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Abstract—For a second-order ordinary differential operator on an interval of the real line with integral
boundary conditions, conditions for the unconditional basis property and uniform convergence of the expan-
sion of a function in terms of the eigen- and associated functions of this operator are established. The conver-
gence and equiconvergence rates of this expansion and the equiconvergence rate of the trigonometric Fourier
expansion of this function are estimated. The uniform convergence of its expansion in the adjoint system is
studied.
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Il’in’s theorems on the unconditional basis prop-
erty of the systems of eigen- and associated functions
(briefly, root functions) of a second-order differential
operator on the interval  cover the cases of
two-point boundary conditions, i.e., data specified at
the points  and 1 [1] or multipoint conditions
with a finite number of interior points [2]. Naturally,
the problem arises of extending these results to more
general boundary forms.

In the general case, boundary forms have to be
treated as linear continuous functionals in the space

 (or C1). However, according to the Riesz theo-
rem, each functional can then be represented in the
form of a Stieltjes integral with respect to the measure
generated by a function of bounded variation. Thus, in
a natural way, we need to study a boundary value prob-
lem with integral conditions. This problem was par-
tially investigated in [3, 4], but they addressed only
model operators (the domain of the adjoint operator
did not depend on the coefficients of the differential
operation).

Since a function v(x) of bounded variation can be
represented in the form of the sum v(x) = vsa(x) +

, where  is a jump function,  is an
absolutely continuous function, and  is a continu-
ous singular function, the boundary forms also split
into a sum of three terms: a discrete part containing
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the values of the function and its derivatives at isolated
points of the interval  (these points can make up a
dense set on ), an integral of the product by the func-
tion ( )', which belongs to the class , and an
integral with respect to a continuous singular measure.

The adjoint L* of an operator L with integral
boundary forms is described in [5] and has a rather
complex structure. The system biorthogonal adjoint to
the system of root functions of L consists of functions
that, together with their derivatives, can have jump
discontinuities at a countable number of points. The
discontinuity points and the jump sizes are determined
by the discrete component of the measure  and by
the singular function . The absolutely continuous
part of the measure  influences the differential oper-
ation for L*: it becomes “loaded,” i.e., contains func-
tionals of the solution—the values of an unknown
function or its derivatives at the endpoints (and possi-
bly interior points) of .

Let us illustrate what was said above on the struc-
ture of the adjoint operator by considering a simple
example of a nonlocal boundary value problem. Sup-
pose that the operator L acting on the space ,

, is generated by the differential operation

(1)

and the boundary conditions

(2)
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Applying integration by parts, we see that the
adjoint operator is generated by the loaded differential
operation , , the boundary
conditions , and the following condi-

tions at the discontinuity point : 

, ,

where the jump of the function is denoted as

. At the point , the

functions  from the domain of the operator  are
continuous, while  can have a jump discontinuity
(if ).

Problems with integral boundary conditions have
been extensively studied. A useful overview can be
found in [5]. Among more recent works, we note the
following ones. For an ordinary differential operator
of arbitrary order with integral boundary conditions,
Shkalikov [6] introduced the concept of regular
boundary conditions and proved that, under such
conditions, the system of root functions of an operator
forms in  a Riesz basis with brackets, a block
basis (in the case of strongly regular of conditions, a
usual Riesz basis). A similar result was obtained in [7]
for the vector functional-differential equation y(n) +
Fy = λy (  is a subordinated operator) with integral
boundary conditions. Problems with integral bound-
ary conditions were also addressed in [8–11] and other
works. The adjoint operator was not used or intro-
duced in these and subsequent works.

Below, to prove a theorem on the Riesz basis prop-
erty, we follow the Il’in approach, which is based on
the following Bari theorem [12]. Let  and  be

biorthogonal systems in the space  The
system  is a Riesz basis in  if and only if  and

 are complete in H and the Bessel inequality holds
for them in H. In the case under study, the system
biorthogonal adjoint to the system of root functions of
an operator H is the system of root functions of the
adjoint operator. Therefore, we need to introduce the
adjoint operator and to examine the properties of non-
smooth root functions.

