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ABSTRACT: The bismuth(III) oxophosphate Bi3(PO4)-
O3 was obtained by hydrothermal synthesis. The unit cell
has a = 5.6840(6) Å, b = 7.0334(7) Å, c = 9.1578(9) Å, α
= 78.958(2)°, β = 77.858(2)°, γ = 68.992(2)°, V =
331.41(6) Å3, space group P1 ̅, and Z = 2. The crystal
chemical formula that reflects the presence of oxo-centered
tetrahedra and triangles is 2D[OIIIOIV

2Bi3](PO4). The
crystal structure contains [O3Bi3]

3+
∞∞-heteropolyhedral

corrugated layers parallel to (001), which alternate along
[001] with isolated (PO4) tetrahedra. The structural
complexity parameters are v = 22 atoms, IG = 3.459 bits/
atoms, and IG,total = 76.107 bits/unit cell, and thus
Bi3(PO4)O3 is the simplest pure bismuth(III) oxophos-
phate.

Bismuth oxides, bismuth-based oxosalts of inorganic acids,
and their derivatives with transition-metal ions are well-

known classes of inorganic compounds that attract interest
because of their wide range of physical and chemical properties,
such as luminescence, selective oxidation catalysts, and multi-
ferroic behavior.1−4 The ionic conductivity properties, induced
by vacancies at oxygen-atom positions in fluorite-related
structures, are established in α, β, γ, δ, and ε modifications of
Bi2O3,

5,6 in the family of bismuth isomorphous mixed
oxophosphates−oxovanadates with the general formula
Bi23V4−4xP4xO44.5 (0 ≤ x ≤ 1),7,8 as well as in Bi14(PO4)4O15

9

and Bi46(PO4)8O57.
10 Bismuth-based oxosalts of transition

metals attract interest because of their low-dimensional magnetic
properties. Most belong to the Bi2O3−MO−X2O5 ternary system
(M = divalent metal; X = P, As, V).11

Bismuth oxosalts are characterized by the presence of
“additional” oxygen atoms12 that do not belong to tetrahedral
polyanions. These oxygen atoms are typically tetrahedral or,
more rarely, are 3-fold-coordinated by bismuth cations. The
positively charged anion-centered OBi4 tetrahedra [OBi3
triangles or mixed O(Bi,M2+)4 tetrahedra], with oxygen atoms
at the centers of the polyhedra and bismuth atoms at the vertexes,
are dominant building units in the structures. Such cation-
centered units manifest a wide structural diversity associated with

edge-sharing OBi4 tetrahedra, forming 0D, 1D, 2D, and 3D
polycationic frameworks.12

Compounds with different ratios of Bi2O3−P2O5 belonging to
the Bi2O3−BiPO4 system have been reported previously.13 It was
shown that the phase with the chemical composition Bi3PO7
[=Bi3(PO4)O3] is stable up to 1193 K and appears in both
equilibrium and metastable phase diagrams.14 The same
compound was also obtained as a side product in the system
Bi2O3−H3BO3−NH4H2PO4.

15 Despite having the simplest
stochiometry among bismuth oxophosphates, Bi3(PO4)O3 has
been characterized only by powder X-ray diffraction (XRD)
analysis,13−15 and its crystal structure is unknown.
The only pure bismuth oxophosphates are structurally

characterized Bi4 . 25(PO4)2O3.375 ,
16 Bi5(PO4)2O4.5 ,

16

Bi6.67(PO4)4O4,
17 Bi14(PO4)4O15,

9 Bi23(PO4)4O28.5,
7 and

Bi46(PO4)8O57,
10 as well as the minerals smrkovicite Bi2(PO4)-

O(OH)18 and petitjeanite Bi3(PO4)2O(OH),19 which also
contain hydroxyl groups.
Here we report the synthesis of the bismuth oxophosphate

Bi3(PO4)O3 and its investigation by powder XRD and single-
crystal X-ray analysis and IR spectroscopy. A crystal chemical
discussion and a comparison of all bismuth(III) oxophosphates
are provided.
Single crystals of Bi3(PO4)O3 were synthesized as a side

product by a hydrothermal method in the system Bi(OH)3−
NiCO3−K2CO3−K3PO4. The synthesis was carried out with a
Bi2O3−NiO−K2O−P2O5 ratio of 1:1:1:1 at pH = 6−7 in a
copper-lined stainless steel autoclave. The reaction was done at a
constant pressure of 480−500 atm in the temperature range of
690−700 K. The reaction went to completion during heating for
20 days, followed by cooling to room temperature for over 24 h.
The precipitate was separated by filtration, washed several times
with hot distilled water, and finally dried at room temperature for
12 h. The reaction products consisted of several phases: ∼30 vol
% small yellow crystals of the Bi3(PO4)O3 phase (Figure S1),
green crystals of Bi2Ni(PO4)O2(OH),

20 yellow-green needles of
KBi4Ni2(PO4)3O4,

21 and colorless crystals of Bi6.67(PO4)4O4.
Crystals of Bi3(PO4)O3 were selected manually for further

studies.22−24 Powder XRD (Figure S3) data match those
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previously reported for Bi3PO7.
13 The IR absorption spectrum is

shown in Figure 1. The number of bands in the mid-IR spectrum
exactly corresponds to those predicted by theoretical-group
analysis (see the Supporting Information, SI).

