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Pendulum with vertically vibrating pivot (PVVP) is one of the most studied classical
systems with parametric excitation. Despite the popularity of the PVVP, in the liter-
ature [1, 2, 3, 4] etc., the author could not found analytical solutions with higher than
the first order approximation of nonlinear oscillations.

In dimensionless parameters the equation of PVVP can be expressed as
0 + Buwb + (w® + ep(1)) sin(6) = 0, (1)

were 6 is the angle of PVVP, w is the natural frequency, the upper dot denotes differen-
tiation with respect to time 7 and function ¢(7) is zero mean, and 27 periodic.

We assume that relative amplitude of excitation ¢ and damping S are small of the
same order ¢ ~ < 1. Then system (1) can be referred to as close to hamiltonian
system. To solve system (1) we will use averaging method [4, 5|. To do so we need to
write (1) in the standard form of first order differential equations with small right-hand
sides. It is shown in [5] that for such transformation one needs only first integrals of the
unperturbed system 6 + w?sin(f) = 0. First integral is 2 = 2w? (cos(f) — cos(a)), where

a is the amplitude of oscillations. We are to express oscillating angle 6 via monotonicity

a

2) as it is usually done

increasing fast phase 1 along with new slow variable k = sin(

in the process of solving the unperturbed equation, e. g. [6]: sin (g) = ksin (¢0). We

differentiate the expressions for new variables k? = sin? (g) + 46%, 1) = arctan <27‘” sin( g))

with respect to 7 and substitute in there expressions for 8, 6, and 6 in terms of k and W
k= —k (E ©(7) sin(1p) cos(1h) /1 — k2 sin? () + Bw cos2(z/z)) (2)
w
v = <w + 5 o(T) sin2(z/1)> 1 — k2sin®(v) + Bwsin(¢)) cos()). (3)
The unperturbed system k = 0, ¢ = wy/1 — k2 sin?(¢)) has the two first integrals

1Y d
T—Ty= —/ il , k= const. (4)
w Jo /1 - k2sin®(n)




To study resonant dynamics we introduce resonance ratio p: ¢, where p and ¢ are
natural numbers, so when time 7 increments by 27wq fast phase v increments by 27p. This

resonance condition binds time 7 and phase v by the relation F(¢), k) = K (k)22(1 —19),

7q
where F'(1, k) denotes the first kind elliptic integral in the right hand-side of (4), and

K(k) = F(n/2,k) the complete first kind elliptic integral. From this resonant condition

Tql(,k)
2wpK (k)

& k (i o(T(¥, k) sin(21)) /1 — k2 sin?(y) + Bw cosz(w)) 5
Ay (W £ p(r(v, k) sin?(¢)) /1 — KZsin®() + 22 sin(24))

that we present in the standard form augmented with expansion for 7
dk
dy

T = To(,k)+eTi(v, k) + ..., (7)

we have 7 = 19 + . In the perturbed case system (2)—(3) yields

= 5X1(7—7¢7k)+52X2(7_7¢7k)+"'7 (6)

where Ty (¢, k) = 1o+ gZJZ %’(;"’)) ; T1(1, k) is chosen to eliminate secular terms in the solution

k=Fk+eui (v, k) + c2us (¢, k) + ... that transforms (6) to % =0, (k) +&204(k) + . . ..

We study resonant oscillations p:¢ = 1:2, 1:4 with excitation function ¢(7) = cos(7).
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