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An  analytical  solution  of  the problem  of  a symmetric  streamline  flow  of an  ideal  incompressible  fluid
around  a permeable  plate  in  a plane-parallel  channel  is  constructed.  The  boundary  conditions  on the plate
correspond  to the  linear  Darcy  law  and to  the  condition  of  the  controlling  action  of  the  pore  structure.
The  effect  of the  production  of  a distributed  vorticity  when  a  continuous  medium  flows  through  a per-
meable  boundary  is taken  into  account.  An  exact  solution  is obtained  in  a form  containing  a Schwarz
integral.  The  relation  between  the  resistance  of the  plate  and  its relative  size  and  porosity  is  investigated.
The  result  is  used  to  construct  a theory  of  combined  permeability.  A relation  between  the hydraulic  loss
coefficient  and  the  physical  parameters  of  the  combined  permeability  containing  porous  and  perforated
elements  is  obtained  in an explicit  form.

© 2015  Elsevier  Ltd.  All  rights  reserved.

The difficulty in studying flows around bodies containing components made of different gas-permeable materials (perforated or porous
lates, fabrics, meshes, etc.) is due to the fact that a certain large-scale gas flow has to be described taking account of the effect of a large
umber of small-scale rigid bodies, that is, the parts of the structure of the permeable wall. A simplified approach is known1–3 in which
he “main” large-scale flow on both sides of a permeable wall is assumed to be ideal and the permeable wall together with its surrounding
oundary layer of local dissipative flow is replaced by a surface of discontinuity. Here, although we are dealing with the boundaries of a
iscrete structure, in the mathematical model it is assumed that there is a certain seepage rate at each point of the permeable surface and
hat the boundary values of the main flow parameters are related to one another by special compatibility conditions on the discontinuity.3

e  distinguish between permeability of the first kind, to which perforated plates and shells correspond, where their local hydraulic
esistance is mainly associated with vortex losses during the disruption and subsequent re-mixing of local flows formed when the medium
asses through the aperture of a perforation4 and of the second kind when the local hydraulic resistance is determined by internal friction

n the seepage of the medium through a porous layer or a fine mesh fabric.3,4

In addition to the types of permeability of the first and second kinds mentioned above, a third type is possible, that we shall call
combined permeability”, when a porous boundary of the second kind has an additional perforation of the first kind. The canopy of a
arachute made of an air-permeable fabric when it additionally has a distributed structural perforation with openings or slits that are large
elative to the thickness of the fabric serves as a practical example of combined permeability. No validated system of boundary conditions
s known for this type of permeability at the present time.

Obviously, the problem of streamline flow in a plane-parallel channel around a permeable plate with permeability of the second kind,
ince the gap between the edge of the plate and the channel wall can be considered as structural permeability of the first kind, is a useful
ocal model of combined permeability. Data on the relation between the overall resistance of the plate and its relative width and coefficient
f permeability make it possible to obtain a law for the flow of the medium in terms of the combined permeability. These facts were the
otivation for studying the problem of a streamline flow around a permeable plate in a channel.

A classical solution of the problem of the streamline flow of an ideal fluid around an impermeable plate located between the parallel

mpermeable channel walls is known.5 A special case is the unbounded streamline flow around a plate with the flow separation, according
o the Kirchhoff scheme. However, the corresponding classical methods for obtaining an exact analytical solution of this problem do not
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ave extensions to the case of a permeable plate. The difficulty lies in the fact that a permeable boundary, unlike a continuous boundary,
s not a streamline.

An analytical method of constructing steady flows in a channel with a permeable screen that does not completely block the cross-section
f the channel has been proposed.6 However, the corresponding flow 6 with regions of non-zero vorticity is not an exact solution of the
roblem of the flow around a permeable screen on account of the fact that not all the boundary conditions on the surface of discontinuity
re satisfied, although, in several special cases, it is in satisfactory agreement with the results of physical experiments. The issue has been
iscussed in Ref. 3.

