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Abstract: Active and passive systems of optical remote sensing are considered as an 
alternative to the common-used ground-based forest inventory. The relevant 
laborious works of the forest inventory are outlined on the probe areas within 
Russian forest ranger stations. Imaging spectrometers with hundreds of spectral 
channels in visible and near infrared region are designed to enhance the information 
content of the hyperspectral imagery processing. Comparisons are given of these 
traditional techniques of forest inventory and the newly defined approaches of data 
processing for a selected test area. These approaches include pattern recognition 
methods of forest classification of different species and ages as well as the retrieval of 
such parameters of forests as the Net Primary Productivity (NPP) and similar other 
information products. The NPP products can be used for parameterization of 
forested environments in climate models.   

Keywords: active and passive remote sensing systems, forest inventory, biological 
productivity retrival 

1. Introduction 

A typical work of ground-based forest inventory in Russia implies the use of 
normative indicators and the relevant instrumentation techniques based on any 
reference materials where general and regional characteristics of forest growth and 
forest productivity are taken into account [22]. This work has had a long history in 
Russia. Forest inventory maps are created in accordance with separate quarters and 
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plots within them during specially arranged field campaigns. Prevailing species 
composition of trees, their area of growth, age and site index are among the related 
forest characterization parameters. The measurable parameters are wood stock (the 
trunk volume), the tree height and the stand density in a particular plot. Besides that, 
the forest stand typology contains many unique categories characterizing the inter-
crown vegetation (fens, shrubs, various grasses, sphagnum, etc.). Additionally, geo-
botanical descriptions could characterize the plots having in mind the relief of place 
and soil cover, clumping effect of grasses and shrubs due to their vertical 
distribution, different mosses and lichens, etc.  

This routine work must be adapted to the current climate change impacts. A review 
is given by [9] as to multiple forms of knowledge and new approaches to forest 
management decisions in Europe. Partnerships integrating researchers from multiple 
disciplines with forest managers and local actors can facilitate improved decision 
making in the face of climate change. These adaptation options for forest 
management identified in this review by the Web of Science literature published 
between 1945 and 2013 serve to integrate traditional forest ecosystem sciences with 
social, economic and behavioral sciences to improve decision making. 

The listed directions of the forest inventory are designed to enhance efficiency of the 
forest management while Net Primary Productivity (NPP) estimates for particular 
forest classes are conducted by researchers, including models of understanding 
processes of the forest exchange by substance and energy with the environment. NPP 
values represent the amount of chemical energy as biomass produced in a given 
length of time during the photosynthesis process minus respiration by the related 
plants as living organisms.  

The NPP estimates are based on models of ratio of the phytomass fractions 
(leaves/needles, branches, etc.) to the forest yield as some functions (usually as an 
exponent function) from the site index [17], age and relative stand density index of 
an area by the stands. The models use the known tables of growth rates and 
productivity of the main Euro-Asian species. Some results of pattern recognition of 
forests of different species and ages within a test area using multispectral and 
hyperspectral airborne imagery processing as well as NPP estimates for the main 
species are given by [11].  

In [18] different climate change scenarios at a large number of sites were modeled to 
assess NPP products in Europe and at the species level. Using scenarios is only a first 
stage of the studies. Hyperspectral remote sensing and the related classification 
techniques of imagery processing allows us to obtain more precise NPP estimates for 
different forest classes that looks attractive from the scientific point of view. Our 
main objective is to classify regional data using the imaging spectrometer to 
recognize forests of different species and ages and further to find NPP estimates. 
These ideas are realized in [12] based on an airborne instrument produced in Russia. 
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Retrieval procedures of forest stand attributes using optical airborne remote sensing 
data are given in [13].  

