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Abstract It is well-known that the Levenberg–Marquardt method is a good
choice for solving nonlinear equations, especially in the cases of singular/non-
isolated solutions. We first exhibit some numerical experiments with local con-
vergence, showing that this method for “generic” equations actually also works
very well when applied to the specific case of the Lagrange optimality system,
i.e., to the equation given by the first-order optimality conditions for equality-
constrained optimization. In particular, it appears to outperform not only
the basic Newton method applied to such systems, but also its modifications
supplied with dual stabilization mechanisms, intended specially for tackling
problems with nonunique Lagrange multipliers. The usual globalizations of
the Levenberg–Marquardt method are based on linesearch for the squared
Euclidean residual of the equation being solved. In the case of the Lagrange
optimality system, this residual does not involve the objective function of the
underlying optimization problem (only its derivative), and in particular, the
resulting globalization scheme has no preference for converging to minima
versus maxima, or to any other stationary point. We thus develop a special
globalization of the Levenberg–Marquardt method when it is applied to the
Lagrange optimality system, based on linesearch for a smooth exact penalty
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function of the optimization problem, which in particular involves the objective
function of the problem. The algorithm is shown to have appropriate global
convergence properties, preserving also fast local convergence rate under weak
assumptions.

Keywords Newton-type methods · Levenberg–Marquardt method · stabilized
sequential quadratic programming · local convergence · global convergence ·
penalty function
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1 Introduction

Consider first a system of general nonlinear equations without any special
structure:

Φ(z) = 0, (1)

where Φ : Rp → Rp is sufficiently smooth. One classical approach to solving
this problem is the Levenberg–Marquardt method; see, e.g., [19, Chapter 10].
It is especially important when solutions of (1) are nonisolated, or singular in
the sense that the Jacobian of Φ is singular at solutions (note that nonisolated
solutions are automatically singular). Given the current iterate zk ∈ Rp and a
regularization parameter σk > 0, the next iterate of the Levenberg–Marquardt
method is zk+1 = zk + dk where dk ∈ Rp is the (unique) solution of the
following linear system in d:(

(Φ′(zk))>Φ′(zk) + σkI
)
d = −(Φ′(zk))>Φ(zk). (2)

With appropriate control of the parameter σk, this method can have fast
local convergence despite singularity of solutions [6, 23]. In fact, with some
suitable modifications, the Levenberg–Marquardt methods can even handle
both nonisolated/singular solutions and nonsmoothness of the mapping Φ [5,9].

Consider now the equality-constrained optimization problem

minimize f(x)
subject to h(x) = 0,

(3)

where the objective function f : Rn → R and the constraints mapping h :
Rn → Rl are at least twice differentiable.

Let L : Rn × Rl → R be the Lagrangian of problem (3), i.e.,

L(x, λ) = f(x) + 〈λ, h(x)〉.

Then the Lagrange optimality system of problem (3), characterizing its sta-
tionary points and associated Lagrange multipliers, has the form

∂L

∂x
(x, λ) = 0, h(x) = 0. (4)
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In this work, we are specially interested in cases when the set

Λ(x̄) =

{
λ ∈ Rl

∣∣∣∣ ∂L∂x (x̄, λ) = 0

}
of Lagrange multipliers associated to a stationary point x̄ of (3) is not neces-
sarily a singleton. In particular, the system (4) may have nonisolated solutions.

Denote the mapping of the Lagrange optimality system (4) by Φ : Rn ×
Rl → Rn × Rl, i.e.,

Φ(x, λ) =

(
∂L

∂x
(x, λ), h(x)

)
. (5)

Note that Φ is the full gradient mapping (with respect to primal and dual
variables) of the Lagrangian L. Given the current iterate (xk, λk) ∈ Rn × Rl,
the Levenberg–Marquardt method (2) for this Φ (taking into account that its
Jacobian matrix Φ′(xk, λk) is symmetric in this case), defines the next iterate
as (xk+1, λk+1) = (xk+ξk, λk+ηk), where dk = (ξk, ηk) is the unique solution
of the linear system

Φ′(xk, λk)Φ(xk, λk) +
(
(Φ′(xk, λk))2 + σkI

)
d = 0 (6)

with respect to d = (ξ, η). As usual in Levenberg–Marquardt methods, the
regularization parameter σk > 0 will be given by some power of the Lagrange
system residual ‖Φ(xk, λk)‖.

While the Levenberg–Marquardt method is applicable to the Lagrange op-
timality system (4) (in fact, just like to any other system of equations), note
that it is a general-purpose algorithm which does not take into account the
special primal-dual structure of (4). Despite of that, perhaps somewhat sur-
prisingly, we found out that the Levenberg–Marquardt method nevertheless
performs quite well for the Lagrange system (4), even compared to special
techniques designed to tackle degeneracy in optimization problems. By degen-
eracy, here we mean violation of the standard constraints regularity condition

rankh′(x̄) = l. (7)

The special methods in question for degenerate optimization problems are
those of stabilized sequential quadratic programming (sSQP) [8,11,13,21,22];
see also [15, Chapter 7]; and the more recent subspace-sSQP variations [18].
The statements of these methods and the related numerical results comparing
the local behavour of all the options in consideration, are reported in Section 2.

Motivated by the observed good local behaviour of the Levenberg–Marqu-
ardt method applied to the Lagrange system (4), the issue of globalizing its
convergence arose naturally. We note that some approaches to globalization
of sSQP for optimization have been proposed in [7,10,16,17]. However, in our
view, the issue of computationally efficient, both rigorously globally and fast
locally convergent algorithms for degenerate optimization problems, is not re-
solved to full satisfaction as of yet. Thus, looking at alternatives such as the
Levenberg–Marquardt method is still warranted, especially taking into account
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good local performance of the latter described in Section 2. Another appealing
feature of the Levenberg–Marquardt method is that the corresponding direc-
tion exists always. This is in contrast to the usual Newton method (sequential
quadratic programming, SQP), as well as sSQP and subspace-sSQP, where in
principle subproblems are guaranteed to be solvable only locally, under suit-
able assumptions. In fact, solvability of subproblems is the first difficulty one
encounters when trying to design globally convergent schemes based on those
approaches. For the Levenberg–Marquardt method, solvability of subproblems
is not an issue.

