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Electromagnetic induction in a spherical earth with non-uniform
oceans and continents in electric contact with the underlying
medium—I. Theory, method and example
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SUMMARY

This paper presents basic principles of the iterative—dissipative method and main
points of its numerical realization. A spherical earth model consisting of a thin
non-uniform surface layer being in galvanic contact with an underlying stratified
medium is considered. The current system induced by a uniform magnetic field in
the model with a realistic distribution of surface conductance is calculated. It is
shown that leakage currents are significant even for the earth model with a highly
resistive crust and upper mantle.
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INTRODUCTION

Distortion effects of surface inhomogeneities is the central
problem of modern geoelectrics. Beginning with the study of
Price (1949), the main efforts to solve this problem were
concentrated on calculations of electromagnetic fields in thin
sheet models. Price’s model consists of an inhomogeneous
surface layer separated from the underlying laterally
homogeneous medium by a thin isolating layer. A surface
current in the model

F=—nXxVy, 1)

can be expressed via a single scalar (current) function vy,
satisfying Price’s equation

Vt * (S_l Vru") = _iwl‘OHm (2)

where S is the surface conductance, m and H,, are the radial
unit vector and the corresponding component of the
magnetic field, V, is the surface part of the operator V and
exp (—iwt) is the time factor.

The iterative—dissipative method (IDM) was proposed by
Singer & Fainberg (1979) to solve equation (2). It was used
by Fainberg & Singer (1981) to calculate global currents
induced by an external magnetic field in a spherical earth
model with a realistic conductance of oceans and continental
sediments. The resultant current distributions were used by
Fainberg, Singer & Kuvshinov (1983) to estimate the effect
of the world-wide surface inhomogeneities on the
magnetotelluric impedances. Comparison of the numerical
results with experimental data showed that modelling had
predicted a greater distortion of impedances than had been

actually observed. This discrepancy was explained by the
fact that the authors had ignored the leakage currents
arising due to the galvanic contact of the surface layer with
the underlying medium. The significance of leakage currents
was stressed by a number of authors, see for example the
review by Cox (1980).

In Vasseur & Weidelt (1977) the theory of electromag-
netic induction was generalized to include models with a
non-uniform surface layer in galvanic contact with an
underlying stratified medium. It was shown by Fainberg &
Singer (1980) that IDM could be used to calculate the
electromagnetic field in such models. Unfortunately, Price’s
equation could not be straightforwardly deduced from the
equations of Fainberg & Singer (1980). The thin sheet
matching conditions, free of this drawback, were obtained
by Singer & Fainberg (1985). Below, the main aspects of the
IDM realization: are presented. The same notation as in
Fainberg & Singer (1987) is used throughout the paper.

2 BASIC EQUATIONS

The distribution of currents in a surface layer in galvanic
contact with the underlying stratified medium

P=-nxVy-V.W 3)

is defined via two scalar functions (0, ¢) and W(r,—
0, 6, ). Here r, is the earth radius. Current function

¥ =106(8,V) “

coincides with a jump of the radial derivative of the
induction potential across the surface layer. Tangential H,,
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E, and vertical H,, E, field components outside the thin
sheet are expressed via the induction potential V(r, 6, @)
and the galvanic potential W(r, 6, ®):

H =-V,3,V-nxXVW, %)
E, =iwpn X V.V + V,(07") 3,W), 6
H,= Vv, ™
E,=-0"'V*W. (8)
The potentials satisfy the equations

AV + V2V +iwpyaV =0, 9)
03,(071 8, W) + V2W + iwp oW = 0. (10)

Note that W =0 in a non-conductive atmosphere. The field
distribution inside and outside the earth can be found if the
current function vy and potential W on-the earth’s surface
are known. To evaluate (6, ¢) and W(r,—0, 6, @), the
following system of equations has to be solved:

V. [ST(Vey —n X VW) = iwp, V2V, (11)
Ve  [ST'@X V,p + V. W)] = - V(0! 3,W). (12)
If the surface layer is not in contact with the underlying
medium, then W(r,—0, 6, @) vanishes and equation (11)

reduces to Prices’s equation (2).
Setting

S—I(O: ‘P) = RO + R‘(e» ‘p): (13)

where R, = constant, in equations (11) and (12), one can
obtain a system of integral equations