This paper deals with comparisons of the common-used in Russia forest 
management practices and the newly defined techniques of remote sensing 
hyperspectral imagery processing. We consider main direction of the forest 
management issues as well as the aggregated models to estimate biomass of forest 
fractions within a climate model cell. After that main priorities of photonics and 
computers are reviewed to understand the proposed instrumentation of remote 
sensing and the forest applications for selected test sites. Pattern recognition of the 
forest classes of different species and ages and the forest stand parameters retrieval 
are the main directions of the relevant applications. As a result, the accuracy of the 
hyperspectral imagery processing is shown to be comparable with routine laborious 
works of ground-based forest inventory. This means that prospects are feasible to 
replace the laborious works by the more effective remote sensing monitoring of 
forest species and ages using the elaborated computational procedures. 
2. Forest management in Russia 

Ministry of Natural Resources and Environment of Russian Federation is the main 
body of the executive power that puts into practice the functions concerning state 
politics and legal regulation in the sphere of studying, use, reproducing and natural 
resources protection. These resources include mineral wealth, water bodies, forests, 
animals and their environment, land use objects, hunting and environmental 
protection incorporating environmental monitoring and waste product treatments. 
The ministry coordinates within its jurisdiction Federal Service on 
Hydrometeorology and Environmental Monitoring, Federal Service on Supervision 
in the sphere of Natural Resources Use, Federal Agency of Water Resources, Federal 
Agency of Forestry, etc. 

Federal Agency of Forestry implements the control and supervision functions in the 
field of forest relations for all areas, excluding specially protected terrains. The main 
rights concerning use, protection and reproduction of forests authorized to the 
subjects of Russian Federation. The Agency realizes its activity via territorial bodies, 
including local organizations and communities. Forest ranger stations and parks are 
the main territorial units of the forest management. The state program adopted by 
the Russian government is directed to decreasing losses from forest fires, pests and 
illegal logging, creating conditions for rational forest use, supplying budgets 
between logging and forest restoration, efficiency enhancing of forest management. 

Forest plans of each subject of Russian Federation are the main documents to 
enhance efficiency of use, protection and reproduction of forests within particular 
forest ranger stations and parks. These plans have been accepted by all subjects in 
2008-2009 in accordance with Forest Charter. Forestry regulations are given by 
parameters of the complex forest use within these stations and parks. The state or 
municipal expertise of these plans is due to be carried out.  
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The state inventory of forests is arranged to outline development of possible negative 
impacts on forests, to assess efficiency of the accomplishments of use, protection and 
reproduction of forests as well as the relevant information supply of forest inventory. 
Special probe areas are created for these purposes based on statistical techniques of 
forest inventory to obtain reliable information about the forests. Analytical reviews 
are prepared for these probe areas to characterize the forests by their quantitative 
and qualitative parameters. More than 47 thousands of such probe areas have been 
laid down since 2007. Fig. 1 depicts formation of this laborious work. We consider in 
this paper an alternative of the forest inventory using more effective remote sensing 
techniques. 

 
Fig. 1. Formation of the national system of the forest inventory within the subjects of Russian 
Federation. 

Remote sensing monitoring is implemented to fix the following violation of the law 
in Russian Federation: illegal logging, violation in allowable observance of the 
cutting area, unlawful use of the forest areas. The forest management is the main 
information resource of sustainable forest use. Its main objectives are: projecting 
forest ranger stations and parks, projecting reserve forests, fixing the place of the 
stations and parks, forest inventory, projecting accomplishments of use, protection 
and reproduction of forests.  

The state forest catalogue represents the document about the forests, their use, 
protection and reproduction, the forest ranger stations and parks. Besides that, the 
forest cadastre serves to identify boundaries between particular forests.  
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We present here the relevant categories of the common-used forest management to 
better understand the opportunities of updated forest monitoring using advances in 
photonics to create remote sensing devices and in computer means of data 
processing. Before that, however, we return to the main postulates of forest science, 
i.e. the growth rates and biological productivity of major tree’s fractions (stem, bark, 
branches, leaves/needles, butts and roots) referring to initial data base on the 
Northern Eurasia level given by [19]. 

3. Aggregated models to estimate biomass of fractions within a climate model cell 

Attempts are undertaken in [19] to extend the available materials concerning the 
biomass of fractions for particular species on a continental level. Their modeling 
applications need to be cleared up for particular calculation nodes of the modeling 
cell used. Existing tables of the tree’s growth rates on the continental level are initial 
for NPP estimates of the related forest ecosystems. These tables were analyzed by us 
to unify the models for selected species. Our implication is to improve the related 
parameterization schemes of forests in climate models using hyperspectral remote 
sensing data processing.  

