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Abstract

We outline the proof of a conjecture of Kontsevich on the isomorphism

between the group of polynomial symplectomorphisms in 2n variables and

the group of automorphisms of the n-th Weyl algebra over complex numbers.

Our proof uses lifting of polynomial symplectomorphisms to Weyl algebra

automorphisms by means of approximation by tame symplectomorphisms and

gauging of the lifted morphism. Approximation by tame symplectomorphisms

is the symplectic version of the well-known theorem of D. Anick and is a result

of our prior work.

1 Introduction

The objective of this short note is to explain a method of attack on a conjecture
formulated by one of us together with Kontsevich in [1], which is henceforth referred
to as the Kontsevich conjecture. The conjecture, in its most straightforward form,
states that the automorphism group of the n-th Weyl algebra over an algebraically
closed field K of characteristic zero is isomorphic to the group of polynomial sym-
plectomorphisms – that is, polynomial automorphisms preserving the symplectic
structure – of the affine space A2n

K . The statement can be reformulated as

Conjecture 1.1. AutWn(K) ≃ AutPn(K)
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– where the n-th Weyl algebra Wn(K) over K is by definition the quotient of the
free associative algebra

K〈a1, . . . , an, b1, . . . , bn〉

by the two-sided ideal generated by elements

biaj − ajbi − δij , aiaj − ajai, bibj − bjbi,

with 1 ≤ i, j ≤ n, while the algebra Pn(K) is the commutative polynomial alge-
bra K[x1, . . . , x2n] carrying an additional structure of the Poisson algebra via the
standard Poisson bracket – that is, a bilinear map

{ , } : K[x1, . . . , x2n]⊗K[x1, . . . , x2n] → K[x1, . . . , x2n]

that turns K[x1, . . . , x2n] into a Lie algebra and acts as a derivation with respect to
polynomial multiplication (therefore, automorphisms of such algebras are required
to preserve the additional structure). The standard Poisson bracket is defined as

{xi, xj} = δi,n+j − δi+n,j,

with δij meaning the Kronecker delta.
Several generalizations of Kontsevich conjecture are known; the most obvious

one is obtained by replacing the algebraically closed ground field K with the field
Q of rational numbers. Other generalizations are somewhat more elaborate and are
discussed at length in [1].

The setting in which Conjecture 1 naturally arises is that of deformation quan-
tization of polynomial algebra. The commutative Poisson algebra Pn serves as the
classical counterpart to the algebra Wn of polynomial differential operators. It
is therefore sensible to ask whether the quantization preserves the automorphism
group. One then, in order to answer this question, tries to construct either a direct
homomorphism

AutWn(K) → AutPn(K)

or an inverse
AutPn(K) → AutWn(K).

Known ways of accomplishing that goal are somewhat involved. We briefly
comment on the relatively accessible case of (direct) group homomorphism

AutWn(K) → AutPn(K)

with K being algebraically closed 1.
The idea is to realize the Weyl algebra Wn as a subalgebra in an algebra whose

center is large enough to contain the polynomial algebra C[x1, . . . , x2n], and then,
starting with an automorphism ϕ ∈ AutWn(C), restrict it to the polynomial algebra.
At this point, reduction to positive characteristic starts playing an important role.
Namely, one represents the ground field as a reduced direct product of algebraically
closed fields of characteristic p,

C ≃
∏

p

′ Fp

1One makes a straightforward observation that the Kontsevich conjecture, along with objects

accompanying it, are statements which can be formulated by means of first-order logic; therefore,

in the case of algebraically closed ground field K of characteristic zero, one may well work with

complex numbers, K = C, in accordance with the Lefschetz principle.
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where p runs over all prime numbers, and reduction is taken with respect to a free
ultrafilter U on the index set of natural numbers. In other words,

∏

′

p Fp is the

quotient of the direct product
∏

p Fp by the maximal 2 ideal generated by U as

in [10]. Such a procedure is sometimes referred to in literature as reduction modulo
infinite prime (the infinite prime being the sequence of prime numbers that indexes
the direct product – in this case the standard prime number sequence; one could as
well take for such a sequence any sequence of primes which is not equivalent under
the chosen ultrafilter to a stationary sequence). The point of this construction
consists in the fact that in positive characteristic the Weyl algebra Wn has a huge
center isomorphic to the polynomial algebra Fp[x

p
1, . . . , x

p
n, d

p
1, . . . , d

p
n] (with xi, dj

being the generators), while nothing of the sort is the case of characteristic zero.
Therefore, the reduced product of Weyl algebras will just be the larger algebra one
is looking for – one whose center contains a copy of the polynomial algebra. A
significant detail is given by the fact that the Weyl algebra commutator naturally
induces a Poisson structure on the polynomial subalgebra of the larger center, thus
making the resulting automorphism symplectic.