An exact analytical solution of the problem of the unbounded streamline flow of an ideal incompressible fluid around a permeable
late with the flow separation was obtained for the first time by Buchin.7 The statement of the problem assumed a permeability of the
econd kind that made it possible to justify a scheme with an isobaric vortex jet in the bottom region behind the permeable plate and to
ormulate a closed boundary value problem for determining the irrotational part of the flow. A similar boundary value problem for finding
he irrotational component of the flow had been studied earlier 8,9 but linearization of the degree of permeability of the screen with respect
o a small parameter was used. The method proposed by Buchin 7 for constructing an exact solution without linearization can be called the
method of a derivative of analytical function” and it enables the exact solution to be found for any coefficient of permeability of a plate.
he result is obtained in a parametric form containing a Schwarz integral. This method has been used 10,11 to solve complex problems
f the interaction of a plane jet of an ideal fluid with an unbounded permeable screen. In some simpler cases, the idea of introducing an
sobaric whirling jet with straight streamlines into the scheme for the interaction of the fluid with the permeable boundaries enables a
omplete solution of the problem to be constructed in terms of elementary functions12.

. Statement of the problem

We  shall consider a plane steady flow of an ideal incompressible fluid around a permeable plate arranged symmetrically across an infinite
lane-parallel channel (Fig. 1). The flow of the fluid, of constant density �, is described by a system of continuity and Euler equations. The
ermeable plate is simulated by a surface of hydrodynamic discontinuity with boundary conditions expressing the law of conservation of
ass, the linear Darcy law and the condition for the complete loss of tangential momentum of the seeping medium:3

(1.1)

ere u and � are the normal and tangential components of the velocity vector V at the discontinuity, p is the pressure, the minus and plus

ubscripts indicate the windward and the leeward sides of the discontinuity and k is a generalized physical parameter, proportional to
he dynamic viscosity of the medium � and inversely proportional to some effective linear dimension b of the porosity structure of the
late: k = �/b (the relation between b and the flowrate characteristic of the air-permeability of real fabrics and other porous materials is
onsidered below in Section 4).

Fig. 1.
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The unperturbed flow velocity in the channel at infinity in front of the plate is constant and equal to V∞. The bottom region of the flow
ehind the plate extends up to infinity in the channel, the pressure p0 in it is constant (without loss of generality, we  shall assume that
0 = 0), and the structure of the velocity field is the whirling stream of fluid that has seeped through with straight streamlines that spreads
long the stagnation zone. The bottom flow is separated from the main flow in the channel by the discontinuities BC and B1C1 (Fig. 1).
utside the bottom region, all the streamlines come from infinity without crossing the permeable plate and the flow is therefore irrotational

here and a first integral of the equations of motion (a Bernoulli integral)

(1.2)

xists, where V0 is the constant value of the flow velocity in the streams BC and B1C1.
The relative width of the plate h = H/L and the local Reynolds number for the seeping fluid

(1.3)

re the dimensionless governing parameters.
We  introduce a Cartesian system of coordinates x and y with origin at the centre of the plate (at point A in the upper part of Fig. 1)

nd direct the x axis in the same direction as the fluid flow. Taking account of the symmetry about the x axis, we  shall subsequently only
onsider the flow in the upper part of the channel 0 < y < L. The boundary conditions on the lines y = 0 and y = L for V = {u,�} are the
mpermeability conditions � = 0. The kinematic boundary condition for the windward side of the plate

(1.4)

s obtained from conditions (1.1) and (1.2) taking account of the equality p+ = p0 = 0.
Hence, the problem of the fluid flow in a channel with regions of non-zero vorticity is broken up: the irrotational part of the velocity

eld can be constructed regardless of the flow around the plate as a whole. Using the results of the solution of this basic problem and
oundary conditions (1.1), the two parameters

(1.5)

hat are important in practical applications, are determined as well as the shear profile of the velocity u (x, y) = u+ (y) in the vortex part of
he bottom region x > 0, 0 < y < H behind the plate. Here, � is the coefficient of contraction of the fluid streams for the free outflow through

 slit with permeable edges into a flooded space and cx is the aerodynamic drag coefficient of the permeable plate in the channel.
We take the half-width of the channel L and the velocity V0 on the free streamline as the characteristic scales of length and velocity and

hange to the dimensionless variables

henceforth we shall omit the asterisk in the notation for dimensionless variables). We  will use the following notation: z = x + iy is the
omplex coordinate of a point in the physical plane and V̄ = u−i� is the value of the complex-conjugate fluid velocity at a point z. The
ollowing boundary conditions:

(1.6)

re used to find the analytical function V̄ (z) in the region bounded by the contour ABCDMNA (the left-hand lower part of Fig. 1) when
< h < 1, 0 < � < ∞.