On the other hand, recall that usual globalizations of the Levenberg–
Marquardt method (2) for the equation (1) would proceed, after computing
the direction dk, with linesearch to decrease the squared Euclidian residual
‖Φ(·)‖2 of the equation; see, e.g., [6, 23]. We emphasize that in the context of
the Lagrange system (4), when Φ given by (5) comes from the optimization
problem (3), this is (at least) not ideal. Indeed, the Lagrange system character-
izes both minima and maxima of f on the set defined by h(x) = 0. Thus, if one
merely aims at minimizing the residual of this system, such a scheme would
not have any particular preference for minima versus maxima (or any other
stationary point), i.e., for solving the optimization problem (3). This calls for
some other approach tailored specifically to optimization. In other words, line-
search should better be performed for some penalty function, which involves
the objective function of the optimization problem, and is thus at least not
indifferent to minimization versus maximization. To this end, we shall employ
the smooth primal-dual two-parameter penalty function for problem (3), first
proposed in [3]. Specifically, this function is ϕc1, c2 : Rn × Rl → R,

ϕc1, c2(x, λ) = L(x, λ) +
c1
2
‖h(x)‖2 +

c2
2

∥∥∥∥∂L∂x (x, λ)

∥∥∥∥2

, (8)

where c1 > 0 and c2 > 0 are penalty parameters. Observe that the objective
function f enters (8) in an additive way, through the Lagrangian L. According
to [1, Section 4.3] and [2], but without going into full technical details, the
properties of the penalty function in question can be summarized as follows.
Observe first that for any c1 and c2, any solution of the Lagrange optimality
system (4) is evidently a stationary point of the unconstrained optimization
problem

minimize ϕc1, c2(x, λ), (x, λ) ∈ Rn × Rl. (9)

Conversely, if c2 > 0 is small enough and c1 > 0 is large enough, then any
stationary point (x̄, λ̄) of problem (9), satisfying the constraints regularity
condition (7), is also a solution of the Lagrange optimality system (4). More-
over, if a solution of (x̄, λ̄) of (4) satisfies (7) and the second-order sufficient
optimality condition (SOSC)〈

∂2L

∂x2
(x̄, λ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ kerh′(x̄) \ {0} (10)
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for problem (3), then (x̄, λ̄) is a strict local minimizer in (9), and problem (9)
has no other stationary points near (x̄, λ̄). Finally, if a solution of (x̄, λ̄) of
(4) violates the second-order necessary optimality condition〈

∂2L

∂x2
(x̄, λ̄)ξ, ξ

〉
≥ 0 ∀ ξ ∈ kerh′(x̄)

for problem (3), then (x̄, λ̄) cannot be a local minimizer in (9).
In addition, as we shall show in Section 3, the Levenberg–Marquardt direc-

tion given by (6) is always a descent direction for the penalty function ϕc1, c2 ,
for an appropriate explicit choice of the parameters c1 and c2. This prop-
erty would be the key for designing a globally convergent algorithm based
on the Levenberg–Marquardt subproblems, presented in Section 3. Global
convergence properties of the algorithm are obtained in Section 4. In Sec-
tion 5 we show that local superlinear convergence rate of the basic Levenberg–
Marquardt method is preserved, under the same weak assumptions. Finally,
in Section 6 we present some numerical results for the proposed globalized
Levenberg–Marquardt method for optimization.

We conclude this section recalling some notions to be used in the sequel.
We say that the local Lipschitzian error bound holds at a stationary point x̄
of problem (3) for a Lagrange multiplier λ̄ ∈ Λ(x̄), if

‖x− x̄‖+ dist(λ, Λ(x̄)) = O(‖Φ(x, λ)‖) (11)

as (x, λ) → (x̄, λ̄). Note that the error bound (11) holds if, and only if, the
multiplier λ̄ is noncritical [15, Definition 1.41]:

6 ∃ ξ ∈ kerh′(x̄) \ {0} such that
∂2L

∂x2
(x̄, λ̄)ξ ∈ im(h′(x̄))T.

Otherwise λ̄ is called critical. It can be easily seen that SOSC (10) is a stronger
assumption than noncriticality; thus, (10) implies the error bound (11).

2 Local numerical behavior of the Levenberg–Marquardt method
compared to some alternatives

To motivate the interest in the Levenberg–Marquardt method for degenerate
optimization problems, we first provide some numerical results for the basic
local versions of the following algorithms (specific iteration schemes are stated
a bit further):

– SQP; e.g., [15, Chapter 4].
– sSQP, as described in [13, Section 2].
– Subspace-sSQP with asymptotically vanishing stabilization, as defined in

[18], with all the parameters as specified there.
– The Levenberg–Marquardt method applied to the Lagrange optimality sys-

tem (4), i.e., iterations given by (6), with the regularization parameters
σk = ‖Φ(xk, λk)‖2, where Φ is defined in (5).
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In Figures 1 and 2 below, these methods are represented by black, dark gray,
light gray, and white color, respectively. Let us first recall the iteration systems
of the methods in question, also discussing briefly the differences.

The iteration system of SQP has the form

∂2L

∂x2
(xk, λk)ξ + (h′(xk))Tη = −∂L

∂x
(xk, λk), h′(xk)ξ = −h(xk). (12)

This is just the iteration of the Newton method applied to the Lagrange opti-
mality system (4) of problem (3).

The iteration system of sSQP is given by

∂2L

∂x2
(xk, λk)ξ+ (h′(xk))Tη = −∂L

∂x
(xk, λk), h′(xk)ξ− σkη = −h(xk). (13)

It differs from (12) by an extra stabilizing term in the left-hand side of the
second equation, involving the parameter σk > 0 (for explantions of the sta-
bilizing affects, see [15, Chapter 7]).

The iteration system of subspace-sSQP has the form

∂2L

∂x2
(xk, λk)ξ + (h′(xk))Tη = −∂L

∂x
(xk, λk), h′(xk)ξ − σkPkη = −h(xk),

where the difference with (13) is solely in the presence of an l × l matrix Pk
which is supposed to approximate the projector onto some complement of the
subspace imh′(x̄) at a stationary point x̄, as x approaches x̄, and λ approaches
an associated Lagrange multiplier. Using this matrix makes stabilization “less
aggressive”, with the iteration system being closer to that of SQP in (12), but
retaining all nice local convergence features of sSQP; see [18].

For comparisons, we used randomly generated degenerate problems with
quadratic objective functions and quadratic equality constraints. The gener-
ator is the one described in [12], with entries of all arrays taking values in
[−100, 100]. For each triple of integers (n, l, r), we generated 100 problems
with n variables and l constraints, such that x̄ = 0 is a stationary point of
each problem, with the rank of constraints’ Jacobian at x̄ equal to r (with
r < l). The generator also provides some Lagrange multiplier λ̄ associated to
x̄. These problems are nonconvex, can be unbounded below, and may have
stationary points other than the one of interest, namely other than x̄ = 0.

For each problem generated this way, we ran all the algorithms from 10
primal-dual starting points taken randomly from the box centered at the point
(x̄, λ̄), with the half of the edge equal to 0.1. Therefore, for each triple, we
perform 1000 runs in total. The methods stop once the residual of the La-
grange optimality system becomes less than 1e−8. If this happens in no more
than 500 iterations, the run is counted as successful. Otherwise, failure is de-
clared. Convergence to the primal solution of interest (x̄ = 0) is declared if
the distance from primal iterate at termination to x̄ is less than 1e − 3. In
these local experiments, we used triples (n, l, r) with n = 5, 10, 25, 20, 100,
all l ∈ {1, . . . , n− 1}, and all r ∈ {0, . . . , l − 1}. All computations here, and
in Section 6 below, were performed in Matlab environment.
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Fig. 1: Local behavior for n = 5.

