
that we can immediately write boundary conditions on the 
superconducting parameter A for the case in which the inter- 
layer material has a resistivity high enough so that condition 

A' ( d ) + A ' ( d n  On 
= - [ k ,  cth (k,d,) + C.C. 1 , 

A@,) -A( -&)  20. 

A 1 ( d ) A ( n  0, 
(28) -- [ k ,  th(k,d,)+ C.C. 1. 

A ( A  - 20. 

The primes here mean differentiation with respect to the co- 
ordinate x. Using the first integral of the Ginzburg-Landau 
equations, as in Ref. 17, we find a sinusoidal dependence of 
the supercurrent on the difference between the phases q, of 
the order parameter at the junction: 

j=ioy 
l A ( a n )  1' sin cp 

Ao2 
[ + C.C. 1, 

sh (2d,k,) 
(29) 

where A, is the magnitude of the order parameter deep in the 
superconducting regions, and j, = ah;  us/4eTcgs. The 
critical current of the junction can conveniently be written in 
the form 

( s h  y GOS y+ch y sin y I 
IcRn= Voy 

shz cos2 y+ch2 y sin2 y ' 

where Rn is the resistance of the junction, and 
V, = aA2(dn)/4eTc. Note that negative values of the 
expression between the absolute value bars in (30) corre- 
spond to a ajunction7 in which a phase difference of a corre- 
sponds to the minimum energy. Figure 2 in Ref. 11 shows a 
plot of I,  (y) calculated from expression (30). The critical 
current oscillates with increasing y and vanishes at 
y ~ 3 a / 4  + n r .  This condition corresponds precisely to a 
transition from a zero phase to a a phase in an SF superlat- 
tice [see (24) 1. Consequently, oscillations of the critical 
current as the parameter y is varied should also be character- 
istic of SF superlattices. It follows from Fig. 2 in Ref. 1 1 that 
the value of l c R ,  at the second maximum is about 30% of 

FIG. 3. Dependence of given temperature T = /T ,  of a film on its thick- 
ness for the selection of <s and 4" parameters, which correspond to the 
situation with Nb film on Dy: 1-y = 0.01; 2-y = 0.05; 3-y = 0.1; 4- 
y = 0.2; 5-y = 100. FIG. 4. 
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R, I, (y = 0), so the nonmonotonic I, ( y )  behavior could de- 
finitely be observed experimentally. 

In calculating I, at nonzero temperatures we need to 
bear in mind that the anomalous Usadel functions F and F - 
are related by F(w) = F * (w -+ - w )  in an F metal, and the 
normalization condition reduces to G + F 3 = 1. 

In the limit of large thicknesses of the F layer we have 
y > 1, and under inequality (27)-which guarantees the va- 
lidity of rigid boundary conditions at the SF boundaries- 
the solution of the Usadel equations can be written in the 
form 

F=exp (-icp/2) sin a-+exp (icp12) sin a+, 

ar=4 arctg{A exp [*(l+isign o) ( l / D , ) ' " ( x ~ d , )  I ) ,  (31) 
A=lAIl{Q+Iolf [2Q(Q+lol)]'"), Q=(02+lA12)'h. 

Substituting (31) into the expression - 

for the supercurrent, and making use of the symmetry prop- 
erties of the functions Funder the replacement of w by - w, 
as mentioned above, we find the following result for the criti- 
cal current I, : 

1,~=32~2'"(Ale)F(AlT)y exp (--y)sin[y+n/41, (33) 
m 

Figure 3 in Ref. 11 shows the temperature dependence of the 
function 9. Near the transition temperature, expression 
(33) becomes the same as (30) in the region y )  1. It can thus 
be concluded that this I, (y) behavior is valid over the entire 
temperature range T< T, and is a general property of SFS 
structures. 

From the experimental standpoint, the most interesting 
approach would be to study the I,  oscillations in structures 
in which the Curie temperature O of the interlayer is close to 
T,. The temperature dependence of the exchange field in the 
F region in this case should lead to oscillations of the critical 
current as a function of the temperature. This behavior 
might be of interest for controlling the critical currents of 
Josephson junctions. 

The results found here also apply to junctions in the 
form of variable-thickness bridges, with restrictions on the 
parameters of the weak-link material which are much less 
stringent than (27). 
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