Here, the domain of the values of V̄ is known and it is one half of the lune formed by the arcs of the two circles (1.6) with the following
orrespondence of the points:

(1.7)

he value of the real constant w is bounded by the interval uA < w < 1, but it is not known in advance.

. Construction of the solution

We  shall seek the mapping z ↔ V̄ in the parametric form

(2.1)

here q = t + i� is a parametric variable which is such that the upper half-plane Imq > 0 with the following correspondence of the points

the left-hand lower part of Fig. 1):

(2.2)

orresponds to the flow domain bounded by the contour ABCDMNA in the q plane.
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Conformal mapping of the upper half-plane of q onto one half of the circular lune with the proper correspondence of the points (1.7),
2.2) gives the formula

(2.3)

here

From equality (2.3), when q = t→ ∞,  we obtain the relation between the parameters w, � and � in the form

(2.4)

With the aim of finding the conformal mapping z = z(q), we  consider the interval BC on the real axis of the parametric plane q.
t corresponds to the free boundary of the stream passing around the upper edge of the plate (the upper part of Fig. 1). At each point

 < t < � of this interval, formula (2.3) gives the value of the conjugate velocity V̄ (t) and, in particular, enables us to find

hich, in turn, determines the direction of the velocity vector V in the stream BC in the physical plane z. The angle of inclination of the
angent to the free streamline BC at any point z(t) of the physical plane is thereby known. At the same time, the change in the angle of
nclination of the boundary BC for the conformal mapping z(q) has the mathematical meaning of the argument of the derivative dz/dq.
ence, for the part of the boundary BC,  we have

The function arg
(

dz/dq
)

is also known on the remaining parts of the real axis t since these parts correspond to known rectilin-
ar segments of the boundary of the irrotational flow region in the physical plane z. Consequently, the imaginary part of the function
(q) = ln

(
dz/dq

)
:

s known everywhere on the real axis t of the parametric plane q:
It is convenient to seek the function F in the form of the sum F (q) = F1 (q) + F2 (q) with the boundary conditions

The function

an be determined at once and the function F2(q) can be recovered using the Schwarz integral13 apart from an arbitrary real constant:

Carrying out involution and integration with respect to q, we  find the required mapping
(2.5)
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he coefficient in front of the integral with respect to Q is determined from the condition that the assumed normalization of the channel
idth z(� + 0) = 1 is satisfied, and, for this, it is necessary to integrate in the parametric plane q along the contour ANMD that includes the

emicircle NM of infinitely large radius (the right-hand lower part of Fig. 1). From equality (2.5), we  obtain the expression for the width of
he plate

(2.6)

According to equality (1.1), the shear velocity profile u (x, y) = u+ (y) on the leeward side of the plate AB in the domain x > 0, |y| < h
s given by the expression u-(y) for the longitudinal velocity on the windward side of the plate, Fig. 1. Separating the real part in equality
2.3) when q = t, − 1 ≤ t ≤ 0, we obtain

(2.7)

. Analysis of the results

Relations (2.5) - (2.7) enable us to represent the overall flow rate through the permeable plate in the form

(3.1)

y virtue of the fact that, when � < 1⁄2, the pressure drop on the plate is linearly related to the seepage rate u-, the overall hydrodynamic
oad on the plate is equal to �g. Correspondingly, the drag coefficient (1.5) is calculated as

he relative width 1 - yC of the potential stream at infinity (the upper part of Fig. 1) determines the dimensionless flow rate in this stream.
he balance relation g + 1 – yC = w,  together with expressions (2.4) and (3.1), provide a convenient method for calculating the contraction
oefficient of the potential stream flowing out from the slit between the permeable plate and the channel wall

hen � → 1/2, we obtain

hich agrees with the classical solutions of problems of the contraction coefficient of a stream in the case of the outflow through a slit
n an infinitely permeable plane and on the drag coefficient of an impermeable plane in an unbounded flow around which a flow occurs
ccording to the Kirchhoff scheme with flow separation.

