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Abstract: New major, trace and rare earth element (REE) data, and Sr-Nd isotopic compositions of jadeitite and REE-Hf-O isotopic
compositions of zircon in jadeitite of the Syum-Keu ultramafic complex of the Polar Urals are used to constrain its origin and source.

The jadeitites have high contents of Na,O (12.80-14.56 wt%), Al,O5 (20.30-23.81 wt%), SiO, (58.47-59.50 wt%), and are
enriched in Sr, Ba, Zr, Hf and depleted in Nb relative to primitive mantle values. Chondrite-normalized REE patterns of the jadeitite
display weakly U-shaped distribution patterns, with Lan/Yby ratios of 0.82-2.42, and very weak positive Eu anomalies (6Eu = 1.2—
1.6). The initial Sr isotopic compositions of the jadeitite range from 0.704000 to 0.703519 (¢ = 368 Ma), and the initial Nd-isotope
ratios (eng = +0.77 to +5.61) differ from those of ancient ocean water, oceanic sediments and eclogite, metagranite, and
metasediments in the nearby Marun-Keu complex.

Zircons from the jadeitite have variable REE contents (37-587 ppm) and are enriched in HREE, with Lacn/Ybcy ratios ranging
from 0.001 to 0.01, and Lucn/Gdcy ratios ranging from 10 to 83. Cerium shows positive anomalies with Ce/Ce* values ranging from
2.8 to 72, and 8Eu from 0.53 to 1.02. The '"®Hf/""Hf ratios of the zircons range from 0.282708 to 0.283017, with initial Hf isotope
compositions ranging from 6.5 to 17.4. These characteristics resemble those of zircons from depleted mantle-derived magmas. The
3'%0 isotope compositions of the zircons range from 5.03%o to 6.04%o, with an averaged value of 5.45 £ 0.11%o, similar to those of
mantle rocks, suggesting that the zircons were acquired from precursor igneous rocks, and then transported and reworked by fluids
from the subducting slab. Our new results show that the jadeitite was precipitated from material mainly produced by fluid interaction

with mafic-ultramafic rocks in a subduction zone environment.

Key-words: jadeitite, geochemistry, zircon, Hf-O isotope, fluids in subduction zone, Polar Urals, Russia.

1. Introduction

The global distribution of jadeitites indicates a genetic
association with subduction/collision processes (Harlow
& Sorensen, 2005). They commonly occur as enclaves or
veins within serpentinized peridotite associated with
ophiolites. Recent studies suggest that jadeitites may be
divided into R-type (replacement) and P-type (precipita-
tion) varieties (Tsujimori & Harlow, 2012; Flores et al.,
2013). Most researchers considered that the R-type jadei-
tites formed by recrystallization of subducted oceanic
crust, as indicated by remnants of pyroxene and zircon
(e.g., Dobretsov & Ponomareva, 1965; Shi et al., 2003;
Harlow & Sorensen, 2005; Shi et al., 2005; Shigeno
et al., 2005; Fu et al., 2010; Compagnoni et al., 2012;
Tsujimori & Harlow, 2012), or by interaction between
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fluids and the protolith minerals (Shigeno et al., 2005). In
contrast, jadeitites characterized by oscillatory mineral
zoning, fluid inclusions, and a lack of relic minerals,
have been attributed to precipitation from Na-Al-Si rich
fluids (the P-type variety) (Sorensen et al., 2006; Meng
et al., 2007; Morishita et al., 2007; Garcia-Casco et al.,
2009; Yui et al., 2010). However, the source of P-type
jadeitites is not well constrained. For instance, seawater
and fluids released by dehydration of subducting oceanic
crust are potential sources of Na-Al-Si fluids produced by
dehydration of sediments in subduction zones (Harlow &
Sorensen, 2005), and these can interact with felsic or
mafic tectonic blocks associated with ultramafic rocks
(Yui et al., 2010). Discoveries of Ba-rich feldspar and
spherules of pure iron in some jadeitites, as well as their
Li-isotopic compositions, suggest that they were derived
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from subducting sediments (Morishita, 2005; Shi et al.,
2010, 2011; Simons et al., 2010). Although zircons are
common in jadeitites, it has been difficult to define their
origin (Shi et al., 2008; Qiu et al., 2009; Fu et al., 2010;
Yui et al., 2010, 2012, 2013; Flores et al., 2013).

This paper reports new geochemical data and Sr-Nd
isotopic compositions of jadeitite samples from the
Syum-Keu complex, Polar Urals, Russia, as well as
REE and Hf-O isotope data of the associated zircons to
constrain the source of the jadeitite.

2. Geological background

The Polar Urals are located in the northernmost part of the
Urals orogenic belt (Fig. 1a), where remnants of both the
East European plate and West Siberian plate are preserved
(Savelieva & Nesbitt, 1996; Puchkov, 2009). The study area
lies in the northern end of the Polar Urals (Fig. 1b), a region
of arc—continent collision (Puchkov, 2009). The western
portion belongs to the East European continental margin,
consisting of Paleozoic sedimentary rocks (Pz), greenschist-
facies metasedimentary rocks (Niaroveyskaya Suite) and
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high-pressure gneiss (Marun-Keu complex [MK]) with
eclogites and blueschists (e.g., Udovkina, 1985;
Dobretsov, 1991; Molina et al., 2002, 2004; Glodny et al.,
2003, 2004). The eastern part of the orogen is a relic of
oceanic lithosphere, which was obducted westward onto the
Niaroveyskaya Suite. This region is characterized by the
occurrence of ultramafic rocks (Syum-Keu complex [SK]),
composed of a complicated association of dunite-wehrlite-
clinopyroxenite, gabbro and metagabbro (Malyko), minor
Paleozoic granodiorites and granites, and Mesozoic sedi-
mentary cover (Mz), all thought to represent an ophiolite
assemblage (e.g., Moldavantsev & Kazak, 1977; Makeyev
et al., 1985; Shmelev, 1991; Kulikova, 2005; Savelieva &
Suslov, 2014).