The results for some representative triples (n, l, r) are given in Figures 1
and 2, in the form of bar diagrams. Iteration counts reported are averages
over successful runs and over the cases of convergence to the primal point
of interest, respectively, out of 1000 runs performed for each triple. One can
observe that the Levenberg–Marquardt method is by far the more robust one,
and is also more efficient. Also, unlike for the other methods, its robustness
is almost not affected by the dimensions’ growth. The difficulties experienced
by SQP are explained by slow convergence caused by convergence of the dual
sequence to critical multipliers; see [12,14] and [15, Section 7.1]. The behavior
of sSQP is less deteriorated by this effect [14], but apart from the cases of
full degeneracy (when h′(x̄) = 0), this method has a tendency to generate
long sequences of short steps before eventual superlinear convergence can be
observed. This is a result of “over-stabilization”; see the related discussion in
[17]. The subspace-sSQP variant, developed in [18] precisely with the intention
to suppress this tendency, has better performance than sSQP but, nevertheless,
it is still outperformed by the Levenberg–Marquardt method on this test set.

The conclusion from these experiments is that the Levenberg–Marquardt
method for optimization, i.e., the method applied to the Lagrange optimality
system, exhibits very good local behavior on degenerate problems. Therefore,
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Fig. 2: Local behavior for n ≥ 10.

developing on its basis an optimization-tailored globally convergent algorithm
is of interest.

3 A globally convergent Levenberg–Marquardt algorithm for
optimization

For the subsequent analysis, it will be convenient to define the following two
mappings, which split the two parts of the Lagrange optimality system (4).
Let Φ1 : Rn → Rl and Φ2 : Rn × Rl → Rn be given by

Φ1(x) = h(x), Φ2(x, λ) =
∂L

∂x
(x, λ).

With these definitions, Φ(x, λ) = (Φ2(x, λ), Φ1(x)), where the mapping Φ is
defined in (5). Furthermore, the penalty function (8) can be written as

ϕc1, c2(x, λ) = L(x, λ) +
c1
2
‖Φ1(x)‖2 +

c2
2
‖Φ2(x, λ)‖2, (14)

the form which we shall employ from now on.
We first show that there always exist values of the penalty parameters, for

which the Levenberg–Marquardt direction given by (6) is a descent direction
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for the penalty function (14), provided the direction is nonzero. Moreover,
those penalty parameters are easily computable by explicit formulas.

By direct calculation of the gradient of the penalty function, for any point
(xk, λk) ∈ Rn × Rl and any direction dk = (ξk, ηk) ∈ Rn × Rl, we have that

〈ϕ′c1, c2(xk, λk), dk〉 =
〈
Φ(xk, λk), dk

〉
+c1〈Φ1(xk), Φ′1(xk)ξk〉+ c2〈Φ2(xk, λk), Φ′2(xk, λk)dk〉.

(15)

Next, if dk is obtained by solving the Levenberg–Marquardt equation (6), it
holds that

〈Φ1(xk), Φ′1(xk)ξk〉+ 〈Φ2(xk, λk), Φ′2(xk, λk)dk〉 = 〈Φ(xk, λk), Φ′(xk, λk)dk〉
= 〈Φ′(xk, λk)Φ(xk, λk), dk〉
= −‖Φ′(xk, λk)dk‖2

−σk‖dk‖2.
(16)

Observe now that the first term in the right-hand side of (15) does not depend
on the penalty parameters. Hence, whatever its sign is, taking (for example)
c1 = c2 > 0 sufficiently large, (16) shows that we can make the right-hand side
of (15) negative (if dk 6= 0). In fact, we can make it as negative as we wish,
and the corresponding values of the penalty parameters are also explicitly
computable from (15) and (16). We shall not give specifically those formulas
here, because our proposal for choosing the penalty parameters would be a bit
more sophisticated, for the following reason. According to the exact penaliza-
tion properties of the penalty function (14), already mentioned in Section 1, it
is desirable to keep c2 small(er). Thus, by assessing all the terms in the right-
hand side of (15), we shall first attempt to make it negative by increasing c1
only (if this is necessary at all). We thus arrive at the following algorithm.
Some further comments on its features would be provided immediately after
its statement.

Algorithm 1 Choose parameters σ̄ > 0, q > 0, ρ > 0, τ > 1, c̄1 > 0, c̄2 > 0,
δ > 0, ν, ε, θ ∈ (0, 1), and set c1 = c̄1, c2 = c̄2. Choose (x0, λ0) ∈ Rn × Rl
and set k = 0.

1. If

Φ′(xk, λk)Φ(xk, λk) = 0, (17)

where Φ(·) is defined in (5), stop.
2. Set σk = min{σ̄, ‖Φ(xk, λk)‖q}. Compute dk = (ξk, ηk) as the unique

solution of the Levenberg–Marquardt equation (6).
3. If

〈ϕ′c1, c2(xk, λk), dk〉 ≤ −ρ‖dk‖τ , (18)

go to step 4.
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If
〈Φ1(xk), Φ′1(xk)ξk〉 ≤ −ν

(
‖Φ′(xk, λk)dk‖2 + σk‖dk‖2

)
, (19)

define c̄1, k as the minimal value of c1 such that (18) holds, i.e.,

c̄1, k = − 〈Φ(xk, λk), dk〉+ c2〈Φ2(xk, λk), Φ′2(xk, λk)dk〉+ ρ‖dk‖τ

〈Φ1(xk), Φ′1(xk)ξk〉
, (20)

set c1 = c̄1, k + δ, and go to step 4.
Else, define c̄2, k as the minimal value of c2 such that (18) holds, i.e.,

c̄2, k = − 〈Φ(xk, λk), dk〉+ c1〈Φ1(xk), Φ′1(xk)ξk〉+ ρ‖dk‖τ

〈Φ2(xk, λk), Φ′2(xk, λk)dk〉
, (21)

and set c2 = c̄2, k + δ.
4. Compute αk = θj , where j is the smallest nonnegative integer satisfying

the Armijo inequality

ϕc1, c2((xk, λk) + θjdk) ≤ ϕc1, c2(xk, λk) + εθj
〈
ϕ′c1, c2(xk, λk), dk

〉
. (22)

5. Set (xk+1, λk+1) = (xk, λk) + αkd
k, increase k by 1, and go to step 1.

Some comments are in order. We first note that the stopping outcome
(17), as well as the corresponding possibility for the global convergence in
Theorem 1 below, mean stationarity for the squared residual of the Lagrange
optimality system. While this is not what we are looking for (recalling our mo-
tivation for using a penalty function instead of the residual for globalization),
such an outcome is clearly unavoidable as a possibility: if the starting point
satisfies (17), then the Levenberg–Marquardt equation (6) shows that the zero
direction is generated. However, while such a situation cannot be ruled out,
the expectation is that it makes it way less likely to occur “in the limit” if
linesearch minimizes the penalty function and not the residual.