. R*
V(6. 9)= V(0. 9)+ [ V.0 c0s 1) 110, 9)

W=0.9)= [ 7.0%eosn) (@, 9)as', (19

where j* is given by (3) and y denotes the angle between
directions (6, ) and (€', ¢’), and the integrals are
calculated along the earth’s surface. The free term in (14) is
ig,

it GnmSum(8, @), (15)

Vo6, 9)=3 5 @n+1)

which specifies the surface current induced by the external
magnetic field in the reference model. The reference model
is the model obtained from the initial one by a replacement
of the inhomogeneous surface layer with a homogeneous
layer whose conductance is equal to R The coefficients
{a5,.} are determined by an external magnetic field:

nn+1
Hiro, 0. 9)=3 32 D ge 56, )
n m 0
where S,,,,(6, @) are the spherical functions. The parameter

_1, (7o)
&n = wpoRy lfozﬁ ’ (16)
where a,,(r,) ™%, is the ratio of the internal to external parts
for a vertical magnetic field at the earth’s surface. It can be
expressed via the induction mode impedance of the
underlying medium Z!(r,) or in terms of the penetration

depth 4,,(r):

. A

@) =@n+1) ",
Z,(r) = ~iopoh,(r). a”n
Kermels of the system (14) are

ity = 2n+1 e =1
Qi) = 3 S A=) R G), (18)

N 2n+1 -1

Q%)= 3 S )R, (19)

Here F, are the Legendre polynomials,
N = Z(ro)R5" (20)

and Z3(r,) is the galvanic impedance of the underlying
medium.

Equations (14) can be solved using IDM, but it is
convenient to first transform them to the integral equation
for the surface current j°. Using equations (3) and (14), one
finds

16, 9) =16, 9) - [[@x 7.)@(n x V)0'(cos y)

R#
+ V. @V, 0%cos v)] "R 16, ¢))ds’, @y
o

where jo=-nX V,1y,, V' is the differentiation operator
with respect to 6’, ¢’ and @ is the tensor product sign.

3 THE ITERATIVE-DISSIPATIVE METHOD

We consider below tangential vector fields defined over a
sphere as elements of a Hilbert space M. Vector summation
and multiplication by a complex number are defined as
usual. The scalar product of vectors u, v and the norm of u
are defined as

w.v)= [ u(6, 9)¥(8, 9) s,

. (22)
I =, 0" = ([ w(o, o) as)
Then, equation (21) can be reduced to
I*=ic- GRy", - (23)
where
G =2 3[(1~it,) P, + (1 +n,) P8, ], (24)

R* .
and R transforms J°(6, @) into R ¥°(6, @). Operators P
0

and P& in (24) are the projection operators onto vectors
V.S.m and nX V.S, . The set of these vectors with n = 1,
2,...and |m|=0,1,2,...,nis complete in M.

It was shown by Fainberg & Singer (1980; see Appendix
B) that spectral impedances of any laterally uniform
medium satisfy inequalities

Re Zi(r) =0, PR Z5(r) >0. (25)
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Taking into account that the first of these inequalities can be
written in the form

Im [opya,(r)] =0, (26)

one can see that the coefficients of the series in equation
(24) are restricted by unity:

1-ig|7'<1, |1+9,7'<1,
so that for any vector u
Gull < ||u]l. 27)
As to the operator R, it follows from its definition that
A R* )
| Ruj| < max = | . (28)
(1)
Therefore, if
: *
max [—( <1, 29)
. .

then the operator GR is a contracting one and equation (23)
has a unique solution which can be found by the direct
iteration method. To satisfy (29) one should choose the
reference level to satisfy the condition .

Rg' <2 min (S). (30)

This can always be done for any positive surface
conductance S(6, ). If the surface current j*(6, @) has
been found, one can calculate the tangential electric field
straightforwardly from Ohm’s law

§'(6, 9)=5(6, 9) - E. (0, 6, 9) (31
and the magnetic field after the integral transformations
nXH,(r+0, 6, p) =n X HY(r, +0, 6, )

- [ @x 7@ x 7@ *(cos ) --gi”(e', ') ds’,

3

Hn(’O: o, ¢P) =Hg(’0: 6, ‘P) _fnx v.Q" ( 2)

R*,
X (cos y) - g0, 9)ds'.
0

Here _

40°@) = 3 20 g, )1p o)
(33)

4n0"e)= 3 20 (i )1p o)

and H® is the magnetic field excited in the reference model.