Thus one constructs a homomorphism AutWn(C) → AutPn(C) which is a can-
didate for the simplest version of the Kontsevich conjecture. For the sake of brevity
we have left out the details and refer the interested reader to the works [1,2] and [3].
This homomorphism is injective, and induces an isomorphism of subgroups of tame
automorphisms (the definition of tame automorphism is given below). An identical
procedure produces a monoid homomorphism between the sets of endomorphisms
of Wn and Pn; this fact has been used to establish a stable equivalence between the
Dixmier conjecture [7] (any endomorphism of Wn is invertible – open for all n as of
time of writing) and the Jacobian conjecture, cf. [2, 8, 9].

The direct homomorphism can be made explicitly independent of the prime num-
ber sequence by means of a non-standard (inverse) Frobenius twist of coefficients.
It is, however, insufficient to guarantee its independence of the choice of infinite
prime and the ultrafilter completely, for integer combinations of coefficients (coming
from applying Weyl algebra commutation relations) could differ for different such
choices. The question of independence of infinite prime is therefore non-trivial. In
our prior work [3] we have provided a proof of independence, which however relies
on the homomorphism in question to be one-to-one.

The present paper focuses on the reverse approach. Starting with a polynomial
symplectomorphism, we construct an automorphism of the power series completion
of the Weyl algebra and then argue that the power series that are images of the
generators of Wn must be polynomials. The procedure is referred to as the lifting
throughout the text. Central to it is the fact that the subgroup of tame symplecto-
morphisms TAutPn is dense (with respect to power series topology) in AutPn – a
fact we have obtained recently [5]. Approximation of polynomial automorphisms by
tame automorphisms was developed by Anick [4] and has already become a classical
result in algebraic geometry. Our work serves, in a way, as a development of Anick’s
results to the symplectic case.

2As well as minimal – recall that the product of fields is always von Neumann regular.
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2 Tame symplectomorphisms, topology, and ap-

proximation

This section reviews the background and results on approximation by tame auto-
morphisms necessary in our context. Most of the theory, as well as detailed proofs,
can be found in the classical work of Anick [4]. Tame symplectomorphism approxi-
mation is the main result of our recent work with S. Grigoriev and W. Zhang [5].

Let AN = K[x1, . . . , xN ] be the commutative polynomial algebra over a field K,
and let ϕ be an algebra endomorphism.

Any such endomorphism can be identified with the ordered set

(ϕ(x1), ϕ(x2), . . . , ϕ(xN))

of images of generators of the algebra. The polynomials ϕ(xi) may be represented as
sums of their respective homogeneous components; this may be expressed formally
as

ϕ = ϕ0 + ϕ1 + · · · ,

where ϕk is a string of length N whose entries are homogeneous polynomials of total
degree k.3

Definition 2.1. The height ht(ϕ) of an endomorphism ϕ is defined as

ht(ϕ) = inf{k | ϕk 6= 0}, ht(0) = ∞.

This is not to be confused with degree of endomorphism, which is defined as

deg(ϕ) = sup{k | ϕk 6= 0}.

The height ht(f) of a polynomial f is defined quite similarly to be the minimal
number k such that the homogeneous component fk is non-zero. Evidently, for an
endomorphism ϕ = (ϕ(x1), . . . , ϕ(xN)) one has

ht(ϕ) = inf{ht(ϕ(xi)) | 1 ≤ i ≤ N}.

The function
d(ϕ, ψ) = exp(− ht(ϕ− ψ))

is a metric on the set EndK[x1, . . . , xN ]; the corresponding topology will be referred
to as the power series topology.

We turn to automorphisms and define the tame subgroup.

Definition 2.2. We say that an automorphism ϕ ∈ AutAN is elementary if it is
given either by a linear change of generators

(x1, . . . , xN ) 7→ (x1, . . . , xN )A, A ∈ GL(N,K)

or by a transvection – a change of variables of the form

(x1, . . . , xN) 7→ (x1, . . . , xk + f(x1, . . . , xk−1, xk+1, . . . , xN ), . . . , xN)

(that is, all generators are kept fixed with the exception of xk, to which a polynomial
free of xk is added).

3We set deg xi = 1.
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Definition 2.3. The subgroup TAutAN of tame automorphisms is the subgroup of
AutAN generated by elementary automorphisms defined as above.