Other observations concern the penalty parameters. Note that if the com-
puted direction is of sufficient descent (i.e., (18) holds), no parameters are
changed. If that is not the case but descent can be achieved by increasing
c1 only, i.e., (19) holds, then the value of c1 is increased. The value of c2 is
increased only as the last option. Note also that at each iteration either the
penalty parameters do not change, or one (and only one) of them increases, by
a quantity no less than δ. The latter is because c̄1, k and c̄2, k cannot be smaller
than the current values of c1 and c2, respectively, as otherwise there would be
a contradiction with violation of (18). For this, recall the discussion following
(15) and (16), which makes it clear that (18) always holds for the values of
parameters large enough; hence, if the current values are not suitable, then
they must increase. It follows that the sequences of penalty parameters are
non-decreasing.

The final comment is that, since the Levenberg–Marquardt equation (6)
is always solvable, and since the procedure to choose appropriate values of
parameters that guarantee the descent property for the computed directions is
well-defined (as explained above), the whole algorithm is well-defined at every
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step. We emphasize, in particular, that no safeguarding descent directions
(e.g., the gradient directions) are ever needed, as there are no “unfavorable”
situations when the computed direction cannot be used. This is in contrast,
for example, with the globalization strategy for sSQP in [17].

4 Global convergence properties

We are now in position to establish global convergence properties of Algo-
rithm 1. In particular, we show that in any situation (regarding what hap-
pens with the sequences of the penalty parameters), a stationary point of the
penalty function and/or of the squared residual of the Lagrange optimality sys-
tem is obtained. Recall that the value of each parameter either stays constant
from some iteration on, or it goes to infinity.

Theorem 1 Let f : Rn → R and h : Rn → Rl be twice continuously differen-
tiable on Rn.

Then Algorithm 1 is well-defined, and either finitely terminates at a point
(xk, λk) satisfying (17), or generates an infinite sequence {(xk, λk)} possess-
ing the following properties:

(i) If the values of c1 and c2 do not change for all k sufficiently large, then
every accumulation point (x̄, λ̄) of {(xk, λk)} satisfies at least one of the
equalities

Φ′(x̄, λ̄)Φ(x̄, λ̄) = 0 (23)

or

ϕ′c1, c2(x̄, λ̄) = 0, (24)

with those asymptotically constant values of c1 and c2.
(ii) If the value of c2 is asymptotically constant and there exists an infinite set

K of iteration indices such that c1 changes at each iteration k ∈ K, then
every accumulation point (x̄, λ̄) of {(xk, λk) | k ∈ K} satisfies (23).

(iii) Assertion (ii) is also valid if the value of c1 does not change for all k
sufficiently large, and there exists an infinite set K of iteration indices
such that the value of c2 changes at each iteration k ∈ K.

(iv) If the sequence {(xk, λk)} converges to some (x̄, λ̄), and the values of both
c1 and c2 are changed infinitely many times, then (x̄, λ̄) satisfies (23).

Proof Let k be any iteration index, and let (17) not hold, so that the algorithm
does not terminate. Then it holds that σk > 0 and, according to (6), dk 6= 0.

It follows that if (19) is satisfied, then

〈Φ1(xk), Φ′1(xk)ξk〉 < 0, (25)

and hence, by (15), the value of c̄1, k in (20) is well-defined in this case.
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On the other hand, if (19) is not satisfied, then by (16) we obtain that

〈Φ2(xk, λk), Φ′2(xk, λk)dk〉 = −‖Φ′(xk, λk)dk‖2 − σk‖dk‖2

−〈Φ1(xk), Φ′1(xk)ξk〉
≤ −(1− ν)

(
‖Φ′(xk, λk)dk‖2 + σk‖dk‖2

)
< 0, (26)

and therefore, by (15), c̄2, k in (21) is well-defined in this case.
We conclude that our choice of penalty parameters is well-defined, and

guarantees that the computed direction dk is of descent for the associated
penalty function. Hence, linesearch in Algorithm 1 always terminates with
some stepsize αk > 0. This implies that the whole algorithm is well-defined.

Observe next that if for some infinite set K of iteration indices, the sub-
sequence {(xk, λk) | k ∈ K} converges to some point (x̄, λ̄) violating (4), i.e.,
Φ(x̄, λ̄) 6= 0, then the sequence {σk | k ∈ K} is separated from zero by a
positive constant (recall that σk = min{σ̄, ‖Φ(xk, λk)‖q}). This implies that
the matrices in the sequence {(Φ′(xk, λk))2 + σkI | k ∈ K} are uniformly
positive definite. Hence, the inverses of these matrices exist, and depend con-
tinuously on (xk, λk) at (x̄, λ̄). Therefore, from (6) it follows that in this case
the sequence {dk | k ∈ K} necessarily converges to some d; moreover, if (23)
is violated as well, then d 6= 0.

We proceed to the possible cases of the asymptotic behaviour of the penalty
parameters.

Consider first the case when the values of c1 and c2 do not change for all
indices k sufficiently large. In this case, the “tail” of the sequence {(xk, λk)}
is generated by a descent method with Armijo linesearch for a fixed smooth
function ϕc1, c2 . Suppose that (x̄, λ̄) is an accumulation point of {(xk, λk)},
violating (23). Let K be an infinite set of iteration indices such that the sub-
sequence {(xk, λk) | k ∈ K} converges to (x̄, λ̄). Then according to the ob-
servation above, {σk | k ∈ K} is separated from zero by a positive constant,
while {dk | k ∈ K} is bounded and its norm is separated from zero. There-
fore, (18) implies that {〈ϕ′c1, c2(xk, λk), dk〉 | k ∈ K} is separated from zero
by some negative constant. It remains to repeat the argument from the proof
of [1, Theorem 1.8] (on linesearch methods using “uniformly gradient-related
directions”) to conclude that (x̄, λ̄) is a stationary point in (9) i.e., it satisfies
(24). This proves item (i).

Consider now the case when c2 is constant from some iteration on, but
there exists an infinite index set K such that c1 increases at each iteration
k ∈ K (note that, at any iteration, c1 can only increase or remain unchanged).
Possibly taking a further subsequence, suppose that {(xk, λk) | k ∈ K} con-
verges to some (x̄, λ̄) violating (23). Recalling the observation above, then
{dk | k ∈ K} converges to some d 6= 0, and {σk | k ∈ K} is separated from
zero by a positive constant. As the value of c1 increases at each iteration k ∈ K,
condition (19) must hold for all k ∈ K, where the right-hand side, and hence
also the left-hand side, are separated from zero by a negative constant. This
shows that the quantity c̄1, k defined in (20) is bounded above, as it depends
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continuously on (xk, λk, dk) at (x̄, λ̄, d), and c2 is fixed. Hence, the sequence
{c̄1, k | k ∈ K} is bounded. On the other hand, for each k ∈ K, the value of c1
increases at least by δ > 0, which implies that c1 goes to infinity. Clearly, this
contradicts boundedness of {c̄1, k | k ∈ K}, because for k ∈ K the value of c1
is modified to c̄1, k + δ. The proof of item (ii) is complete.