The special problem of the jet flow around an impermeable plate in a channel (� = 1⁄2, 0 < h < 1) has an exact solution in terms of
lementary functions.5,14 Introducing the notation

(3.2)

his solution can be represented in the form
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t is convenient to use the functions (3.2) in constructing rough approximations of the solutions of the general problem for � ∈
(

0, 1/2
)

, h ∈
0, 1). As a result, the analytical approximations

(3.3)

re obtained where, when notation (3.2) is taken into account,

The exact relations w
(

h, �
)

, �
(

h, �
)

, cx0 = w2cx

(
h, �

)
, determined by relations (2.4) and (3.1) when � ∈

(
0, 1/2

)
, h ∈ (0, 1), are

onstructed in Fig. 2. Approximate relations (3.3) are not shown as they are practically indistinguishable from the graphs of the corre-
ponding exact solutions. Here, in the limit cases when approaching the domains of definition with respect to h and �, approximations
3.3) are asymptotically exact.

The relation between the drag coefficient cx0 and the degree of porosity of the plate � is non-monotonic for all h, 0 < h < 1, and a
aximum value is attained within the interval 0 < � < 1⁄2 (Fig. 2, bottom right). This property was noted for the first time by Buchin 7 in

he special case of the unbounded flow around a porous plate (in this case cx0 = cx).
Explicit approximate expressions for the drag coefficient of a porous plate in an unbounded flow and the contraction coefficient of

 potential stream flowing out through a slit in an infinite porous plane can be obtained by taking to the limit as h → 0 and h → 1 in
pproximations (3.3) in the form
(3.4)

Fig. 2.
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Fig. 3.

elations (3.4), with scaling by the porosity parameter 	 = �−1 = ctg 
�, are shown in Fig. 3. In the case of small 	, we have

(3.5)

Linear expression (3.5) for the drag coefficient of the porous plate corresponds to the solution 8 obtained in the linearized formulation
f the problem for small 	. The paradoxical conclusion 8,9 concerning the increase in the drag coefficient of the plate when the degree of
ermeability increases (the dashes in Fig. 3) followed from it. The exact solution of the corresponding problem in the non-linear formulation
as been found 7 (it is described to a high degree of accuracy by approximation (3.4)). The increase in the drag coefficient over a range
f small 	 is explained by the joint action of opposing factors: the pressure drop at the centre of the plate decreases as the permeability
ncreases but, simultaneously, the mean value of this drop over the span of the plate increases due to smoothing of the velocity profile
-(y).

The velocity profile in the isobaric vortex stream behind the plate is determined using boundary conditions (1.1) and (2.7). For all
 ∈

(
0, 1/2

)
, h ∈ (0, 1), it is convex, a maximum value u+(y) is attained on the axis of symmetry and a minimum value on the boundary

f the stream:

Here, according to the first relation of (1.7) and taking account of the equality � = tg
�, we have

Examples of a calculation using formulae (2.5) and (2.7) for different values of h and � are shown in Fig. 4; curves 1, 2, and 3 correspond
o values of h equal to 0.07, 0.59 and 0.86.
The expression

Fig. 4.
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approximately describes the velocity profile over the whole range of variation in the parameters h and �. The vorticity level du/dy in the
main body of the stream is close to zero and tends to infinity on the periphery.

All the calculations were carried out using the program application for symbolic calculations Wolfram Mathematica 8.0.

4. The theory of combined permeability

Consider the fluid motion through an area of a uniform porous material when there are additional structural perforations in it. This
combined permeability is characterized by two parameters: the specific air-permeability B0 of the porous material proper and the relative
area � of the open apertures of the structural perforation per unit area of this material. In technology, the parameter B0 is customarily
defined as the number of litres of air under normal conditions flowing per second through a square metre of a fabric or other porous
material for a pressure drop �0 = 49 Pa. In the practice of parachute construction, the air-permeability B0 can vary over a range from 0 to
2000 l/(m2s) 15. The corresponding nominal rate of permeation is obviously u0 = 10−3B0 m/s. Substitution of these values of the parameters
into equality (1.1) gives the relation �0 = ku0 = �0b−1u0, in which �0 is the dynamic coefficient of viscosity of air under normal conditions
and b is the effective linear size of the porous structure of the material. Hence,

(4.1)