Data sorting agrees with the biological parameters productivity calculations. 
Transition coefficients used for the conversion of forest yield to phytomass of 
separate fractions are defined by two types of equations with the common-used 
notations 
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where 1 5, ,C C   are the regression coefficients, A  – the age of the forest stands, RS  – 
the relative stand density index within particular space of the corresponding plot, SI  
– the site index. 

The existing comprehensive tables and their analytical approximation by (1-2) 
containing information about 35 parameters of the related fractions represent the 
growth rates and biological productivity of the main species. These are parameters of 
forest yield, site index, age of tree’s stands, phytomass of stems, crowns, roots and 
particular plants, phytomass rates, net primary productivity of the canopy in general 
as well as productivity of stems, crowns and plants on specific soils, etc. The sets of 
parameters embed the known facts of observational studies in forest science.  

Fig. 2 shows as an example of a scattering graph of the forest yield depending of the 
stem with bark phytomass on a unit area. We can see that a linear relationship is 
apparent in this case. This enables us (see [14]) to link the phytomass amount 
retrieved by hyperspectral imagery processing for a particular class of forests and the 
forest yield as the main forestry characterization. The Bayesian classifier of statistical 
decision making is used first to retrieve the composition of mixed forests for any 
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scene under processing [15] and after that to retrieve the phytomass amount for the 
related forests.  

 
Fig. 2. The forest yield as a function of the stem with bark phytomass on a unit area. 

A necessity has emerged to create data bases in the form of MATLAB structure we 
are operating with while hyperspectral imagery processing. A general scheme of the 
structure for the forest applications is given by Fig. 3. The variable branch contains the 
information about possible values of the variables SI , A  and RS  mentioned in 
formulae (1-2). The name branch contains names of the mentioned variables, the value 
branch contains the possible numerical values and the str branch – contains possible 
character values if they exist. The parameter branch contains the data about total and 
fractional phytomasses, carbon contents, losses and productivities of forest stands (35 
different biological parameters in total) is given by the related functions of the 
mentioned 3 variables for different species. Codes of these parameters are presented 
by the name branch with their description and units in Russian (unit-rus) and English 
(unit-eng). The number of branches within the tree types group is determined by tree’s 
species available (alder black, aspen, birch, lime tree, larch, oak seed, oak verdure, 
pine, spruce etc.). This structure allows us to find easily the values of biological 
productivity parameters for given age, relative stand density index and site index. As 
a result of these modeling constraints, a linear interpolation is used to merge remote 
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sensing hyperspectral imagery processing with the modeling cells of the biomass 
fractions. 

 
Fig. 3. Structure of modeling data for MATLAB system. Intermediate nodes of the tree 
structure within the modeling cell are shown by blue color while final nodes are shown by 
green color. 

4. Measuring and data processing system 

The measuring scheme used includes the modern achievements in photonics – the 
physical science dealing with different light manipulation applications and 
associated first of all with the laser invention. Coherent optics methods are important 
not only in laser construction, but in real-time communications and image 
transmission [2]. Information and communication technology applications such as 
sensors are among priorities integrating science and technology [20]. Not only the 
lidars (laser active optical systems), but the passive systems operating with the solar 
illumination conditions are important for remote sensing depending on radiometric, 
spectral and spatial properties of the related devices. Integration of photonic and 
information technologies connected with computer sciences is one of priorities in 
world markets. 

In spite of advances in hyperspectral remote sensing imagery processing, the 
problem of the related applications is far from being solved using supercomputers. 
The main task of these computations is to find an objective function to optimize the 
vision problem. The optimization is needed due to various uncertainties in this 
problem. Machine-learning algorithms are common-used to improve the accuracy of 
the pattern recognition problem by combining spectral and texture feature selection 
on the processed images [7]. 