Whenever N = 2n is even, the polynomial algebra can be made into Pn by parti-
tioning the set of its generators into two even subsets, {x1, . . . , xn} and {p1, . . . , pn},
and introducing the corresponding Poisson bracket. Under the identification

K[x1, . . . , xn, p1, . . . , pn] ≃ O(A2n
K )

the generators xi, pj become the Darboux coordinate functions for the standard
symplectic form ω =

∑

i dxi ∧ dpi. The group AutPn is then the subgroup of
AutK[x1, . . . , xn, p1, . . . , pn] of automorphisms which preserve the symplectic (or
Poisson) structure. Its intersection with TAutK[x1, . . . , xn, p1, . . . , pn] is the sub-
group TAutPn of tame symplectomorphisms.

Automorphisms that are not tame are called wild. Wild automorphisms exist –
the most well-known example being due to Nagata [16, 17]:

ϕN : K[x, y, z] → K[x, y, z],

ϕN : (x, y, z) 7→ (x+ (x2 − yz)x, y + 2(x2 − yz)x+ (x2 − yz)2z, z).

In dimension two, all automorphisms are tame – a fact that allows for an explicit
description of AutP1 (cf. [11,12]) and AutW1 and, consequently, positive resolution
of Kontsevich conjecture in this case. The latter is due to Makar-Limanov [13,14]. It
turns out [15] that the tameness of the planar case is not specific to the commutative
polynomial algebra, but rather is a property of a broader class of objects.

It is not known whether in even dimensions all symplectomorphisms are tame;
that fact, if it were to be established, would pave the way for a quick resolution of
Kontsevich conjecture, for the direct homomorphism

AutWn(C) → AutPn(C)

restricts to an isomorphism of tame subgroups.

We proceed by formulating basic results on approximation by tame automor-
phisms.

Lemma 2.4. An elementary linear automorphism is a symplectomorphism if and
only if its matrix A is symplectic, A ∈ Sp(2n,K). A transvection defined by a
polynomial f is a symplectomorphism if and only if f is free of all generators of the
type that has the generator to which f is added. That is, if f is added to xk, then
f must be a function of p1, . . . , pn only for it to be a symplectomorphism, and vice
versa.

Proof. Straightforward.

We now formulate the basic results of approximation by tame automorphisms.
Anick’s theorem states that the subgroup TAutAN is dense in AutAN in power series
topology. The unit Jacobian requirement is not essential (indeed, any automorphism
must have a constant Jacobian – an easy exercise; forcing an automorphism to have
unit Jacobian amounts then to a rescaling), yet convenient. One may, without
loss of generality, develop approximation for automorphisms in the neighborhood
of the identity automorphism – that is, automorphisms which are identity modulo
terms of certain height. In this framework, the unit Jacobian requirement becomes
redundant.

5



Theorem 2.5 (Anick, [4]). Let ϕ = (ϕ(x1), . . . , ϕ(xN)) be an automorphism of the
polynomial algebra AN = K[x1, . . . , xN ] over a field K of characteristic zero, such
that its Jacobian

J(ϕ) = det

[

∂ϕ(xi)

∂xj

]

is equal to 1. Then there exists a sequence {ψk} ⊂ TAutK[x1, . . . , xN ] of tame
automorphisms which converges to ϕ in power series topology.

The symplectic version of Anick’s theorem is a recent development [5].

Theorem 2.6. Let σ = (σ(x1), . . . , σ(xn), σ(p1), . . . , σ(pn)) be a symplectomor-
phism of K[x1, . . . , xn, p1, . . . , pn] with unit Jacobian. Then there exists a sequence
{τk} ⊂ TAutPn(K) of tame symplectomorphisms which converges to σ in power
series topology.

The reader is encouraged to browse the proof of this statement in [5] in order
to gain a somewhat broader understanding of the context of Kontsevich conjecture
and associated situations.

In order to utilize the approximation theory, we need to be able to make sense
of the lifted limit of a tame sequence {σk}. Just as the automorphisms ψk lifted
from σk are defined by means of formal power series in ~ in the framework of defor-
mation quantization (see below), so will be the lifted limit Ψ. However, while the
tame automorphisms ψk will have entries polynomial in ~ (which is an immediate
consequence of the quantization formula) and also the coefficients at each ~n will be
polynomial in the generators of the Poisson algebra Pn, it will generally not be the
case for arbitrary σ. In order for the lifted limit to be well defined, one therefore
needs statements on convergence of the appropriate power series: the power series in
~ with respect to the ~-adic topology as well as the power series which determine the
coefficients (in the m-adic topology obtained from the scheme structure on AutPn).
The needed statements translate into the following theorems [5]:

Theorem 2.7. Let σ be a symplectomorphism and let Oσ be the local ring of
AutPn(C) with its maximal ideal m. Then there exists a sequence of tame sym-
plectomorphisms {σk} which converges to σ in power series topology, such that the
coordinates of σk converge to coordinates of σ in m-adic topology.