Formulation of the problem and the operators , ,
. In the space H, we consider the operator L gener-

ated by the differential operation ly = y'' + p1(x)y' +
, ,

(3)

on the set of functions D = {y(x) ∈ H:
, ly ∈ H}, where  =

, y(2) ∈ H}, , , is
the class of functions f(x) that are absolutely continu-
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ous together with  on , ,  is

the kernel of the functional : ,

(4)

and  are functions of bounded variation on 
that are right continuous at each point of G.

According to what was said above, functions of
bounded variation are written as the sum ,

; here,  is a vector with absolutely continuous

components and  is the singular part of the function
: , where  is a vector with contin-

uous components and a singular function and  is a
jump function. It is well known that 

and, almost everywhere on G, the derivative  is

equal to θ. Let the functions  have jumps

 ( , ) at the points .
The partition  of the interval  is such that

, , , . The set of points 
can be finite (e.g., consisting of two points , ) or
infinite. The partition T can be dense on the entire 
or on its part.

By using the notation , the bound-

ary forms (4) can be written as

(5)

We also use the notation  =  =

, , where  is the

characteristic function of the set  and, for each x,
the sum on the right-hand side of the formula is taken
over those p for which . As usual,  is the

conjugation operation for the vector :  =
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Consider the following operator  [5]. Let ,
, and , , be

auxiliary differential operations and  be the set of

functions : ,  +

, , ,  =

, ,  = ,
, where  is a

parametric vector.
The operator L+ acting in H is generated by the dif-

ferential operation  on the set of functions D*. The
operator L+ is formally adjoint to L, and the Lagrange
identity holds for L and L+: , ,

 [13]. If , i.e., the domain of L is dense in
H, then L+ = L* is the adjoint of the operator L.

According to the results of [6], if  on G and
the boundary forms (4) of L are regular, then ,
i.e., in this case, L+ = L*.

An example of constructing an adjoint operator in
the sense of Brown [5] and Lagrange for the case of
multipoint boundary conditions ((5) contains only the
first sum over p) and the derivation of an expression for
the vector ϕ from the definition of the class D* can be
found in [14].

Basis property of the root functions of L and L+.

Define , where  for
. We need to impose constraints on the vector

function , i.e., to establish the relation between

matrices the , ,  acting on the vector ϕ. The
kernels of these matrices are defined as

Let the following embeddings hold:

(6)

(7)

Recall that the Riesz basis in H is a basis equivalent
to an orthonormal one, i.e., it is obtained by applying
a bounded invertible operator to an orthonormal basis
in H [12]. The Riesz basis converges unconditionally,
i.e., its convergence is not violated by any rearrange-
ment of the series terms. For a Riesz basis  in H,
there exists a unique biorthogonal system , which
is also a Riesz basis in H. Both these systems are
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almost normalized in H, i.e.,  and

 < ∞.

Let ,  be a biorthonormal (in H) pair
of systems of root functions of the operators L and L+,
i.e., for every ,  and  and, for some
number , the relations 
and  hold almost everywhere
in G; here,  or 1 (in the latter case, ),

, and  for . The numbers
 are chosen depending on whether spectral problem

1 or 2 is considered:  (problem 1) or 
for  and  for  (prob-
lem 2). The coefficient  influences only the normal-
ization of the associated functions.

Note that, if the operator L is essentially nonself-
adjoint, i.e., the total number of associated functions
in its system of root functions is infinite, then the
Riesz basis is made up of only the root functions solv-
ing the spectral problem 2.

For an arbitrary fixed number , we introduce
the spectral set Πγ =  λ = ρ + iμ, ρ,

 Consider numbers  such
that

(8)

where  and  are constants; i.e., the num-
bers  lie in a strip near the real line, there are no
finite accumulation points, and the number of associ-
ated functions corresponding to a single eigenvalue is
uniformly bounded.