Assertion (iii) is proven in a similar way as (ii). In particular, if c1 does not
change from some point on, this means that (19) never holds for k sufficiently
large. Thus (26) holds. If (23) were not true, the left-hand and right-hand sides
in (26) stay separated from zero by a negative constant. Then the quantity c̄2, k
defined in (21) is bounded above, and the sequence {c̄2, k | k ∈ K} is bounded.
As any change of c2 for k large enough means modifying it to c̄2, k + δ, in
particular increasing it at least by δ > 0, unboundedness of c2 contradicts
boundedness of {c̄2, k | k ∈ K}.

Suppose finally that the sequence {(xk, λk)} converges to some (x̄, λ̄), and
the values of both c1 and c2 are changed infinitely many times (and thus tend
to infinity). Suppose that (x̄, λ̄) does not satisfy (23). Then, by the observation
above, {dk} converges to some d = (ξ, η) 6= 0 and {σk} is separated from zero
by a positive constant. Let K1 (respectively, K2) be an infinite index set such
that c1 (c2) increases for each iteration k ∈ K1 (k ∈ K2). As above, condition
(19) must hold for all k ∈ K1, where the right-hand side, and hence also
the left-hand side are separated from zero by a negative constant. Passing to
the limit, we then obtain that 〈Φ1(x̄), Φ′1(x̄)ξ〉 < 0. Then by the convergence
of {(xk, λk)} to (x̄, λ̄), and of {dk} to d, it follows that (25) holds for all
k ∈ K2 large enough. Also, (26) holds, because the test (19) failed for k ∈ K2.
Employing (21), we then obtain that c̄2, k computed for such k is bounded
from above by a quantity not depending on c1 (as according to (25), the latter
appears in (21) multiplied by a negative quantity), and depending continuously
on (xk, λk, dk) at (x̄, λ̄, d) (as according to (26), c2 in (15) is multiplied by
a quantity smaller than −(1 − ν)σk‖dk‖2, which is separated from zero by
a negative constant). Therefore, the sequence {c̄2, k | k ∈ K2} is bounded.
On the other hand, for each k ∈ K2, the value of c2 increases at least by
δ > 0, which implies that c2 goes to infinity. This contradicts boundedness of
{c̄2, k | k ∈ K2}, because for k ∈ K2 the value of c2 is modified to c̄2, k + δ.
This completes the proof of item (iv). ut

5 Superlinear convergence

To avoid certain (essentially technical) complications, it is convenient to as-
sume formally in the statements below that if (xk, λk) satisfies the Lagrange
system (4) (and hence, σk = 0), then dk = 0 is “computed”. Note that the
algorithm actually terminates in this case at step 1, and no dk is computed
in reality. On the other hand, dk = 0 is always a solution of (6) in this case,
and for the purposes of convergence analysis it is convenient to assume that
precisely this solution is meant (note that in the degenerate case, there may



14 Izmailov, Solodov, and Uskov

exist other solutions of (6) with σk = 0, for (xk, λk) satisfying the Lagrange
system (4)).

We start our local rate of convergence analysis with the following proposi-
tion.

Proposition 1 Let f : Rn → R and h : Rn → Rl be twice differentiable near
x̄ ∈ Rn, with their second derivatives being continuous at x̄. Let x̄ be a sta-
tionary point of problem (3) with an associated noncritical Lagrange multiplier
λ̄ ∈ Rl.

Then for any q ∈ [1, 2] there exists γ > 0 such that for the solution dk of
(6), where σk = ‖Φ(xk, λk)‖q, it holds that

‖Φ′(xk, λk)dk‖ ≥ γ‖dk‖

for all (xk, λk) ∈ Rn × Rl close enough to (x̄, λ̄).

Proof Observe first that under the error bound (11) (which is equivalent to
noncriticality of λ̄), the solution set Φ−1(0) of the Lagrange system (4), near
(x̄, λ̄), has the form {x̄} × Λ(x̄). Therefore, (11) implies that

dist((xk, λk), Φ−1(0)) = O(‖Φ(xk, λk)‖). (27)

Hence, according to [6, Lemmas 2.1, 2.2],

‖dk‖ = O(dist((xk, λk), Φ−1(0))), (28)

and

dist((xk, λk) + dk, Φ−1(0)) = O
(

(dist((xk, λk), Φ−1(0)))(2+q)/2
)

(29)

as (xk, λk) → (x̄, λ̄). (More precisely, in [6, Lemma 2.2] it is additionally
assumed that (xk, λk) +dk stays close enough to (x̄, λ̄). However, in the proof
of [6, Theorem 2.1] it is established that any needed proximity of (xk, λk)+dk

to (x̄, λ̄) is guaranteed by sufficient proximity of (xk, λk) to (x̄, λ̄), and hence,
this additional assumption can actually be removed.)

We argue by contradiction. Suppose that there exists {(xk, λk)} ⊂ Rn×Rl,
convergent to (x̄, λ̄), and such that

Φ′(xk, λk)dk = o(‖dk‖)

as k →∞. Then, according to (28), it holds that

Φ′(xk, λk)dk = o(dist((xk, λk), Φ−1(0))). (30)

We also have that

Φ((xk, λk) + dk) = O(dist((xk, λk) + dk, Φ−1(0)))

= o(dist((xk, λk), Φ−1(0))), (31)
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where the first equality is by the Lipschitz-continuity of Φ, and the second is
by (29). Then, employing (28) again, by the mean-value theorem we derive
that

Φ((xk, λk) + dk)− Φ(xk, λk)− Φ′(xk, λk)dk = o(‖dk‖)
= o(dist((xk, λk), Φ−1(0))).

Hence, taking into account (30) and (31),

Φ(xk, λk) = o(dist((xk, λk), Φ−1(0)))

as k →∞, which contradicts (27). ut

Recall that by the construction of the algorithm, each of the penalty pa-
rameters either stays constant from some iteration on, or it tends to infinity.
Next, we show that if one parameter stays constant, then so does the other.
We note that, in fact, this is the behavior we observed (for successful runs) in
numerical experiments reported in Section 6 below.

Lemma 1 Under the assumptions of Proposition 1, suppose that a sequence
{(xk, λk)} generated by Algorithm 1 with q ∈ [1, 2], and with τ ≥ 2, converges
to (x̄, λ̄).

Then if the value of c1 or c2 does not change for all k sufficiently large,
then so does the value of the other parameter.

Proof Employing (11), (28) and (29), we obtain

Φ(xk, λk) = (Φ(xk, λk)− Φ((xk, λk) + dk)) + dist((xk, λk) + dk, Φ−1(0))

= O(‖dk‖) + o(dist((xk, λk), Φ−1(0)))

= O(‖dk‖) + o(‖Φ(xk, λk)‖),

implying that
Φ(xk, λk) = O(‖dk‖)

as k →∞. Thus, also
Φ2(xk, λk) = O(‖dk‖).