Thus, IDM makes it possible to solve equation (21) for an
arbitrary frequency ® and any distribution of surface
conductance S(6, ¢) and underlying medium conductivity
o(r).

4 NUMERICAL REALIZATION OF THE
IDM
The integral equation (21) is solved numerically on a mesh

§= Usk[,
Kkl

Skt ={6k12<0<Opy1pp, _1p<@< Pri12}s (34)

where
Oc=ho(k—3), @=h,(I-3),
b 4 1
hy =— =22
(‘] Ng’ hq) 2Nq,,
k=1,2,..., N, l=1,2,...,N.,,.

We assume that the surface conductance is constant inside
each cell, i.e.

S(o! ‘P) = s(elu (pl), R‘(O! ‘P) = R*(elu (pl) (35)
when (6, @) esy. To construct the integration rule, it is
necessary to make certain assumptions concerning the
behaviour of the unknown function within the cells s,,. We
assume below that j°(6, ¢) also remains constant in any cell.
This means that solution of (23) is sought, not in the entire
Hilbert space M, but within the subspace M., which consists
of tangential vector fields being constant in each cell s, of
the mesh (34). The fact that M, is a linear subspace follows
from its obvious invariance with respect to linear operations.

The subspace M. is not invariant with respect to the
operator G. This means that Gu may not be a
piecewise—cgnstant function, although w is. The vector
nearest to Gu that belongs to M_ is P.Gu, where

B= 2 E 7 kt (36)
k 1

is the projection operator on M. The operator B,

transforms an arbitrary vector u into

Puwoo=| w9045 /[ ar, (69

=0, (6, 9)¢su. @37

It can be easily seen that Pk,ﬁk,,, = 51*'5”'13/:1- Definitions
(36) and (37) mean that operator P. when acting on a
function u substitutes its value inside a cell s,, with the mean
value calculated for the cell. Thus, one obtains the following
finite-dimensional representation of equation (23):

F=J-PGRE.Y, (38)
where J§ = P.j5. As
Bl < [ju]] (39

for any vector u, the IA’CGI?IA’c is a contracting operator if
condition (29) is satisfied. Hence, the solution of equation
(38) can be found by the simple iteration method as well as
by equation (23).

It should be mentioned that the solution of (38), in
general, differs from the projection of the solution of (23)
onto M_. If

d=RBj-J, (40)
then d can be found from the equation

d=d,- P.GRP 4 (41)
whose free term

do=-E.GR(I - B)j* “2)

is determined by the ‘true’ solution of the problem. In
practice, an additional calculation on a double mesh may be
used to estimate d.
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Using equations (36) and (37), one can reduce (38) to

o R*
B=38-3 S Rucue (7) B @)

k

*
where (;:—) » 32 I denote the values of the piecewise-
o/ ki

R -
constant functions E—(O, @), ¥(6, @), J5(0, ) inside Ski
0

and the second-order tensor kernel in (43) is

Rewir =43 [mxvo@[ @x vyoios s

Skl

+ve f V! 0(cos y)ds’] ds, (44)

Skt

A, =f ds = 2h,r§ sin 6, sin (hy/2).
Skl

The part of the algorithm where the tensor is calculated
should be constructed with the utmost care because we
assumed earlier that the operator G was known exactly.
Moreover, the higher the accuracy of the tensor calculation,
the greater the contrast max (S)/min (S) in the model.
Although the approach described above is the most logical
way to the IDM numerical realization, another one which
does not include averaging over S can also be used to avoid
the evaluation of the four-fold integral in equation (44).
Practical calculations have shown that the simplified
algorithm holds convergence up to a rather high value of the
contrast.

There are some technical details concerning a calculation
of spectral impedances of the laterally uniform underlying
medium and summation of the poorly convergent series
(33). These details can be found in Appendices A and B.