Unique technologies of remote sensing have emerged lately concerning precise 
determination of place and orientation in space of Unmanned Aerial Vehicles (UAV) 
to measure the related scenes. Scanning lidars and imaging spectrometers are used 
for obtaining these both types of images. The lidars serve to extract 3D structure of 
the forest canopy [3, 10] having in mind relief and other horizontal inhomogeneity of 
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the land surface and forests. Imaging spectrometers are designed to build classifiers 
(computational procedures) using spectral and texture features of a scene under 
processing [16]. 

Typical classifiers are based on representation of any spectral measurement in multi-
dimensional feature space given by the number of spectral channels. Each spectrum 
is given by a point in this space. Different points might be merged defining if they 
belong to the same class of objects. The problem of pattern recognition is to separate 
the boundaries between the classes encountered.  

The following classifiers are the most often used in machine-learning algorithms of 
optical remote sensing imagery processing: the metrical classifier operating with 
Euclidean distance between any points of the multi-dimensional feature space given 
by registered spectra [1]; the K nearest neighbors classifier (К is a positive integer, 
typically small in comparison with the number of samples in the training set) based 
on a majority vote for neighboring pixels of the recognized objects [5]; the Bayesian 
classifier of statistical decision making [4]; the Support Vector Machine classifier 
dealing with stable solutions of the mini-max optimization problem [21] and their 
different modifications. Priorities and deficiencies of the listed classifiers are 
discussed in [16]. 

Fig. 4 reveals a schematic view of airborne passive and active remote sensing. Direct 
solar radiation and diffuse scattered radiation incoming from each place of the sky 
received by passive sensors and are the main sources of spectral information. The 
scattered echo-signals of the active scanning systems form the images reacting on the 
clumping effect of consequent receiving echo-signals from the ground level and 
other forest phyto-elements for neighboring pixels in the near to nadir view angles. 
As a result, both types of images (from these passive and active systems) are 
registered giving rise to new techniques of remote sensing data processing. 

 
Fig. 4. Schematic representation of passive (a) and active (b) remote sensing systems. 
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5. Forest applications 

We illustrate here some results of the passive remote sensing system given by the 
airborne imaging spectrometer produced in Russia as compared with the ground-
based forest inventory. The entire test area of the size about 4x10 km was 
encompassed by 13 overlapped tracks obtained from the airplane equipped on the 
same gyro-stabilized platform by the imaging spectrometer and photo-camera [13]. 
The spatial resolution across the track is stable and amounts to 1.1 m at the flight 
altitude about 2 km above the ground level. The pixel size along the track depends 
on the flight speed and changes within 0.66-0.91 m. We show here some results for 
the small test area defined by the frame of yellow color at Fig. 5 containing the matrix 
of the relevant image of the size 120 x 50 pixels.   

Fig. 5 represents this test area within the ground-based forest inventory map. The 
location of this small area is highlighted by the yellow frame. Typical in Russia forest 
inventory is given by this colored map in the form of the quarters (bold numbers 49-
52, 60-65 at Fig. 5) and the plots within these quarters (convenient numbers). The 
colors of these plots correspond to the prevailing species: orange for pine, blue for 
birch, green for aspen. The darker color is consistent with the more age of the stands 
on the map. The former logging places are denoted by the horizontal red lines. 
Typical for each plot are the following four numbers: a conditional number of the 
plot, the average age of the forest stands on it (the upper part in the related 
numbers), area of the plot (m2), its site index (the lower numbers at Fig. 5). In general, 
the more the value of site index, the less quality of the wood in the corresponding 
plot. Not for all plots these four numbers are presented at Fig. 5.  

 

 
Fig. 5. The test area (the yellow frame) within the ground-based forest inventory map. 
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The recognition results of the forest stand composition within the yellow frame using 
the processed hyperspectral image are shown on Fig. 6 taking into account three 
levels of the Sun illumination of tree’s crowns: the sunlit tops, the shaded 
background, the intermediate pixels of partly illuminated and partly shaded 
conditions. These three categories of the current optical state of the forest canopy on 
the image under processing, called as the canopy end-members [8], represent 
neighboring pixel’s alternation for a particular class of forests containing different 
stands. Details of the recognition using Bayesian classifier and the mentioned three 
levels of the Sun illumination conditions remotely sensed by the airborne imaging 
spectrometer are given in [12, 15].  