We then obtain that

〈Φ(xk, λk), dk〉 ≤ ‖Φ(xk, λk)‖‖dk‖ = O(‖dk‖2), (32)

implying that
〈Φ2(xk, λk), Φ′2(xk, λk)dk〉 = O(‖dk‖2). (33)

Recall that any change of c1 is only possible when (19) holds. Therefore,
for the corresponding k we obtain that

〈Φ1(xk), Φ′1(xk)ξk〉 ≤ −ν‖Φ′(xk, λk)dk‖2 ≤ −νγ‖dk‖2, (34)

where the second inequality is by Proposition 1.
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Suppose that c2 is constant for k sufficiently large. Then, recalling (20)
and using (32)–(34), we conclude that {c̄1, k} is bounded. This implies that c1
does not change from some point on. Indeed, when it does change, it increases
at least by δ > 0. If this were to happen an infinite number of times, then c1
actually tends to infinity, in contradiction with boundedness of {c̄1, k} (again,
since the update is c1 = c̄1, k + δ).

The argument for the case when c1 is asymptotically constant is similar.
Any change of c2 consists of modifying it to c̄2, k + δ, when (19) does not hold.
In this case, by (26) and by Proposition 1, for the corresponding k it holds
that

〈Φ2(xk, λk), Φ′2(xk, λk)dk〉 ≤ −(1− ν)‖Φ′(xk, λk)dk‖2

≤ −(1− ν)γ‖dk‖2. (35)

Moreover, since (19) is violated for such k, it holds that either

〈Φ1(xk), Φ′1(xk)ξk〉 ≥ 0

or

|〈Φ1(xk), Φ′1(xk)ξk〉| ≤ ν‖Φ′(xk, λk)dk‖2 = O(‖dk‖2).

Then, since c1 is constant for sufficiently large k, recalling (21) and using (32)
it follows that {c̄2, k} is bounded. The same way as for c1 above, this implies
that c2 does not change from some point on. ut

The chain of results presented next eventually leads to Lemma 3, demon-
strating the asymptotic acceptance of the unit sptepsize in Algorithm 1. This
guarantees the quadratic convergence rate of the algorithm.

The following result is [17, Proposition 5.3], which improves [1, Theo-
rem 4.16 (a)] by removing the regularity assumption on the constraints.

Proposition 2 Let f : Rn → R and h : Rn → Rl be three times differentiable
at x̄ ∈ Rn. Let x̄ be a stationary point of problem (3) with an associated
Lagrange multiplier λ̄ ∈ Rl satisfying SOSC (10).

Then for every c̄2 > 0 there exists c̄1 ≥ 0 such that for all c1 ≥ c̄1, c2 ≥ c̄2,
ϕ′′c1, c2(x̄, λ̄) is positive semidefinite, and moreover, 〈ϕ′′c1, c2(x̄, λ̄)d, d〉 = 0 if

and only if d ∈ kerΦ′(x̄, λ̄). In addition, for any fixed d ∈ Rn×Rl, increasing
c1 or c2 can only make 〈ϕ′′c1, c2(x̄, λ̄)d, d〉 larger.

We then obtain the following.

Lemma 2 Under the assumptions of Proposition 2, for every q ∈ [1, 2] and
c̄2 > 0, there exist γ > 0, c̄1 ≥ 0, and a neighborhood U of (x̄, λ̄) such that for
all c1 ≥ c̄1 and c2 ≥ c̄2, and for all (xk, λk) ∈ U , for the solution dk of (6)
with σk = ‖Φ(xk, λk)‖q it holds that

〈ϕ′′c1, c2(x̄, λ̄)dk, dk〉 ≥ γ‖dk‖2.
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Proof Let q ∈ [1, 2] and c̄2 > 0 be fixed, and let c̄1 ≥ 0 be defined according to
Proposition 2. Suppose that there exist sequences {c1, k} ⊂ R, {c2, k} ⊂ R, and
{(xk, λk)} ⊂ Rn × Rl such that c1, k ≥ c̄1 and c2, k ≥ c̄2 for all k, {(xk, λk)}
converges to (x̄, λ̄), and it holds that

〈ϕ′′c1, k, c2, k(x̄, λ̄)dk, dk〉 = o(‖dk‖2) (36)

as k → ∞ ((36) implies, in particular, that dk 6= 0 for all k large enough).
According to the last assertion of Proposition 2, we can always assume that
c1, k = c̄1 and c2, k = c̄2 for all k (as decreasing c1, k or c2, k can only make
the nonnegative left-hand side of (36) smaller, thus keeping the relation in
question valid).

Dividing both sides of (36) by ‖dk‖2, and passing to subsequences if nec-
essary, we can assume that {dk/‖dk‖} converges to some d ∈ Rn × Rl such
that ‖d‖ = 1 and 〈ϕ′′c̄1, c̄2(x̄, λ̄)d, d〉 = 0. According to Proposition 2, this is

only possible when Φ′(x̄, λ̄)d = 0. At the same time, Proposition 1 implies
that Φ′(x̄, λ̄)d 6= 0, giving a contradiction. ut

The next result shows conditions under which the unit stepsize is accepted
by the algorithm; it employs the argument from [17, Corollary 5.1].

Lemma 3 Let f : Rn → R and h : Rn → Rl be three times differentiable
near x̄ ∈ Rn, with their third derivatives being continuous at x̄. Let x̄ be a
stationary point of problem (3) with an associated Lagrange multiplier λ̄ ∈ Rl
satisfying SOSC (10).

Then for every q ∈ [1, 2] and c̄2 > 0, there exist ρ > 0, c̄1 ≥ 0, and a
neighborhood U of (x̄, λ̄) such that for all c1 ≥ c̄1 and c2 ≥ c̄2, and for all
(xk, λk) ∈ U , condition (18) holds with τ = 2 for the solution dk of (6) with
σk = ‖Φ(xk, λk)‖q, and moreover, if ε ∈ (0, 1/2), then (22) holds with j = 0
(i.e., αk = 1 is accepted by the algorithm).

Proof Let q ∈ [1, 2] and c̄2 > 0 be fixed, and let c̄1 ≥ 0 be defined according
to Lemma 2. Fix any c1 ≥ c̄1 and c2 ≥ c̄2.

For each k, let λ̂k stand for the projection of λk + ηk onto Λ(x̄). By (29)
we obtain that

(xk, λk) + dk − (x̄, λ̂k) = o
(
(dist((xk, λk), Φ−1(0)))

)
= o(‖(xk − x̄, λk − λ̂k)‖), (37)

implying that

(xk − x̄, λk − λ̂k) = −dk + o(‖dk‖) (38)

as (xk, λk) tends to (x̄, λ̄).