2.1. The Marun-Keu (MK) complex

The MK complex is hosted in the greenschist-facies metase-
dimentary rocks (Niaroveyskaya Suite) (Fig. 1b). It is a high-
pressure suite consisting of blueschists, felsic gneisses, garnet
amphibolites and eclogites (Udovkina, 1985; Dobretsov,
1991; Molina et al., 2002, 2004; Glodny et al., 2003,
2004). The peak metamorphic temperatures and pressures
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Fig. 1. Simplified geological map of the Marun-Keu complex (MK) and Syum-Keu complex (SK) in the Polar Urals (modified after
Makeyev et al., 1985; Udovkina, 1985; Shmelev, 1991; Kulikova, 2005). (online version in colour)
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of the blueschists in the northern segment were 500 °C and
1011 kbar (Dobretsov & Sobolev, 1984), whereas the eclo-
gites in the central and southern segments experienced some-
what higher temperatures (600—650 °C) and pressures (14-17
kbar) (Udovkina, 1985; Molina et al., 2002). The meta-
morphic ages of the eclogites are 360-355 Ma (Shatsky
et al., 2000; Glodny et al., 2003, 2004). The MK complex
has been considered as either part of the subducted East
European continental margin (Glodny et al., 2003, 2004),
or the product of collision between the passive East European
plate and the subducted Paleo-Urals oceanic lithosphere
(Dobretsov, 1991).

2.2. The Syum-Keu (SK) complex

The SK complex occurs as a NE-trending block about 60
km long and 12-15 km wide, that crops out over an area of ~
600 km?. Based on its occurrence and geophysical data, the
thickness of the complex is estimated to vary from 1 km on
the west side to 3 km on the east (Fig. 1b). It is composed
mainly of Therzolite, dunite and harzburgite, with lherzolite—
harzburgite occurring predominantly in the west and
dunite—harzburgite in the east (Moldavantsev & Kazak,
1977, Makeyev et al., 1985; Shmelev, 1991, 2011;
Gurskaya & Smelova, 2003; Savelieva & Suslov, 2014).
These rocks contain a few conformable veins of websterite,
and both ortho- and clinopyroxenite, which underwent
intense  ductile deformation during emplacement
(Shmelev, 1991; Savelieva & Suslov, 2014). The entire
complex is variably serpentinized (45-65 vol%)
(Makeyev, 1992). A Sm—Nd mineral isochron age of 523
+ 10 Ma has been obtained from the harzburgite
(Andreichev, 2004). On the basis of its geological, miner-
alogical and geochemical character, the SK complex is
considered to be part of a Suprasubduction zone-type ophio-
lite (Shmelev, 2011), specifically a mantle section of the
ophiolite allochthon (Savelieva & Suslov, 2014).

The crustal section on the eastern side is composed of
layered dunite, wehrlite, clinopyroxenite, Malyko gabbro,
and metagabbro with a few plagiogranites. The gabbros
were formed in a back-arc basin or an island arc environ-
ment (Kulikova, 2005). Zircons from lenses of plagiogra-
nite in the metagabbro yielded a U-Pb age of 451 + 14Ma
(Andreichev, 2004), which was interpreted as the age of the
oceanic crust. The crust and mantle sections are not geneti-
cally linked by a simple melt-residue relationship, and the
contact between the SK complex and cumulate mafic-ultra-
mafic rocks is unclear. Some workers believe that the ophio-
lite sequence was inverted and thrust eastward to form the
garnet-bearing amphibolite (metagabbro) below the SK
complex (Kulikova, 2005). Others have proposed that it
represents the crust-mantle transition zone with the gabbro
overlying the mantle peridotite (Savelieva & Suslov, 2014).

2.3. Occurrences of jadeitite
The Pusyerka jadeitites occur as veins or lenses in the base

of'the peridotite on the west side of the SK complex, where
they were first mined in 1980 (Fig. 1b). Jadeite
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mineralization took place in the serpentinized dunite-harz-
burgite wall rock (Fig. 2a, b) and is in fault contact with
dunite-harzburgite, dipping 50-70° SE (Fishman, 2006;
Meng et al., 2011). In the strongly serpentinized segment,
there are numerous jadeitite veins, striking N30°E (Fig. 2a).
The abundance of jadeitite veins increases from NE to SW.
The veins are 20—100 m thick and extend along strike for up
to about 10 km. More than 70 jadeitite bodies have been
identified. They are mainly brecciated blocks of eluvial or
slope deposits. Primary veins are exposed locally (Fishman,
2006), and are hosted directly in dark serpentinite composed
mainly of antigorite, brucite, and magnetite, with minor
anthophyllite and phlogopite (Makeyev, 1992). These char-
acteristics of the Pusyerka jadeitite bodies resemble those of
the Levoketchpel deposits at Voykar-Synisky in the Polar
Urals (e.g., Dobretsov & Ponomareva, 1965; Harlow &
Sorensen, 2005). The jadeitite consists mainly of jadeite
(Jdgs_gg), with minor omphacite (Jdss.74) and zircon
(Fig. 2¢). Oscillatory zoning (Fig. 2d) and fluid inclusions
are well developed in the jadeite (Meng et al., 2007,
2011). Zircon SHRIMP dating yielded a weighted mean
206ppb/238U age of 404 +7 Ma for the jadeitite, with the
youngest age being 368 £ 11 Ma (Meng et al., 2011).