We will assume that the local jet stream in the neighbourhood of the apertures of the perforation is similar to the flow considered
above past a porous plate in a channel with the parameters h = 1 − �, u1 = V∞, Fig. 5. We  make the assumption that is usual in permeability
theory 1–4 that, downstream beyond the permeable boundary, the velocity profile is completely smoothed out as a result of the development
of instabilities in the layers of mixing and the dissipation of local inhomogeneities. The arbitrary sections 1 and 2 shown in Fig. 5 bound a
layer of locally non-uniform boundary layer flow in the neighbourhood of unit area of the material permeable boundary. If a layer 1 – 2 is
interpreted as a surface of hydrodynamic discontinuity, the laws of conservation of mass �u2 = �u1 and of the change in the momentum
�u2

1 = p1 − X = �u2
2 + p2 of a moving incompressible fluid give the compatibility conditions on the discontinuity in the form

where X is the specific hydrodynamic force acting per unit area of the combined permeable boundary and � is the hydraulic loss coefficient
that depends on the degree of perforation � = 1 – h and the local Reynolds number R = �1bu1/�1 which, taking account of relations (1.3)
and (4.1), can be represented in the form

(4.2)

For air, when �1 = �0 and �1 = 1.23 kg/m3, we  have u� = 6.3 m/s  and the correspondence (4.2) between the air-permeability of the
material B0 and the parameter R0 is shown below in Table 1.

Fig. 5.
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Table 1

(
2

)

w

a

C

r
s

B0, l/ m · s 0 100 200 400 800 1600

R0 0 0.0158 0.0317 0.0634 0.1267 0.2535

Using the solution of the problem of the flow around a porous plate in a channel obtained in this paper, we  have

(4.3)

here w(h, �) and cx0
(

x, �
)

are known functions (3.3).
In the special case of an impermeable perforated material

nd, from relations (4.3), we obtain that R = 0 and

(4.4)

omparison of this result with Idel’chik’s well-known empirical relation
ecommended for designing of diaphragms and perforated membranes with sharp edge of the apertures of arbitrarily shaped perforations,
hows good agreement with the experimental data.4

Fig. 6.
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In the general case when � ∈
(

0, 1/2
)

, � ∈ (0, 1), the parameter � can be eliminated using expressions (3.3) and (4.3) and an explicit
xpression can be obtained for the required hydraulic drag coefficient when a medium flows through a boundary with the combined type
f permeability in the form

(4.5)

here

he relations between � and R are shown in the lower left-hand part of Fig. 6 for different values of �. For practical use, it is best to represent
quality (4.5) in the form p1 − p2 = �p (U, B0, �),  that gives the direct connection between the pressure drop �p and the relative velocity
f the passage of the medium U as a function of the two physical constants of the combined permeability: B0 and �. By relations (4.2) –
4.5), we have

(4.6)

An example of relation (4.6) for different values of � for a fixed perforation parameter � = 0.2 under the conditions for which the relation
etween B0 and R0 shown above was obtained is constructed in the upper right-hand part of Fig. 6. The considerable effect of the specific
ir-permeability of the material B0 on the rate of permeation of the medium through this material for a specified pressure drop is observed
it increases as the air permeability increases). For relatively small pressure drops, the relation �p(U) is close to quadratic, changing into

 linear relation when U increases.

. Conclusion

The exact analytical solution of the general problem of steady symmetric flow past a porous plate in a plane-parallel channel with flow
eparation obtained agrees with the known special solutions for the limit cases of streamline flow around an impermeable plate in a channel
nd a porous plate in an unbounded space. For small degrees of blockage of the channel, its drag coefficient depends non-monotonically
n the degree of porosity, so that the drag of a porous plate can be greater than that of a continuous plate. This is explained by an increase
n the mean pressure drop on a porous plate due to the smoothing out of the pressure drop profile over its span. The explicit expression
btained for the contraction coefficient of the potential flow through a slit with permeable edges is an extension of the known formula
or the outflow through a slit in an impermeable wall. The velocity profile in the vortex stream, formed in the bottom region immediately
ehind the porous plate, is convex in all cases.