Recall that (x̄, λ̂k) is always a stationary point in problem (9). By the
mean-value theorem, and by the continuity of ϕ′′c1, c2 at (x̄, λ̄), it then holds
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that

ϕ′c1, c2((xk, λk) + dk) = ϕ′c1, c2((xk, λk) + dk)− ϕ′c1, c2(x̄, λ̂k)

= O(‖(xk, λk) + dk − (x̄, λ̂k)‖)
= o(‖(xk − x̄, λk − λ̂k))

= o(‖dk‖)

as (xk, λk) tends to (x̄, λ̄), where the last two equalities are by (37) and (38),
respectively. On the other hand,

ϕ′c1, c2((xk, λk) + dk) = ϕ′c1, c2(xk, λk) + ϕ′′c1, c2(xk, λk)dk + o(‖dk‖),

and combining this with the previous estimate we conclude that

ϕ′c1, c2(xk, λk) + ϕ′′c1, c2(xk, λk)dk = o(‖dk‖). (39)

Therefore,

〈ϕ′c1, c2(xk, λk), dk〉 = −〈ϕ′′c1, c2(xk, λk)dk, dk〉+ o(‖dk‖2)

as (xk, λk) tends to (x̄, λ̄). Hence, by the choice of c̄1, for any ρ ∈ (0, γ)
condition (18) holds with τ = 2, assuming that (xk, λk) is close enough to
(x̄, λ̄).

Next, we obtain that

ϕc1, c2((xk, λk) + dk)− ϕc1, c2(xk, λk)

= 〈ϕ′c1, c2(xk, λk), dk〉+
1

2
〈ϕ′′c1, c2(xk, λk)dk, dk〉+ o(‖dk‖2)

=
1

2
〈ϕ′c1, c2(xk, λk), dk〉+ o(‖dk‖2)

as (xk, λk) tends to (x̄, λ̄), where the last equality is by (39). Combining this
with (18) with τ = 2, we finally derive that

ϕc1, c2((xk, λk) + dk)− ϕc1, c2(xk, λk)− ε〈ϕ′c1, c2(xk, λk), dk〉

=

(
1

2
− ε

)
〈ϕ′c1, c2(xk, λk), dk〉+ o(‖dk‖2)

≤ −ρ
(

1

2
− ε

)
‖dk‖2 + o(‖dk‖2)

≤ 0

for all (xk, λk) is close enough to (x̄, λ̄). This means that (22) holds for j = 0.
ut

Remark 1 Observe that if (18) holds with some ρ > 0 and τ = 2, then it also
holds with any ρ > 0 and any τ > 2, for all (xk, λk) close enough to (x̄, λ̄).
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We are now ready to state our local quadratic rate of convergence result.
It follows from the fact that, once the unit stepsize is accepted, the method
behaves as the usual Levenberg–Marquardt scheme.

Theorem 2 Let f : Rn → R and h : Rn → Rl be three times differentiable at
x̄ ∈ Rn. Let x̄ be a stationary point of problem (3) with an associated Lagrange
multiplier λ̄ ∈ Rl satisfying SOSC (10). Suppose that a sequence {(xk, λk)}
generated by Algorithm 1 with q ∈ [1, 2], ε ∈ (0, 1/2), c̄1 > 0 large enough with
respect to c̄2 > 0, and either with τ > 2, or with τ = 2 and a sufficiently small
ρ > 0, converges to (x̄, λ̄). Suppose c1 and c2 are asymptotically constant.

Then αk = 1 holds for all sufficiently large k, and the rate of convergence
of {(xk, λk)} to (x̄, λ̄) is quadratic.

Proof Follows combining Lemma 3, Remark 1, and [6, Theorem 2.2]. ut

Note that Lemma 1 states that if one penalty parameter stays asymptoti-
cally constant then so does the other, but it does not rule out the theoretical
possibility of both tending to infinity. On the other hand, Theorem 2 refers
to the case of the parameters asymptotically fixed. While we have never en-
countered both c1 and c2 growing to infinity in our numerical experiments
in Section 6, the following simple procedure can be used (along with many
others) to guarantee this. Fix some (large) constant, and once c2 exceeds this
limit, start using c1 = c2 = c, where c > 0 is large enough so that (18) holds.
This possibility had been already commented in Section 3; it follows directly
from (15) and (16). With some more-or-less obvious refinements of this pro-
cedure, it can be easily seen that both global convergence and local rate of
convergence results stated above, can be adapted to cover this modification.
In particular, in the local convergence analysis, c1 = c2 = c eventually stays
fixed. However, this modification is more of a theoretical guarantee: as we
have never encountered both parameters being unbounded for Algorithm 1
in our numerical experiments in Section 6, we do not add this feature in our
implementation.

6 Numerical results for the globalized Levenberg–Marquardt
method for optimization

In this section, we present some numerical experiments with the globalized
versions of the Levenberg–Marquardt method applied to degenerate optimiza-
tion problems. Specifically, we consider here Algorithm 1 and its counterpart
with linesearch for the squared Euclidian residual of the Lagrange optimality
system (4), as defined in [6,23]. To avoid any possible ambiguity, we shall give
the full statement of the latter algorithm. Define the function ϕ : Rn×Rl → R,

ϕ(x, λ) =
1

2
‖Φ(x, λ)‖2. (40)

Algorithm 2 Choose the parameters σ̄ > 0, q > 0, and β, ε, θ ∈ (0, 1).
Choose (x0, λ0) ∈ Rn × Rl and set k = 0.
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1. If (17) holds with Φ(·) defined in (5), stop.
2. Set σk = min{σ̄, ‖Φ(xk, λk)‖q}. Compute dk = (ξk, ηk) as the unique

solution of the Levenberg–Marquardt equation (6).
3. If

‖Φ((xk, λk) + dk)‖ ≤ β‖Φ(xk, λk)‖,

set αk = 1 and go to step 5.
4. Compute αk = θj , where j is the smallest nonnegative integer satisfying

the Armijo inequality

ϕ((xk, λk) + θjdk) ≤ ϕ(xk, λk) + εθj
〈
ϕ′(xk, λk), dk

〉
.

5. Set (xk+1, λk+1) = (xk, λk) + αkd
k, increase k by 1, and go to step 1.

In the bar diagrams below, Algorithms 1 and 2 are represented by white
and gray color, respectively. For both algorithms, we used the exponent q = 2
when defining the regularization parameter σk. Moreover, the rule for σk was
modified as follows:

σk =

{
‖Φ(xk, λk)‖2 if ‖Φ(xk, λk)‖ ≤ σ̄,
σ̄4/‖Φ(xk, λk)‖2 otherwise.

We note that using this (empirically determined) rule does not affect neither
the behavior of the algorithms near solutions, nor any of the convergence the-
ory. On the other hand, this modification has some stabilizing effect (making
iterations closer to those of SQP when far from solutions).

The other parameters in Algorithms 1 and 2 were taken as follows: σ̄ = 1,
β = 0.9, ρ = 1e − 9, τ = 2.1, ν = 0.1, c̄1 = 10, c̄2 = 0.1, δ = 1, ε = 0.01,
and θ = 0.5. Also, the algorithms terminate, in addition to the other criteria,
when the stepsize parameter during linesearch becomes smaller than 1e − 10
(of course, this is counted as a failure). The other stopping rules are the same
as in Section 2.

Test problems and starting points are generated the same way as in Sec-
tion 2 (10 starting points for each of 100 problems generated for each triple
(n, l, r), making it 1000 runs for each triple in total), but starting points for
the global runs are now in the box with the half of the edge equal to 100.
Triples used here are the same as in Section 2, but only for n = 5, 10, 25,
and now excluding the case of r = 0, as the behavior of the algorithms in this
case is way too different from the other values of r. (The value r = 0 was
not excluded from local experiments to demonstrate specially good behavior
of sSQP in this case, at the same time showing that it degrades as r grows.)