Theorem 1. Let the coefficients  satisfy condi-
tions (3), the system of numbers  obey conditions (8),
conditions (6) and (7) hold for the functions ,

, , and let the systems  and
 be both complete in H. Then each of the systems 

and  is a Riesz basis in H if and only if they are
almost normalized in H. Each of the systems  and

 is an unconditional basis in H if and only if

(9)

where c > 0 is a constant and . Each of the

systems  and  is a Riesz basis in H
if and only if condition (9) holds.

Remark 1. For an operator L with regular boundary
conditions and the coefficient  in G, for some
numbers  and , conditions (8) are satisfied
and the systems  and  are both complete in H,
which follows from [6]. Thus, in this case, only condi-
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tions (6) and (7) on the kernels of the vectors and the
almost normalization condition for the systems or
condition (9) have to be checked in Theorem 1 (for
this purpose, it is sufficient to know the leading terms
of the asymptotics of the functions , ).

Examples. In example (1), (2), all the conditions of
Theorem 1 are satisfied, except for the almost normal-
ization of  and condition (9) [15]. Neither  nor

 is a basis in H. Let us drop the integral term from
(2). Then, with a proper choice of associated functions
(so that condition (9) holds), all the conditions of
Theorem 1 are satisfied. The systems  and 
form a Riesz basis in H. In each of the examples, the
operator L is essentially nonself-adjoint.

Uniform convergence of biorthogonal expansions.
We continue to study the above-introduced systems

, . For an arbitrary function , we
consider two partial sums of its biorthogonal expan-
sions

Theorem 2. Let conditions (3), (6), (7) (condition (7)
for k = 1), (8), and (9) be satisfied, and let

, . Suppose that 
and

(10)

Then the expansion  converges absolutely and
uniformly on  as . If, additionally, the systems

 and  are assumed to be complete in H, then the
expansion  converges to f(x) uniformly on the
interval  and

(11)

holds uniformly with respect to . The remainder
of the series of the moduli  has the same esti-
mate (11) uniformly with respect to .

Let us compare the partial sum  of the
expansion of f(x) in the root functions of the operator
L and the partial sum  of the trigonometric
Fourier series viewed as an orthogonal expansion of
f(x) in terms of the eigenfunctions of the operator :

, , , ,
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Theorem 3. Let conditions (3) and (7)–(9) be satis-
fied; , ; the system  of root
functions of the operator L be complete and minimal in
H; ; and condition (10) be fulfilled.
Then, for all sufficiently large numbers λ and any inter-
val , the rate of equiconvergence of the expansions

 and  satisfies the estimate

where  is the distance to the boundary
of the interval G. A similar estimate holds on the entire
interval :

Corollary to Theorem 3. If the conditions of Theorem
3 hold, , and f(x) is a function of bounded variation

on , then  as 
which coincides with a sharp convergence rate estimate
for the trigonometric Fourier series of f(x).

Consider the “adjoint” expansion . The
convergence of such expansions is required, for exam-
ple, in the Il’in method for proving equiconvergence
theorems.

Theorem 4. Let conditions (3) and (7)–(9) be satis-
fied; , ; and 
with f(0) = f(1) = 0. Then the expansion  con-
verges absolutely and uniformly on  as .

If  and  are complete systems in H, then the
expansion  converges to f(x) almost everywhere
in G; moreover, almost everywhere in G,

(if the functions  are continuous on , then, in both
cases, the convergence is uniform on the interval ).

Examples. In example (1), (2), since condition (9)
is violated, the expansion  of 

with f(0) = 0 and f(1) + 2f  = 0 (condition (10)) and

the expansion  for f(0) = f(1) = 0 cannot be
guaranteed to converge uniformly on . If the integral
term is dropped from (2), then, with a proper choice of
associated functions for any function 

with f(0) = 0 and f(1) + 2f  = 0, the expansion
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 converges to f(x) uniformly on  and

, , uniformly on
. For  with f(0) = f(1) = 0, the expan-

sion  converges to f(x) uniformly on  (since
the functions  are continuous) and the conver-
gence rate satisfies the estimate f(x) –  =

, , uniformly on 
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