3. Analytical methods

All jadeitite samples were collected from loose blocks of the
same vein (Fig. 2a), and the zircons were separated from
jadeitite sample Y5-100 (Meng et al., 2011). Abundances of
whole-rock major elements were determined by XRF (using
3080E) and ICP-MS (Excell) at the National Research
Center for Geoanalysis (NRCG), Chinese Academy of
Geological Sciences (CAGS) in Beijing, with a precision
better than 2 % for all oxides. Trace element abundances of
whole-rock samples were measured by ICP-MS (Excell)
with a precision of 5-8 %. Strontium and Nd isotopic
compositions were determined by thermal ionization spec-
trometry (MAT262) at the Department of Earth Sciences,
National Cheng-Kung University, Taiwan, following the
procedures of Tseng et al. (2009).

Zircon and jadeite were analyzed for trace element abun-
dances using LA-ICP-MS (Thermo Element II + New Wave
UP213) at the NRCG, CAGS, in Beijing. The spot size is
about 40 um in diameter, and the detailed analytical proce-
dures are described by Hu et al. (2008). The Lu-Hf isotopic
compositions of zircon were measured in situ with a Geolas-
193 laser ablation microprobe, which is attached to a Neptune
multi-collector ICP-MS at the Institute of Mineral Resources
(IMR), CAGS. The analytical procedures are described by
Hou et al. (2007). Calculation of Hf-model ages (Tpy) is
based on a depleted-mantle source with a present-day
"76H£/'"THf = 0.28325, using a '"®Lu decay constant of
1.865 x 10 "' year ' (Scherer et al., 2001). The gHf(t)
values were calculated from zircon U-Pb ages and the
chondritic '"°Hf/'”’"Hf and '"°Lu/'”’Hf values of
0.282772 and 0.0332, respectively (Blichert-Toft &
Albaréde, 1997). Oxygen isotopic compositions of



1082

F. Meng et al.

Olivine

Olivine
Serpentine®

——Spinel

Olivine

Olivine

Fig. 2. Occurrence and photomicrographs of Pusyerka jadeitite from the Polar Urals (a) Jadeitite veins in serpentinite; size of vein is
10 x 2 m; (b) Dunite composed of olivine + spinel, as wall-rock of the jadeitite; (¢) Zircons in jadeite; (d) Jadeitite with coarse-grained
texture; some jadeite with concentric and oscillatory zoning. (online version in colour)

zircon were measured in situ at the Institute of
Geology and Geophysics (IGG), Chinese Academy of
Sciences (CAS), using a CAMECA IMS 1280 with a
~2 nA primary Cs' ion beam accelerated to 10 kV. The
analytical procedures were the same as those described
by Li et al. (2010a). The spot size is about 20 pum in
diameter, including 10 pm beam diameter and 10 um
raster. Negative secondary '®0~ and '°0O™ ions were
extracted at 10 kV and measured in multicollector
mode using two off-axis Faraday cups with an intensity
of '°0O typically at 1 x 10 cps. Each analysis was run
in the sequence of pre-sputtering for 2 min, automatic
beam centering for 1 min, and 80 s (20 cycles) of data
collection. Oxygen isotope ratios are expressed as
3'%0, representing deviation of measured '80/'°0
values from the Vienna standard mean ocean water
(VSMOW) in per mil. All data were then corrected
based on the Temora 2 value of 8.20 %o (Black et al.,
2004). Uncertainties on individual analyses are usually
better than 0.2 %o — 0.3 %o (15). The same spots were
targeted for U-Pb age determination wherever possible.

4. Results

4.1. Major elements

Five jadeitite samples have similar major-element
compositions, with SiO,, Al,Os, and Na,O contents varying
in the ranges of 58.5-59.5 %, 20.3-23.8 %, and 12.8-14.6 %,

respectively. These data are compared to those of oceanic
gabbro and diabase from the Voykar ophiolite and other rocks
from the Marun-Keu complex (Table 1, Fig. 3a, b). The
jadeitite samples are characterized by the highest Na,O and
Al,O5 abundances among all the samples, with their SiO,
contents lower than those of the metagranite and metasedi-
ment samples.

4.2. Trace elements

The jadeitite samples have very low rare earth element (REE)
contents, varying from 1.13 to 5.42 ppm (Table 1, Fig. 4a),
and patterns of four samples are lower than chondrite (except
sample M-18). All samples show slightly concave chondrite-
normalized REE patterns, with slight enrichment in both
LREE and HREE and with small positive Eu anomalies
(0Eu = 1.12-1.60); Lacn/Smey ratios vary from 0.26 to
2.06 and Lacn/Ybey ratios from 0.82 to 2.42. These distribu-
tion patterns are similar to those of the microgabbro and
diabase from the Voykar ophiolite, with the jadeitite samples
having relatively lower REE abundances (Fig. 4a).

In the primitive-mantle-normalized spidergram
(Fig. 4b), the jadeitite samples are notably enriched in
Ba, U, Sr, Zr and Hf, with sample M-18 showing the
highest enrichment in these elements. Uranium and Zr
abundances are higher than the primitive mantle values
by factors of 20 and 50, respectively, displaying strong
crustal signatures (Rollinson, 1993). The extents of Nb
and Ta depletions in these jadeitite samples are similar to
those of arc volcanic rocks (Wlison, 1989).
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Table 1. Major (wt%), REE and trace element (ppm) contents of jadeitite from Syum-Keu (SK), Polar Urals, Russia.