The first part of our experiments consists in comparing the algorithms’
ability to compute approximate solutions with better objective function val-
ues, and to detect unbounded problems. This is meant precisely to highlight
the advantage of our proposal to use a penalty function of the optimization
problem (which is not indifferent to minimization versus maximization) in-
stead of the residual of the Lagrange system. In this series of experiments,
both algorithms were always run from the same starting points. For a run
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successful for both algorithms, the objective function value at termination of
one algorithm is regarded “better” than that of the other when it is smaller
by no less than 0.1. Note that in successful runs feasibility is always satisfied
up to the stopping tolerance, and so comparing objective function values is
meaningful. We also count the runs for which exactly one (but not the other)
of the algorithms detected an unbounded problem, by which we mean that
at some iteration the constraints residual was no greater than 1e − 4, while
the objective function value was no larger than −1e+ 4. This information for
some triples (n, l, r) is reported in Figure 3. We show only some few triples,
but they reflect well enough the overall tendency. The conclusion is that the
method using penalty function computes lower objective function values and
detects unboundedness more often.
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Fig. 3: Global behavior: quality of outcome.

Finally, we exhibit some results that give an impression of the overall per-
formance of the algorithms in question on this kind of degenerate test prob-
lems. In particular, these results demonstrate that the benefits in the quality
of outcome obtained by Algorithm 1, and reported in Figure 3, are achieved
without degrading robustness and efficiency in any serious way. We emphasize
that the test problems used here are quite difficult for computational meth-
ods, even though we restrict testing to relatively low dimensions. Partially to
confirm the latter claim, we also provide results for SQPlab solver [20], which
is a well-established open-source Matlab implementation of the quasi-Newton
SQP method globalized by linesearch for the l1 penalty function. SQPlab was
run with all the default settings, except for stopping tolerances, iteration limit,
and lower step length limit, which were put in agreement with those for the
other two algorithms. In this series of experiments, the objective function was
always taken strongly convex, to avoid failures caused by unbounded prob-
lems. We used the same triples (n, l, r) as above, but we restricted ourselves
to n = 5, 10, as already for n = 10 robustness of the methods (and especially
of SQPlab) is quite low on this test set.
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(b) n = 10

Fig. 4: Relative robustness and efficiency.

The results are reported in Figure 4, in the form of performance profiles [4].
They show that on the given test set, Algorithm 1 has similar robustness, and is
more efficient (in terms of the iteration count), than the Levenberg–Marquardt
method globalized using the squared residual. The results for SQPlab are in-
cluded to show that the test set in question is somehow difficult, and so the
results obtained for the proposed algorithm are relatively favorable indeed. Re-
call also that, as already reported above, Algorithm 1 produces better quality
solutions than the usal Levenberg–Marquardt method.

Table 1: Behavior of penalty parameters; n = 5

Triples Successful runs Failures
n l r E1S E2S D1S D2S E1F E2F D1F D2F

5 2 1 0 1 0 1 24 4 17 7

5 3 1 3 4 1 1 24 4 17 6
5 3 2 2 0 0 0 14 2 12 6

5 4 1 3 7 0 4 27 3 15 4
5 4 2 2 3 0 3 18 2 12 6
5 4 3 1 0 0 1 13 3 8 5

To complete the picture, we report in Tables 1 and 2 some interesting
information regarding the behavior of penalty parameters in Algorithm 1.
The meaning of the columns in these tables is as follows (the information is
reported separately for successful runs and for failures):

– E1S: cases when c1 exceeded the threshold = 100 (% out of successful
runs).

– E2S: cases when c2 exceeded the threshold = 100 (% out of successful
runs).

– D1S: cases when different values of c1 were used on 2 last iterations, i.e.,
c1 did not “stabilize” (% out of successful runs).
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Table 2: Behavior of penalty parameters; n = 10

Triples Successful runs Failures
n l r E1S E2S D1S D2S E1F E2F D1F D2F

10 2 1 0 2 0 2 11 6 15 12

10 3 1 2 4 1 3 14 4 19 2
10 3 2 0 1 0 1 7 2 13 2

10 4 1 3 7 0 4 27 3 15 4
10 4 2 0 5 0 2 9 1 11 9
10 4 3 0 1 0 0 2 2 10 10

10 5 1 2 12 0 4 15 2 11 7
10 5 2 1 4 0 2 9 1 10 8
10 5 3 2 1 0 0 6 1 9 10
10 5 4 1 0 0 0 5 1 6 10

10 6 1 2 11 0 4 17 3 12 7
10 6 2 0 3 0 1 13 1 8 6
10 6 3 1 1 0 1 10 1 8 9
10 6 4 1 1 0 0 6 1 6 7
10 6 5 1 0 0 0 4 1 4 8

10 7 1 2 20 0 5 13 4 7 4
10 7 2 1 3 0 4 13 1 9 5
10 7 3 1 2 2 1 11 2 8 7
10 7 4 1 2 1 1 9 1 6 7
10 7 5 2 1 0 0 5 1 4 6
10 7 6 0 0 1 0 4 1 3 8

10 8 1 4 15 0 4 18 6 9 4
10 8 2 2 3 0 4 18 3 11 4
10 8 3 1 4 0 3 14 1 6 3
10 8 4 1 2 1 2 12 3 7 5
10 8 5 1 1 0 1 7 2 4 7
10 8 6 2 1 1 0 6 2 3 7
10 8 7 1 0 0 1 5 1 4 6

10 9 1 4 21 0 4 21 6 8 4
10 9 2 1 14 0 4 19 5 11 5
10 9 3 2 5 0 2 15 4 9 4
10 9 4 3 4 1 1 12 2 7 5
10 9 5 3 3 1 1 11 2 7 4
10 9 6 2 1 0 0 7 2 4 6
10 9 7 1 1 1 1 7 2 4 6
10 9 8 2 0 1 0 7 2 4 6

– D2S: cases when different values of c2 were used on 2 last iterations, i.e.,
c2 did not “stabilize” (% out of successful runs).

– E1F: cases when c1 exceeded the threshold = 100 (% out of failures).
– E2F: cases when c2 exceeded the threshold = 100 (% out of failures).
– D1F: cases when different values of c1 were used on 2 last iterations, i.e.,
c1 did not “stabilize” (% out of failures).

– D2F: cases when different values of c2 were used on 2 last iterations, i.e.,
c2 did not “stabilize” (% out of failures).



24 Izmailov, Solodov, and Uskov

Overall, we observe that usually c1 and c2 do not go higher than some
rather moderate values, especially on successful runs. Naturally, this changes
somewhat in the case of failures. However, even for failures, the behavior of
penalty parameters looks “suspicious” in never more than 25% of cases (and
usually much less). It thus appears that failures are mostly related to the
inherent difficulties of degenerate problems.
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