5 NUMERICAL MODELLING EXAMPLE:
DISCUSSION OF THE RESULTS

As an example of how the method works, we calculated
global currents induced in a spherical model by a uniform
external magnetic field parallel to the polar axis 6 = 0°. The
conductance of the oceans and the sedimentary cover
published by Fainberg & Sidorov (1978) and the underlying
medium conductivity

o(r)=1.4x107°Sm™", 0<r—r=<10°m,
=0ol(ro=r)/hol”,  ry—r>10°m (45)

were used. In agreement with the global sounding results
(Fainberg 1983), 0,=1.4x 104§ m™!, y=4.735 and
ho = 10° m. The theoretical apparent resistivity curve for the
model (45) agrees well with experimental data. The
transverse resistance T of the upper layer with thickness
100 km equals 7 x 10° Q m? according to the estimates of the
crust and upper mantle resistance for the ‘cold’ section of
the Baltic shield (Jamaletdinov 1982). A numerical mesh
with 5° % 5° cells was used.

Azimuthal and meridional components of surface currents
excited by an external field of unit amplitude at 1 hr periods
are displayed in Figs 1-4. The radial component of currents
just under the surface layer is presented in Figs 5 and 6. A
current density can be obtained if one multiplies the number
shown on an isoline by the coefficient C given in the figure
caption. Comparison of Figs 1-4 with the results obtained
by Fainberg & Singer (1981) shows that leakage currents
appreciably change the induction pattern. The currents
flowing around poorly conducting continents are now less
pronounced, although large continental masses such as
Eurasia, North and South America, Africa, Antarctica and
Greenland are still obstacles for the current. The

Figure 1. Real part of j,; C=5.93x10"Am™".
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Figure 2. Imaginary part of jo; C=1.97x10> Am™.

Figure 3. Real part of j,; C=1.78 X 1072 Am™".
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H

Figure 4. Imaginary part of j_; C=7.43x10>Am™".

Figure 5. Real part of j,; C=2.09x10"°Am™2
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Figure 6. Imaginary part of j,; C=1.91x10"° Am™2.

concentration effects are clearly seen in conductive regions
(Central America, the Drake Strait, northern and southern
Africa and southeastern Asia). Surface inhomogeneities
make the current change its direction; a meridional
component reaches 30 per cent of the azimuthal one.
Besides, current deviates towards the Earth’s interior near
one side of a continent and outwards near the other.
Maximum j, values occur in zones of sharp changes in
surface conductance, i.e. at ocean—continent, mountain—
geosyncline boundaries and so on. A typical width of
‘flow-in’ or ‘flow-out’ zones in oceans equals 4000-5000 km
in agreement with the values {ST}" of the distance along
which the anomalous electric field subsides. It is of interest
to compare the values of horizontal and vertical currents.
Estimates show that up to 50 per cent of the current flowing
in the surface layer towards, for example, Africa deviate
downards and flow under the continent in spite of high
transverse resistance of underlying medium in the model. A
similar relationship occurs near other continents. This also
indicates the important role of leakage currents in the
generation of surface electromagnetic fields.
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APPENDIX A: SPECTRAL IMPEDANCE
FUNCTIONS OF THE LATERALLY
UNIFORM SPHERICAL MODEL

The expressions for the kernels (18), (19) and (33) involve
the impedances Z,, = —iwpgA, and Z8& with n=1, 2, . . . up
to very large numbers. The upper bound for 7 is dependent
upon the convergence rate of the series. As shown in
Appendix B, it is possible to substitute these series by faster
convergent ones. Nevertheless, it is necessary to use a rather
accurate and fast algorithm to calculate A, and Z% The
functions are defined as

Ay (r)=[3,In V,(n)]7", (A1)
Z5(r) = 0723, n W,(r), (A%}
where V,(r) and W,,(r) satisfy the equations

[62—n(n + 1)r 2 + iwuyo]V =0, (A3)
[08,0671 8, — n(n + 1)r 2 + iop,o]W =0 (A4)

and boundary conditions V,,(0) =0, W,(0) = 0.