Samples M-18 M-18-1 M-18-2 M-18-4 Y5-100
SiO, 58.47 59.5 59.21 58.65 58.69
TiO, 0.07 0.04 0.05 0.05 0.05
Al,O4 20.3 23.81 23.03 21.22 21.7
Fe, 05 1.05 0.21 0.38 0.88 0.69
FeO 0.23 0.27 0.23 0.27 0.23
MnO 0.02 0.01 0.01 0.02 0.02
MgO 2.8 0.51 0.88 2.35 1.93
CaO 3.75 0.79 1.3 3.12 2.69
Na,O 12.8 14.56 14.06 12.9 13.39
K,0 0.03 0.02 0.02 0.02 0.02
P,0s5 0.01 0.01 0 0.01 0.01
CO, 0.16 0.11 0.12 0.16 0.15
H,O" 0.38 0.3 0.52 0.24 0.23
LOI 0.7 0.58 0.64 0.53 0.54
La 0.56 0.16 0.14 0.26 0.17
Ce 1.76 0.42 0.38 0.89 0.58
Pr 0.23 0.05 0.05 0.13 0.09
Nd 1.14 0.21 0.22 0.68 0.53
Sm 0.29 0.05 0.06 0.16 0.17
Eu 0.10 0.02 0.02 0.06 0.06
Gd 0.26 0.05 0.05 0.13 0.16
Tb 0.04 0.01 0.01 0.02 0.03
Dy 0.33 0.05 0.07 0.12 0.23
Ho 0.08 0.01 0.02 0.03 0.05
Er 0.24 0.03 0.04 0.07 0.14
Tm 0.04 0.01 0.01 0.01 0.02
Yb 0.31 0.06 0.06 0.07 0.14
Lu 0.05 0.01 0.01 0.01 0.02
>REE 5.42 1.14 1.13 2.63 2.39
Lacn/Smen 1.21 2.06 1.46 1.04 0.62
Lacn/Yben 1.22 1.86 1.59 2.42 0.82
SEu 1.12 1.60 1.13 1.33 1.15
Rb 0.75 0.69 0.79 0.15 0.41
Sr 229 65 91 400 137
Ba 12.37 50.65 9.90 22.75 2.70
Cs 0.07 0.02 0.02 0.00 0.02
Zr 637.0 27.0 30.3 43.6 73.2
Hf 18.03 0.74 0.91 1.16 1.82
Nb 0.12 0.19 0.17 0.05 0.05
Ta 0.01 0.02 0.04 0.01 0.01
6] 0.32 0.02 0.02 0.02 0.03
Th 0.21 0.08 0.06 0.03 0.06
Pb 0.20 0.20 0.21 0.07 0.19
Sc 1.30 0.24 0.22 1.02 0.35
Ti 443 317 402 353 369
A% 34.96 4541 54.92 17.08 25.59
Cr 255 14 39 105 20
Co 4.61 2.51 2.50 3.46 3.83
Ni 71.88 6.55 14.49 46.46 52.58
Cu 4.00 6.79 6.80 4.73 6.17
Zn 5.45 6.48 5.63 5.65 6.10
Y 2.74 0.46 0.54 0.91 1.65

Note: Major element analyses performed in National Research Center of Geoanalysis (Beijing);
Trace elements analyses performed in Department of earth sciences, National Cheng-kung University, Tainan, Taiwan

4.3. Sr-Nd isotopes 0.70340-0.70352 and 0.77-5.61, respectively (Figs 5
and 6).

The *'Sr/*°Sr and '**Nd/"**Nd ratios of the five jadeitite )

samples vary from 0.70345 to 0.70360 and from 0.51257 4.4. Trace elements of zircon

to 0.51293, respectively (Tables 2 and 3). Calculated to

the formation age of 368 = 11 Ma (Meng ef al., 2011), the Seventeen LA-ICP-MS trace-element analyses were car-

initial (*’Sr/*°Sr); and eng(368) are in the ranges of ried out on zircon grains from sample Y5-100 (Table 4,
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Table 2. Rb-Sr isotopic compositions of jadeitite from SK, Polar Urals, Russia.
No. Sample Rb (107°) Sr (1079 87Rb/®0Sr 87Sr/%6Sr 26 ®7Sr/88r)t
1 M-18 0.75 228.6 0.009 0.703480 11 0.703434
2 M-18-1 0.69 64.8 0.031 0.703649 11 0.703489
3 M-18-2 0.79 91.3 0.025 0.703604 11 0.703474
4 M-18-4 0.15 400.4 0.001 0.703525 11 0.703519
5 Y5-100 0.41 136.7 0.009 0.703445 11 0.703400
t =368 Ma (after Meng et al., 2011)
Table 3. Nd isotopic compositions of jadeitite and ultramafic rocks from SK, Polar Urals, Russia.
Samples Sm(10%)  Nd(10%  "Sm/'"Nd  'Nd/'"'Nd  Tpmeas fSm/Nd)  eng(0)  ena(t) Ref.
jadeitite
M-18 1.14 0.29 0.1534 0.512573 1.46 -0.22 -1.27 0.77 1
M-18-1 0.21 0.05 0.1352 0.512645 0.98 —-0.31 0.14 3.02 1
M-18-2 0.22 0.06 0.1596 0.512681 1.32 —0.19 0.84 2.58 1
M-18-4 0.68 0.16 0.1392 0.512636 1.05 —-0.29 —0.04 2.66 1
Y5-100 0.53 0.17 0.1964 0.512925 1.97 0.00 5.60 5.61 1
Syum-Keu
k-30/4 harzburgite 0.059 0.252 0.14313 0.512617 1.15 —-0.27 -0.41 2.11 2
r-44 lherzolite 0.086 0.27 0.1935 0.512701 3.36 —-0.02 1.23 1.38 2
c-45/1 gabbronorite 0.132 0.304 0.26265 0.513001 -0.47 0.34 7.08 3.98 2

t = 368 Ma (after Meng et al., 2011);1- this study, analyses performed in Department of earth sciences, National Cheng-kung University, Tainan, Taiwan;

2- Gurskaya & Smelova, 2003.
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Fig. 5. Sr-Nd isotopic compositions of the jadeitite from Pusyerka
in the Polar Urals. Data sources: MORB and ocean water (Zindler
& Hart, 1986; DePaolo, 1988), Marun-Keu complex (Glodny et al.,
2003, 2004).