The vortex level in the central part of this stream is close to zero and tends to infinity on approaching its boundaries.
The results obtained are of practical importance from the point of view of supplements to the theory of combined permeability. A

elation between the hydraulic loss coefficient and the physical parameters of the combined permeability has been found for the first time.
n the limit case when the material has no porosity, formula (4.5) agrees to a high degree of accuracy with the known empirical relation.4

he representation of formula (4.5) in the form (4.6) is convenient for use as boundary conditions on surfaces with the combined type of
ermeability, for example, in formulating problems of the flow past the canopy of a parachute made of a material with an air-permeability
0 l/(m2s) when there is an additional structural perforation in it with a relative area of the apertures �.

cknowledgement

This research was financially supported by the Russian Foundation for Basic Research (12-01-00985).

eferences

1. Rakhmatulin KhA. Flow past a permeable body. Vestn MGU 1950;3(2):41–55.
2. Taylor GI, Batchelor GK, Dryden HL, Schubauer GB. The effect of wire gauze on small disturbances in a uniform stream. Quart J Mech Appl Math 1949;2(1):
1–29.
3. Rakhmatulin KhA, Guvernyuk SV. Formulation of problems of incompressible flow past permeable bodies. Fluid Mech Sov Res 1988;17(2):46–71.
4. Idelchik IE. Handbook of Hydraulic Resistance. Redding, CT: Begell House; 2008.
5. Birkhoff G. Hydrodynamics. A Study in Logic, Fact and Similitude.  Princeton, NJ: Princeton Univ. Press; 1960.
6. Koo J-K, James DF. Fluid flow around and through a screen. J. Fluid Mech 1973;60(3):513–38.
7. Buchin VA. A solution of the problem of the flow past a permeable plate with flow separation. Dokl Akad Nauk SSSR 1983;269(6):1331–5.
8. Bekulov MT. The linearized problem of the flow past a permeable plate with flow separation. Trudy Aspirantov Kabard -Balkar Inst Nalchik 1965;1:445–52.
9. Bekulov MT.  The linearized problem of the flow of an incompressible fluid past a permeable wedge with flow separation. Dokl Akad Nauk SSSR 1965;162(3):

523–6.
0. Andronov PR, Guvernyuk SV. The solution of the problem of a plane jet flowing into an infinitely permeable screen. In: Problems of Contemporary Mechanics. Collection of

Articles Dedicated to the 90th Anniversary of L. I. Sedov. Moscow: Izd MGU; 1998. p. 179–85.
1. Andronov PR. The interaction of streams flowing out from a plane channel with an infinite permeable screen. Vestn Mol  Uch Ser Prikl Mat  Mekh 2002;1:53–61.

http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0080
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0080
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0080
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0080
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0080
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0080
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0080
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0080
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0080
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0080
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0080
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0080
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0080
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0080
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0085
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0090
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0095
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0095
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0095
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0095
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0095
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0095
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0095
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0095
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0095
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0095
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0095
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0095
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0100
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0100
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0100
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0100
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0100
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0100
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0100
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0100
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0100
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0100
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0100
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0100
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0100
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0100
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0100
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0100
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0100
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0105
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0110
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0115
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0120
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0125
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0130


2

1

1

1
1

80 P.R. Andronov, S.V. Guvernyuk / Journal of Applied Mathematics and Mechanics 79 (2015) 270–280

2. Buchin VA, Guvernyuk SV, Feshchenko SA. Solution of the problem of the outflow of a fluid from a half-space through a partially permeable wall. Fluid Dyn
1985;20(5):815–7.

3. Muskhelishvili NI. Singular Integral Equations. Boundary Value Problems in the Theory of Functions and Some of Their Applications in Mathematical Physics, 3rd Revised and
Enlarged  Edition. Moscow: Nauka; 1968.
4. Gurevich MI.  Theory of Jets in Ideal Fluids.  Academic Press: New York; 1965.
5. Lobanov NA. Fundamentals of the Design and Construction of Parachutes. Moscow: Mashinostroyeniye; 1965.

Translated by E.L.S.

http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0135
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0140
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0145
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0145
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0145
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0145
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0145
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0145
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0145
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0145
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0145
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0145
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0145
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0145
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0145
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0145
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0150
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0150
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0150
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0150
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0150
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0150
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0150
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0150
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0150
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0150
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0150
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0150
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0150
http://refhub.elsevier.com/S0021-8928(15)00109-4/sbref0150

	The streamline flow around a permeable plate in a plane-parallel channel
	1 Statement of the problem
	2 Construction of the solution
	3 Analysis of the results
	4 The theory of combined permeability
	5 Conclusion
	Acknowledgement
	References