The crystal structure of Bi3(PO4)O3 was studied by single-
crystal X-ray analysis.25 The experimental details of the data
collection and refinement results are listed in Tables S1−S4.
Bond-valence-sum calculations were done using bond-valence
parameters for Bi3+−O26 and P5+−O27 bonds and are presented
in Table S5.
Following the tradition of describing structures emphasizing

cation-centered polyhedra, in the crystal structure of Bi3(PO4)-
O3, bismuth cations are coordinated to produce distorted
Bi(1,2)O8 and Bi3O7 polyhedra. The bond strengths scatter
considerably in these polyhedra, with strong bonds in one
coordination hemisphere and longer weak bonds in the other,
because of the stereoactivity of the lone electron pair (LEP) on
the Bi3+ cations. The distortion of the BiOn polyhedra can be
described by the eccentricity parameter Φi (see the SI),28 for
which the absolute value measures the deformation density of the
LEP [the |Φ| values for Bi(1−3) are 5.32× 10−5, 5.79× 10−5, and
6.17 × 10−5, respectively]. BiOn polyhedra are linked via
common edges, forming layers that are parallel to (001). Isolated
(PO4) tetrahedra link the layers, forming a heteropolyhedral
framework (Figure 2a).
When the principles of anion-centered crystal chemistry are

emphasized,12 the crystal chemical formula of the compound
studied here can be written as (Z = 2): 2D[OIV

2O
IIIBi3](PO4),

where square brackets denote a layered structural unit consisting
of anion-centered polycations, with Roman numerals denoting
the coordination numbers of the oxygen atoms. Atoms O1 and
O2 are tetrahedrally coordinated by Bi3+ cations with mean
distances O1−Bi = 2.429 Å and O2−Bi = 2.420 Å. The O3 atom
is characterized by planar 3-fold coordination with O3−Bi =
2.206 Å. [OBi4] tetrahedra are linked via common trans edges to
form [O2Bi3]

5+
∞ double chains of the type C8,12 which is

common in inorganic compounds,12,29 extending along [100].
Adjacent chains are linked by [OBi3] triangles, forming positively
charged [O3Bi3]

3+
∞∞-heteropolyhedral corrugated layers paral-

lel to (001). Along [001], these layers alternate with isolated
(PO4) tetrahedra (Figure 2b).

Similar double chains of anion-centered polyhedra with mixed
cationic composition were found in the structures of K-
[O4Bi4Ni2](PO4)3O

21 and oxosalts with the general formula
[O2BiM2](TO4) (whereM = Zn, Cd, Ca, Cu,Mn,Mg, Pb;T = P,
V, As).12 In the structure of 2D[(O4Bi5)O0.5](PO4)2,

16 similar
[O2Bi3]

5+
∞ double chains of the type C8 are linked via common

bismuth edges, forming an [O4Bi5]
7+

∞∞ layer of the type L5
(“cresnel”-type).12 The positive charge of the chain is
compensated for by (PO4) tetrahedra and O7 atoms, which
statistically (25%) occupy large windows of the layer.
The compound [O3Bi3](PO4) belongs to a group of pure

bismuth oxophosphates (Table 1) with structures based on
polycations of anion-centered [OBi4] tetrahedra and [OBi3]
triangles. In the structure of 2D[OIII

2O
IV
13Bi14](PO4)4

9
fluorite-

like complexes of edge-sharing [OBi4] tetrahedra and [OBi3]
triangles form heteropolyhedral layers, which alternate with
isolated (PO4) tetrahedra. Heteropolyhedral cation frameworks
a r e p r e s e n t i n t h e c r y s t a l s t r u c t u r e o f
3 D [O I V

1 8 . 6 2O
I I I

0 . 6 B i 1 8 . 7 1 C r 0 . 2 7 ] ( PO 4 ) 6 ,
3 0 w h e r e

[O18.62Bi17.98]
16.7+

∞∞ layers of edge-sharing [OBi4] tetrahedra
are linked by two disordered [OBi2(Bi,Cr)] triangles, and in the

Figure 1. IR spectrum of Bi3(PO4)O3. The region 1200−4000 cm−1 is
featureless, which excludes the presence of OH groups and H2O
molecules.

Figure 2. General view of the crystal structure of Bi3(PO4)O3 as cation-
centered (a) and anion-centered (b) polyhedra.
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structure of 3D[OIII
2O

IV
55Bi46](PO4)8,

10 in which the framework
is formed by fluorite-like complexes of [OBi4] tetrahedra
decorated by [OBi3] triangles.
The presence of hydroxyl groups in the crystal structures of

smrkovicite 2D[O(OH)Bi2](PO4)
18 and petitjeanite 1D[O(OH)-

Bi3](PO4)2
19 leads to the formation of [(OH)Bi3]

8+ triangles.
The structure of smrkovicite is based on heteropolyhedral layers
of the type L2112 formed by pairs of edge-sharing [OBi4]
tetrahedra, connected by common bismuth vertexes into a layer
with windows that are occupied by [(OH)Bi3] triangles. In the
structure of petitjeanite, edge-shared [O2Bi4] dimers of the type
I412 are linked by [(OH)Bi3] triangles, forming heteropolyhedral
chains.
Calculation of the structural complexity parameters31 was

done using information-based complexity measures (see the SI).
All calculations were performed using the ToposPro software,32

and the results are given in Table 1. The structural complexity
parameters for Bi3(PO4)O3 are v = 22 atoms, IG = 3.459 bits/
atoms, and IG,total = 76.107 bits/unit cell (herein v is the number
of atoms per reduced unit cell, and IG and IG,total are the amounts
of structural information per atom and per reduced unit cell,
respectively). Bi3(PO4)O3 is the simplest pure bismuth(III)
oxyphosphate. The most complex compound is Bi14(PO4)4O15,

9

which has IG,total = 2592.966 bits/unit cell.
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