Fig. 7). Total REE contents vary from 37 to 586 ppm,
with heavy REE enrichments represented by (La/Sm)cy
0f 0.001-1.17, (La/Yb)cn 0f 0.001-0.01 and (Lu/Gd)cy of
10-83 (Fig. 8). All analyses show positive Ce anomalies
with Ce/Ce* ratios of 1.9-99 (Fig. 8), and most zircon
grains display negative Eu anomalies, with Eu/Eu* ran-
ging from 0.69 to 0.99 (Table 4, Fig. 8). Hafnium con-
tents of the zircon grains are very high, between 2,126
and 22,522 ppm (Table 4).
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Fig. 6. "7Sm-"*Nd isotopic compositions of the jadeitite. Data
sources: jadeitite (this study), ultramafic rocks (Gurskaya &
Smelova, 2003), eclogite (Shatsky ez al., 2000; Glodny et al.,
2004; Andreichev et al., 2007), gabbro (Edward & Wasserburg,
1985; Gurskaya & Smelova, 2003).

4.5. Lu-Hf isotopes of zircon

Thirty-one zircons were measured for their Lu-Hf iso-
topes, and the results are given in Table 5; thirteen of
these analyses yielded SHRIMP ages (Fig. 7, Meng et al.,
2011). The '"°Hf/"""Hf ratios of the zircon grains range
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Fig. 8. Chondrite-normalized REE patterns of zircons from jadei-
tite at Pusyerka, Polar Urals. Chondrite value after Boynton
(1984).

from 0.282708 to 0.283017, corresponding to initial epsi-
lon Hf values of +6 to +17 (Fig. 10).

4.6. Oxygen isotopes of zircon

Twenty oxygen isotopic analyses yielded in 8'*0 values of
5.03-6.04%o (Table 6, Fig. 11), with an average of 5.45 £
0.11%o, consistent with being in equilibrium with mantle-
derived melts (3'%0 = 5.3 + 0.6%o; Valley et al., 2005).

5. Discussion

5.1. Fluid composition in an intra-oceanic subduction
zone

5.1.1. Genesis of zircon

The origin of zircon in jadeitite has long been debated.
Currently, two models are suggested for the zircon
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Table 6. In situ 8'30 values (% VSMOW) by SIMS for zircons
from jadeitite (Y5-100) in SK, Polar Urals, Russia.

5'%0 26
Y5-100-1 5.45 0.26
Y5-100-2 5.11 0.28
Y5-100-3 5.62 0.25
Y5-100-4 5.22 0.19
Y5-100-5 5.24 0.35
Y5-100-6 5.75 0.30
Y5-100-7 5.34 0.24
Y5-100-8 5.54 0.33
Y5-100-9 5.39 0.25
Y5-100-10 5.48 0.23
Y5-100-11 5.43 0.27
Y5-100-12 5.49 0.39
Y5-100-13 5.03 0.27
Y5-100-14 5.58 0.19
Y5-100-15 6.04 0.26
Y5-100-16 5.31 0.32
Y5-100-17 5.41 0.38
Y5-100-18 5.43 0.25
Y5-100-19 5.61 0.37
Y5-100-20 5.66 0.35

Note: Analyses performed in institute of Geology and Geophysics, CAS

formation. One suggests a hydrothermal origin (h-type),
in which the grains were precipitated directly from Zr-
saturated hydrothermal fluids along with jadeitite (e.g.,
Qiu et al., 2009; Yui et al., 2010, 2012; Meng et al.,
2011; Flores et al., 2013). The other model suggests a
magmatic or igneous origin for the zircons (Shi et al.,
2008; Fu et al., 2010, 2012; Yui et al., 2013). These two
genetic types of zircon may occur in the same jadeitite, or
even the same zircon grain: for example, some zircons
have magmatic cores, surrounded by hydrothermal rims
(e.g., Fu et al., 2010; Mori et al., 2011). The two types
are distinguished on the basis of internal textures (CL
images), mineral or fluid inclusions, compositions (Th/U
ratios, REE patterns), U-Pb ages and Hf and oxygen
isotopes (e.g., Flores et al., 2013).

Most of the zircons from jadeitite sample Y5-100 show
clear oscillatory or sector zoning in their CL images
(Fig. 7, Meng et al., 2011), reflecting an igneous origin.
Some of the zircons show clear oscillatory zoning in the
core, but have greyish and blurred rims (Fig. 7), similar
to zircons from the Osayama jadeitite in SW Japan
(Tsujimori et al., 2005; Fu et al., 2010), which probably
reflects modification by hydrothermal fluids.

Thorium and U contents of the zircons obtained by
ICP-MS analysis vary from 2 to 239 ppm and 41 to 390
ppm, respectively, producing a wide range of Th/U ratios
(0.07-0.64, Table 4). Similar analyses using the SHRIMP
method produced Th and U concentrations of 2 to 12
ppm, and 48 to 158 ppm, respectively, yielding Th/U
ratios from 0.03 to 0.21, and mostly less than 0.1
(Meng et al., 2011). Although Th/U ratios alone cannot
confirm the origin of individual zircon grains (Harley
et al., 2007), it is generally accepted that hydrothermal
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Meng et al. (2011)
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zircons have very low Th/U ratios, mostly less than 0.1
(Flores et al., 2013; Yui et al., 2013). Hence, our zircons
may reflect both hydrothermal and igneous processes.

Most of the zircons show weak negative Eu anoma-
lies (0Eu = 0.69-0.99, Table 4; Fig. 8), but three show
positive Eu anomalies (1.19, 1.23 and 1.35), which are
similar to those of hydrothermal grains in jadeitites in
Myanmar and Guatemala (Flores et al., 2013; Yui
et al., 2013). Zircons from oceanic gabbros, plagiogra-
nites and ophiolites display obvious negative Eu
anomalies (Grimes et al., 2007, 2009). Yui et al.
(2010) suggested that positive or negative Eu anoma-
lies of zircons reflect the presence or absence, respec-
tively, of plagioclase in rocks through which the
hydrothermal fluids migrated.