Theorem 2.8. Suppose given a symplectomorphism σ and {σk} is a tame sequence
converging to it. Then the ~-series which define the lifted tame automorphisms ψk

converge to the power series that define the limit Ψ in the ~-adic topology.

3 Lifting of polynomial symplectomorphisms

Given an arbitrary symplectomorphism σ ∈ AutPn(C) and a sequence of tame
symplectomorphisms {σk} converging to it, we can construct a sequence {ψk} of
Weyl algebra automorphisms in the following way. Let ψk be the pre-image of
σk under the direct homomorphism AutWn → AutPn described in the first sec-
tion. It is an isomorphism of the tame subgroups, therefore the assignment is
well defined and unique. Alternatively, we could start with the Poisson algebra
Pn = C[x1, . . . , xn, p1, . . . , pn] and perform the deformation quantization [6, 18] ac-
cording to a formal parameter ~ and the associative star product ⋆. It is straightfor-
ward to deform elementary symplectomorphisms, and the procedure yields, under
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appropriate identifications, the same result as the one involving the direct homo-
morphism. In either case, we refer to thus described procedure as the lifting of
polynomial symplectomorphisms.

It seems slightly more convenient to work with the deformed family Wn(~) of
Weyl algebras depending upon ~ rather than with a single Weyl algebra. The most
important thing to bear in mind, however, is the fact that a given symplectomor-
phism σ will specify (by imposition of associativity and Weyl algebra commutation
relations on images σ(xi), σ(pj)) a new star product ⋆σ, which differs from the orig-
inal one by a gauge transformation and defines a new family of associative algebras
Wn(~, σ). The main theorem then admits a reformulation in the following way:

Theorem 3.1 (Main theorem). There is an algebra embedding

Wn(~, σ) →֒ Wn(~).

This is equivalent to the Kontsevich conjecture and can therefore be perceived
as the principal subject of this study.

It is worth mentioning that Myung and Oh [19] have recently conducted a study
of deformations of Poisson algebras with the purpose similar to that of the present
paper. It can be inferred from their results that the larger algebras Sn(~) and
Sn(~, σ) of formal power series (while Wn(~) consists of expressions polynomial in ~)
are isomorphic to each other. The statement of the Kontsevich conjecture (provided
by the Main theorem above) is stronger.

Whenever σ is tame, the statement of the theorem is straightforward. Any tame
symplectomorphism σ lifts to an object of the following form

(Ψ1(x1, . . . , xn, p1, . . . , pn, ~), . . . ,Ψ2n(x1, . . . , xn, p1, . . . , pn, ~)).

Here Ψl(x1, . . . , xn, p1, . . . , pn, ~) are power series in ~ whose coefficients are polyno-
mials in (commuting) variables xi and pj. They are obtained by applying, say, the
Kontsevich quantization formula [6] (rather, a special case corresponding to the 2n-
dimensional affine space) to the polynomials σ(x1), . . . , σ(pn). It is clear from the
fact that the coefficients at ~n are the images under certain bidifferential operators
that the power series Ψl are really polynomials in ~, whose degree (in ~) depends
on the total degree of σ.

The case of general σ cannot be processed in this way. Indeed, if {σk} is a
sequence of tame symplectomorphisms converging to σ, one can take the lifted au-
tomorphisms ψk and define the lifted limit ψ. The lifting procedure based on the
initial star product, however, when applied to the sequence σk, will in the limit
return an object defined by power series in ~ (rather than polynomials). Moreover,
the coefficients at ~n will also in general be power series in commuting variables xi
and pj (although that particular problem can be dealt with, cf. lemma in the next
section).

At this point (in accordance with the remark at the end of the previous chapter),
it may be somewhat comforting to note that these coefficients in xi and pj will
always be given by power series with sufficiently good behavior. In fact, they will be
convergent with respect to the m-adic topology of the local ring Oσ of the scheme
AutPn at the point σ. More precisely, we have the following theorem [5]:

Theorem 3.2. Let σ be a symplectomorphism and let Oσ be the local ring of
AutPn(C) with its maximal ideal m. Then there exists a sequence of tame sym-
plectomorphisms {σk} which converges to σ in power series topology, such that the
coordinates of σk converge to coordinates of σ in m-adic topology.

7



This result says that the power series which constitute the coefficients at ~n of
the lifted limit are well defined (thus making the lifted limit well defined also).