In a laterally uniform flat model, the conductivity
distribution is usually approximated by a piecewise-constant
function. Within each homogeneous layer, solutions of
equations (A3) and (A4) are a superposition of two
exponential functions. This permits construction of simple
formulae to express a spectral impedance at the top of a
homogeneous layer via its value at the bottom. It is possible
to use a piecewise-constant approximation of o(r) for a
spherical earth model also. In this case, solutions of
equations (A3) and (A4) within a homogeneous layer are a
superposition of two cylindrical (n + 1/2)th order functions
which, in turn, can be expressed via exponentials and the
nth degree polynomials of r~'. For large n, these
expressions become rather awkward. In the case when
conductivity varies within a layer as r~2, the linearly
independent solutions of (A3) and (A4) appear to be much
more simple. We shall assume therefore that the underlying
medium consists of N layers, where the kth layer
re <r<ry_, has conductivity o(r)=o0,_,r2_,/r% In this
case, the linearly independent solutions within the layer are
(re/r)e", (r/n)g" for equation (A3) and functions (r,/r)?”,
(r/r)e for (Ad), where Br =pB,—1/2, Bt =p,+1/2,

e = [(n +1/2)* — iopgo, _,r2 ;]2 Making use of the fact
that A,,(r) and Z%(r) are continuous at the layer boundaries,
one can obtain the recurrence relations

W = (B — T )us + 21, (AS)
k= Bi + T + 2,701y
- +2
We_, = (Be — T )wi + 27, T Vi ) (A6)

BiVi + T + 21, W,
for functions - w, =A,(r)/re, Wi =Z%r)our., ke
{1,2,..., N}. Here

Okri
Ye=n(n+1) —iopo,_,ri_,, Vi = >
Ok —1Tk—1
1-§

1 k = 2P«

T, =5 ——, =(r./r._ .
k 21+§k Ex = (re/rie—v)

The recursion starts with the values
uy_1=1/B%, Wn_1 = Bn- (A7)

APPENDIX B: EVALUATION OF THE
INTEGRAL EQUATION KERNELS

To calculate the tensor elements (44) it is necessary to sum
poorly convergent series (18) and (19). Their convergence
becomes worse as z tends to 1. To improve the convergence,
the . asymptotic expressions a,(r)=1, n,=n(n+ 1/2),
where 1 = [a(r, — 0)roR,] ", for large n can be used. Setting
__i&, ig
" 1-i¢, 2n+1’
where £ = wp,roR5!, one can reduce equation (18) to

Q@)= 5 TR @it S b

n=1n(n+1)
< 2n+1
,2;1 n(n+1)

E.P.(2). (B1)

The third series converges faster than the original one in
(18), as F, ~n~2 when n— . As to the first two series in
(B1), they can be calculated explicitly using the Legendre
polynomial definition

w(z, )= 20 "F(2) (B2)
in terms of the generating function w(z, )=(1-2zt+
*)~12, Then

1

s B@)_ w(z, t)dt = —In p +In (1 + p),
0

n=on + 1
(B3)

~ P, 1 dt
> _,,_(z_)=f Wz, )=1]—=-Inp—In(1+p),
n=1 N o t
where pu=[(1-2)/2]'"> (if z=cosy then u=sin y/2).
These relations lead to

& 1
"%n WED P(z)=1-2In(1+p), 4
S 2HL g1 0 )
ain(n+1) 7T i
Thus,
4nQi(z)=-1-2Inp+if1-2In (1 + w]
- 2n+1
+ .
g‘,ln(n 71y o) (BS)
In the same way, one gets
470%z) =20 [1-2lm A +p)]+ 3 21 4 b
amn(n+1) PP
(B6)
where
1 2p~?
T
1+, 2n+1

Expressions for the first derivatives of kernels Q' and Q®
can be obtained from (B5), (B6) and the well-known
relation

n(n+1)

A= 2Pie) =7 = Ps(2) = Puy()) (B7)
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The result is 4n(1-2%)38,0%5= ¢, +z¢,+4n"u
4n(1-2%)8,Q'=(1+ F) + z(1 + ) + 2itu(1 — p)

+ i (F;'+1 _ F;'_I)Pn(Z), (B8) +n§2 (¢n+1 - ¢n—1)Pn(z)' (Bg)
n=2
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