On plots of (Sm/La)cy vs. La (ppm) and Ce/Ce* vs.
(Sm/La)cy (Fig. 9), most of the zircons of jadeitite sam-
ple Y5-100 fall in the magmatic field.

Moreover, the zircons have high positive eHf(t) values
(+6 to +17, Table 5, Fig. 10), similar to those of igneous
or hydrothermal zircons in jadeitite from Myanmar (+11
to +20), Japan (+10 to +15), Guatemala (+11 to +13) and
Greece (+10 to +24) (Qiu et al., 2009; Shi et al., 2009; Fu
et al., 2012; Yui et al., 2012). These values are consistent
with those of depleted mantle and young oceanic crust,
suggesting that the protoliths or fluids from which the
jadeitite was formed were related to subducted oceanic
crust (Qiu et al., 2009; Shi et al., 2009; Yui et al., 2012).
The eHf{(t) values of the zircon in the Syum-Keu jadeitite
approach those of zircons from plagiogranite in the Oytag
ophiolitic suite, northwest China (¢Hf(t) +13 to +20,
Jiang et al., 2008), suggesting they are related to
depleted-mantle-derived magma (Fu et al., 2012).

F. Meng et al.

The average oxygen isotopic composition of the SK
zircons (5.45 + 0.11%o; Table 6, Fig. 11) is similar to
that of zircons in the the Syros jadeitite, Greece (5'*0
5.2 £0.5%0, Fu et al., 2010) and in peridotite, plagio-
granite and gabbro in mid-ocean ridges and ophiolites
(Mattey et al., 1994; Cavosie et al., 2009; Grimes et al.,
2011, 2013). These data point to an igneous origin for the
SK zircons and suggest that they are igneous grains inher-
ited from precursor rocks (e.g., Fu et al., 2010). In contrast,
zircons crystallized from fluids show relatively lower oxy-
gen isotopic values, such as the hydrothermal zircons from
jadeitite in Osayama, SW Japan (3'*0 = 3.2-4.5%o; Fu
et al., 2010).

In summary, Th, U, and Eu concentrations, and Th/U
ratios of the zircons from the SK jadeitite Y5-100 display
hydrothermal features, and the La, Sm, Ce and Hf-O iso-
topic compositions reflect intense igneous signals.
Therefore, we infer that the zircons of the jadeitite may
have been acquired from precursor igneous rocks and
reworked by Na—Al-Si-rich fluids, which were released
from a subduction zone. The youngest age of the zircons
in the jadeitite is 368 = 11 Ma (Meng et al., 2011), which is
close to the formation age of the 360-355 Ma MK eclogite
(Shatsky et al., 2000; Glodny et al., 2003, 2004), implying
that the zircon-bearing jadeitite might have been modified
by fluids related to this subduction zone.

The igneous zircons of the jadeitite may have had two
sources: (1) in situ zircons inherited from plagiogranites and
gabbros, which were partially replaced by Na—Al-Si-rich
fluids and transformed into jadeitite (R-type), with zircons
being preserved (Shi et al., 2008, 2009; Yui et al., 2013);
because the formation temperature and pressure conditions of
plagiogranite and gabbro are quite different from those of
jadeitite, these zircons could not have formed in situ; (2)
xenocrystal zircons, which were picked up and transported
by Na—Al-Si-rich fluids passing through the igneous rocks
and then preserved in newly formed jadeitite (P-type)
(Tsujimori & Harlow, 2012). This scenario is quite similar
to the inherited zircons in quartz veins crossing eclogite,
where the zircons experienced short-distance physical trans-
portation (Sheng et al., 2012), as indicated by their Hf-O
isotope features.

Considering that the jadeitite occurs in serpentinized
peridotite (Fig. 2a, b), and that zircons in the jadeitite
have relatively uniform Hf-O isotope compositions
(Figs 10 and 11), we estimate that fluids containing
zircon xenocrysts rose from a subduction zone into an
overlying mantle wedge (Morishita et al., 2007; Bebout
& Penniston-Dorland, 2015), where the jadeitite was
precipitated. Thus, zircons were incorporated in the jadei-
tite, which crystallized at temperatures less than 450°C
(e.g., Harlow & Sorensen, 2005), thereby preserving the
Hf-O isotope features of the zircon (Figs 10 and 11).

5.1.2. Source of the Na-Al-Si fluids

Several studies have argued that the major elements of
R-type jadeitites can be derived from precursor rocks, such
as plagiogranite, metagabbro and eclogite (Dobretsov &
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Ponomareva, 1965; Harlow & Sorensen, 2005; Yui et al.,
2010; Tsujimori & Harlow, 2012; Wang et al., 2012),
whereas others propose that the Na-, Al- and Si-rich fluids
can be produced only by dewatering of sediments (Harlow &
Sorensen, 2005). However, experiments have shown that
high-pressure fluids can be enriched in Na, Ca, Al and Si
(e.g., Manning, 1998, 2004). On the basis of their occurrence
(Fig. 2b, d), fluid inclusions and oscillatory zoning, we have
classified the jadeitites of the SK complex as P-type (Meng
et al., 2011). Although the zircon inclusions in the analysed
jadeitite are of igneous origin, their rims show evidence of
precipitation from fluids, consistent with the P-type origin of
the jadeitite (Tsujimori & Harlow, 2012). The igneous zircons
are therefore xenocrysts picked up by the jadeitite-forming
fluids. We infer that the jadeitite-forming fluids obtained their
Na-Al-Si components while migrating through the igneous
protoliths (Harlow & Sorensen, 2005). The jadeitite was then
precipitated when these fluids interacted with peridotite in the
overlying mantle wedge. This interpretation is supported by
the fact that the jadeitites have higher contents of Na,O and
Al,O; than those of the eclogite, metagranite, and metasedi-
ment in the MK complex, as well as the gabbro and diabase
of the Voykar ophiolite (Fig. 3a, b). Our data show that these
igneous and metaigneous rocks were not direct protoliths of
the jadeitite, but instead were the sources of the major con-
stituents in the jadeitite-forming fluids from which jadeitites
crystallized, thus providing further support for their P-type
origin.