To prove the main theorem, one has to gauge the lifting in a certain way in order
to cut off the infinite series and, consequently, obtain an embedding of algebras. In
the next section we argue that such gauging always exists.

4 Lifted limit as a Weyl algebra automorphism

Let σ be an arbitrary polynomial symplectomorphism as before, and let ψ be the
lifted limit of a tame symplectomorphism sequence {σk}. In this section we actively
use the embedding of the Weyl algebra over C into the reduced direct product of
Weyl algebras over algebraically closed fields of positive characteristic p, which runs
over all prime numbers. To avoid the conflict of notation, we denote the generators
of Pn and Wn by letters x and y rather than (more classical) x and p.

We first observe the following

Proposition 4.1. The power series Ψl(x1, . . . , pn, ~) which make up the lifted limit
ψ correspond to rational functions in ~. Namely, for each positive characteristic p
in the ultraproduct decomposition, the central elements Ψp

l are rational functions in
~.

Proof. Indeed, for a given positive characteristic p marking a component in the
ultraproduct, the correspoding Weyl algebra is Azumaya. This in particular means
that it is isomorphic to the algebra of p × p matrices over its center. The two
matrix algebras – the initial Weyl algebra and the one which results from σ – are
then isomorphic to each other, which is equivalent to the fact the the centers C
and Cσ of the corresponding algebras are isomorphic4. Therefore, Ψp

l are rational
functions.

We turn now to the proof of the main theorem. Our objective is to show that
our lifting can be appropriately modified so that the resulting object will be given
by polynomials. Working for each p in the ultraproduct decomposition, we look for
a gauge of the lifting that will leave the ~-independent part of the center, given by
Fp[x

p
1, . . . , y

p
n], unperturbed. We have the following

Proposition 4.2. The lifting can be gauged in such a way that stabilizes the ~-
independent center Fp[x

p
1, . . . , y

p
n].

Another important lemma is the following.

Lemma 4.3. There is a transformation of the lifting that results in the lifted auto-
morphism Ψ being defined by power series in ~ which have coefficients polynomial
in xi and yj.

The proof of this statement will be addressed in our further work.
We next observe that the gauging must obviously be performed by means of an

Azumaya algebra automorphism. In terms of matrix algebra, that means that (for
fixed p) the desired transform must be a matrix conjugation. For l = 1, . . . , 2n, we
therefore consider the expressions of the form

(1 + ~Ql)Ψl(1 + ~Ql)
−1,

4The fact that Morita equivalence of commutative rings implies their isomorphism is well known.
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where Ql is a rational function in ~. Note that Ql is, generally, not an element of the
Weyl algebra over C (in the standard sense), but rather a class (modulo ultrafilter
U that realizes the ultraproduct decomposition) of elements Ql,p which are rational
in ~.

Any such Ql leads to a gauging.
We use the following result.

Lemma 4.4. The polynomials (Ψl)1(x1, . . . , yn), l = 1, . . . , 2n which give the coef-
ficients of ~-power series Ψl at ~ are of total degree less than deg σ.

This is not immediately obvious in light of remarks on the modified star product
⋆σ (although it is apparent for lifted tame symplectomorphisms). This statement
provides the base case for the processing of the higher-order terms.

The gauging acts upon the term at ~2. Indeed, the leading term of the difference
between the gauged and ungauged expression is given by the commutator (in the
initial star product)

[Ψl, Ql]~,

which is of order ~2 by definition of Ψl and Ql.
For σ that are close enough to the identity symplectomorphism, this translates

into correction terms of the form

∂Ql

∂xi
and

∂Ql

∂yj
.

This can always be fulfilled.
Now, in order to tweak the higher-degree (in ~) terms, one applies consecutive

conjugations according to the method described above. For the terms of degree
higher than deg σ, the existence of compensating terms amounts to the vanishing of
the appropriate differential form.

We illustrate the algorithm by applying it to the base case n = 1, so that the
coefficients that need to be processed are power series in two generators x and y.
Firstly, we can always find a conjugation such that the resulting lifted limit will
send x to itself. Once this is done, the power series

1 + ~Q

can only depend on x (Q corresponds to y). Conjugating the image of y under Ψ by
1+~Q, we can dispose of the terms that do not contain y. Indeed, the leading term
of conjugation with y is given by differentiation, so the amending term is constructed
by taking a primitive of the appropriate polynomial.

On the other hand, because of the fact that the commutator [y, x] = ~ produces
a power of ~ and shifts the terms one notch, no extra terms in the fixed term ~k

(with which we are currently working) can appear. This completes the proof. The
algorithm can be easily modified for the case of arbitrary n.
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