The recognition is based on the completely different spectra of the end-members: the 
availability of the red edge (a transitional zone between the chlorophyll absorption 
spectral band and maximum of spectral reflectivity) for the sunlit pixels and the 
background pixels illuminated by the diffuse scattered radiation of the Sun. 

In this paper we used the supervised classification algorithm based on the technique 
of error correcting output codes (ECOC) [6] for solving the problem of recognition of 
the species composition of forest stands. This method uses several approaches from 
the information coding theory for the formalization of extending binary classifiers to 
the multiclass case. Feature space was reduced in accordance with the method and 
results of the selection of the most informative spectral channels represented in [13]. 

The plots counted from 1 to 13 are selected for the recognition. The comparison of 
these classification results with Fig. 5 of the ground-based forest inventory shows 
that the available inventory needs renewal. In particular, the pure pine species 
(denoted by 10P, P – pine, B – birch, S – spruce) numbered here as 2 and 3 (11 and 12 
at Fig. 5) give in the place to 9P1B and 8P1B1S for the plots 11 and 13 (correspond to 
the second part of the plot 12 and 14 at Fig. 5), respectively. Besides that, the pine 
plot number 9 at Fig. 6 can be seen to consist now of pure pine species instead of the 
plot number 9 at Fig. 5 denoted as the logging place that has been re-growing from 
the time of the last inventory. Some details of the pine, birch and aspen species 
composition are reproduced at Fig. 6 for other plots. 

Fig. 7 shows the results of retrieval of NPP values for the test area of Fig. 6 using 
models from [11, 14] for the image of the size 120 x 50 pixels. We can see that low 
NPP values (near to 15 g / (m2 year)) correspond to the pure pine stands while for the 
mixed forest with prevailing birch stands has the higher values (such as 600 g / (m2 
year)). The former logging places (such as the plot number 9 at Fig. 6) have the 
intermediate values (near to 300 g / (m2 year)). These facts can be used to improve 
parameterization schemes of the forested environments in climate models. Detailed 
description of each plot by imaging spectrometer contributes to these improvements 
and enhances efficiency of remote sensing as compared with routine ground-based 
observations.  
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Additionally, values of stem with bark biomass (Fig. 8) given by the fraction models 
can improve the parameterization schemes and forest biodiversity. In particular, 
details can be seen on the selected plots: low values of these characteristics (near to 
0.5 t/ha) are mainly on the upper left diagonal of Fig. 8, but higher values (near to 100 
t/ha) for the birch stands, and very high values (near to 130 t/ha) characterize not 
only the former logging places grown-up at the time of survey, but some other places 
on the scene. The results of remote sensing imagery processing are new, thought-
provoking and need to find coincidence with common-used forest science. 

 
Fig. 6. Pattern recognition of the species composition for the selected 13 plots in accordance 
with the Sun illumination conditions for three types of the canopy end-members: sunlit tops, 
completely shaded background and partly illuminated and partly shaded phyto-elements. 

 
Fig. 7. NPP values (g / (m2 year)) retrieved by the proposed models of the recognition and 
forest parameter estimates. Black color pixels correspond to unrecognized objects. 
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Fig. 8. Retrieval of stem with bark biomass for the test area (t/ha). Black color pixels 
correspond to unrecognized objects. 

6. Conclusion 

Existing plans to use the probe areas within Russian forest ranger stations for 
traditional ground-based forest inventory may have an alternative of aerial remote 
sensing provided proofs are given that the accuracy of these new techniques of 
imagery processing is comparable with that of the laborious works on the probe 
areas. Forest management in Russia is described with the emphasis on these 
traditional approaches. Besides that, aggregated models to estimate biomass of forest 
fractions within a climate model cell are given for enhanced parameterization of 
forested environments in climate models. Advances in photonics and computers can 
facilitate these new techniques. We have shown some results of imagery processing 
using the airborne imaging spectrometer produced in Russia as compared with the 
ground-based forest inventory. Pattern recognition methods are elaborated for 
classification of forest of different species and ages on a selected test area. NPP 
values as the main information products of the biological productivity of forests are 
then retrieved to demonstrate the recognition results and forest parameter estimates. 
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