5.1.3. Source of the trace elements

Chondrite-normalized REE patterns of the jadeitites
(Fig. 4a) show that the LREE are slightly enriched rela-
tive to the HREE for all samples. The pattern of sample
M-18 is similar to those of microgabbro and diabase from
the Voykar ophiolite, which formed in a split-arc or back-
arc basin, and represents the Polar Urals oceanic crust
(Edwards & Wasserburg, 1985; Saveliev et al., 1999).
Slight positive Eu anomalies (6Eu = 1.12-1.60) of the
jadeitite suggest that they were inherited from plagioclase
of the precursor source rocks (Yui et al., 2010). These
patterns resemble those of omphacite from the Itoigawa—
Ohmi district, Japan (Morishita et al., 2007) and
Myanmar jadeitite (Shi et al., 2008), as well as
Guatemala jadeitite (Yui et al., 2010). The above facts
support our interpretation that jadeitite-forming fluids
were either derived from the oceanic crust or reacted
with it.

The spidergrams of the jadeitites (Fig. 4b) are strik-
ingly similar to those of the Myanmar jadeitite (Shi
et al., 2008). The jadeitites have high Ba and Sr con-
tents, about 1.2-7.3 times and 3-19 times higher than
primitive mantle values, respectively (Table 1, Fig. 4b).
Such enrichment of Ba and Sr is commonly interpreted
to be derived from abyssal sediments (Harlow, 1994;
Morishita, 2005; Shi et al., 2008, 2010, 2012), so that
the jadeitite-forming fluids were probably infused with
fluids and other material derived from abyssal sedi-
ments. However, modelling of Li isotopic compositions
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of Guatemala jadeitite showed that only about 5-10 %
of the Li in the fluids was derived from sediment, with
the remainder coming from altered oceanic crust
(Simons et al., 2010). Apparently, the contribution of
sediment to jadeitite formation is minor. In addition,
the results of experiments demonstrate that serpenti-
nites contain significant amounts of fluid-mobile ele-
ments, such as B, Cs, As and Ba, which can be
incorporated into mantle rocks during seafloor altera-
tion. When such serpentinites are dehydrated in sub-
duction zones, the mobile elements will be strongly
enriched in the released fluids (Ulmer &
Trommsdorff, 1995; Scambelluri et al., 2004;
Tenthorey & Hermann, 2004; Spandler et al., 2009,
2011; Deschamps et al., 2013). The Sr and Ba in the
jadeitites were likely derived from plagioclase in
igneous rocks through which the fluids passed (Yui
et al., 2010).

Zirconium and Hf concentrations of the jadeitite vary
from 27 to 637 ppm and 1 tol8 ppm, about 2-57 times
and 2-58 times higher than primitive mantle, respectively
(Table 1). Thus, zircon occurring as inclusions in jadeite, or
as interstitial phases between jadeite crystals, is the predo-
minant Zr- and Hf-bearing phase in these rocks (Fig. 2¢). On
the basis of the La, Sm, Ce and Hf-O isotopic compositions
of the zircons, we consider that they are xenocrystals
(Figs 9-11), because zircons are common in plagiogranite
and evolved gabbro from modern oceans (e.g., Grimes
et al., 2009) and from ophiolites (Rubatto et al., 1998;
Liati et al., 2004; Kaczmarek et al., 2008). Although zircon
is rare in ultramafic rocks, small amounts of this mineral
have been found in podiform chromitites and peridotites of
ophiolites (Grieco et al., 2001; Zaccarini et al., 2004;
Savelieva et al.,, 2006, 2013; Yamamoto et al., 2013;
Robinson et al., 2015), suggesting that magmatic or meta-
somatic events occurred in the upper mantle (Grieco et al.,
2001; Savelieva et al., 2006), or that the mantle peridotite
was contaminated by the crustal materials (Yamamoto et al.,
2013; Robinson et al., 2015). Most of the zircons from
jadeitites in Myanmar, Japan, and Greece are igneous in
origin, but are interpreted as xenocrysts inherited from pre-
cursor rocks (Shi et al., 2008; Fu et al., 2010, 2012; Mori
et al., 2011; Yui et al., 2013). On the other hand, some
hydrothermal zircon appears to have crystallized from Zr
and Hf-rich hydrothermal fluids (Tsujimori et a/., 2005; Qiu
et al.,2009; Yui et al., 2010; Flores et al., 2013). Zirconium
and Hf enrichment in the fluid indicates that these elements
can be transferred in subduction zones by alkalic fluids
(Dubinska et al., 2004; Sorensen et al., 2006, 2010,
Morishita et al., 2007; Shi et al., 2008; Simons et al.,
2010; Yui et al., 2010, 2012). Alkaline fluids produced by
dehydration of serpentinite can dissolve zircon from the
ultramafic rocks and enrich the fluids in Zr and Hf
(Dubinska et al., 2004; Manning, 2004; Tsujimori et al.,
2005; Li et al., 2010b; Sorensen et al., 2010; Yui et al.,
2010). However, in situ measurement of the SK jadeite
shows that Zr and Hf contents (6-104 ppm and 0.2-3
ppm, respectively) (Table 7, Fig. 12) are very low, similar
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(Continued).

Table 7.

Y5-100

Sample

11 12 13 14 15 16 17 18 19

10

1

Spots

0.04
0.00
0.00
7.82
0.00
0.01
0.01

0.00
0.01
0.00
0.00
0.00
0.01
0.00

0.07
0.00
0.00
0.03
0.00
0.00
0.00

0.00
0.00
0.00
0.15
0.01
0.01
0.00

0.03
0.00
0.01
0.05
0.01
0.00
0.00

0.00
0.06
0.00
0.00
0.00
0.00
0.00

0.04
0.00
0.00
0.04
0.01
0.00
0.00

0.00
0.09
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.04
0.00
0.00
0.05
0.00
0.00
0.00

0.00
0.00
0.00
0.03
0.01
0.00
0.01

0.13
0.00
0.00
0.00
0.00
0.00
0.00

0.01
0.00
0.00
0.03
0.00
0.00
0.00

0.04
0.03
0.00
0.05
0.00
0.00
0.00

0.02
0.06
0.00
0.03
0.00
0.02
0.01

0.00
0.05
0.00
0.00
0.01
0.00
0.01

0.00
0.00
0.00
0.00
0.00
0.03
0.01

0.00
0.00
0.00
0.03
0.00
0.00
0.01

0.01
0.06
0.00
0.00
0.00
0.00
0.00

Pt
Au
Tl
Pb
Bi
Th
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Fig.12. Plot of Zr and Hf content for jadeite and jadeitite
(sampleY5-100) from Pusyerka in the Polar Urals.

to those of jadeitites in Myanmar (0—1 and 0.04 ppm) and
Guatemala (0-92 and 0-3 ppm) (Sorensen et al., 2006).
These data indicate that the Zr and Hf in the SK jadeitite
were not dissolved in the jadeitite-forming fluids, but were
carried by xenocrystic zircon.

5.1.4. Sr-Nd isotopic constraints

Jadeitites from Guatemala, Japan and Myanmar contain Ba-
rich minerals, which suggests that the jadeitite-forming
fluids came from subducted sediment (Harlow, 1994;
Morishita, 2005; Shi et al., 2010, 2012). Lithium isotopes
reveal the presence of minor fluids derived from sediment in
subduction zones during jadeitite formation (e.g., Simons
et al., 2010). Additionally, oceanic sediments affected by
seawater usually have somewhat elevated ’Sr/**Sr ratios
(>0.705, Zindler & Hart, 1986). However, jadeitite of the
SK complex lacks Ba-rich minerals, and 87Sr/%°Sr ratios of
the jadeitites vary from 0.7033 to 0.7034 (Table 2, Fig. 5),
close to those of MORB and of gabbro from the Voykar
ophiolite (Edwards & Wasserburg, 1985; Zindler & Hart,
1986; DePaolo, 1988; Sharma et al., 1995), implying that
the jadeitite-forming fluids were in equilibrium with
MORB-type rocks. Seawater has a much higher *’Sr/*¢Sr
ratio (0.7091, DePaolo, 1988) than the SK jadeitites, so it
cannot be the source for the jadeitite-forming fluids. The
8731/%Sr ratios of the jadeitites are also different from those
of eclogites of the MK complex (0.7055-0.7112,
Andreichev, 2003; Glodny et al., 2003). These observations
support our interpretation that the Na-Al-Si-rich fluid, from
which the jadeitites formed, was derived from a subducted
oceanic slab with little or no sediment.

The SK jadeitites have positive eNd(t) values (+1 to
+6) (Table 3, Fig. 6, t = 368 Ma, Meng ef al., 2011). In
contrast, oceanic sediments have lower &Nd wvalues
(- 15 to -5, DePaolo, 1988); likewise, the MK eclogites
have mainly negative &eNd(t) values (+0.3 to —6.3;
Shatsky et al., 2000; Glodny et al., 2004; Andreichev
et al., 2007), whereas the microgabbro and diabase of the
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Voykar ophiolite have positive eNd(t) values (+7.3 to
+9.8; Edwards & Wasserburg, 1985; Sharma et al.,
1995). The eNd(t) values of the SK jadeitite are signifi-
cantly different from all of these possible sources
(Fig. 6), and their heterogeneous compositions (Table 3)
suggest mixing from several sources. We propose that the
jadeitites were derived mainly from subducted oceanic
crust (such as gabbro and plagiogranite), with a minor
input from the overlying sediments, which have negative
eNd(t) values.

The SK jadeitites have Sr and Nd isotopic composi-
tions that differ significantly from oceanic sediments
(Tables 2 and 3), and could not have been derived pri-
marily from such a source. However, minor input from
sedimentary fluids cannot be excluded for those samples
with relatively low positive eNd(t) values (Table 3).
Mixing of fluids from different sources is supported by
the oscillatory zoning observed in the SK jadeite grains
(Meng et al., 2011), a feature also reported from jadeitite
of Myanmar, Guatemala, Japan and Cuba (Sorensen
et al., 2006; Garcia-Casco et al., 2009; Shi et al., 2009;
Cérdenas-Parraga et al., 2012). Thus, we conclude that
igneous rocks provided most of the material for the SK
jadeitite formation, but that this material was modified by
fluid/melt processes in a subduction zone.

5.2. Formation of the jadeitites

It has been proposed that the SK complex is a SSZ-type
ophiolite (Shmelev, 2011). Initial subduction of the oceanic
lithosphere may have occurred at 368 + 11Ma (Meng et al.,
2011). Basalt, gabbro and serpentinite in the subducted
oceanic lithosphere underwent high-pressure metamorph-
ism releasing Na—Al-Si-rich fluids (e.g., Peacock, 1990; Li
et al., 2004; Gao et al., 2007; Morishita et al., 2007,
Spandler et al., 2011). On the basis of our geochemical
data for the jadeitites from the Polar Urals, we infer that
the Na—Al-Si-rich fluids, which produced the jadeitites,
were derived primarily from subducting oceanic litho-
sphere. This fluid migrated from the subducted lithosphere
into the overlying mantle wedge, and then infiltrated into
fractures in the peridotite, resulting in serpentinization and
jadeitite precipitation (Harlow & Sorensen, 2005; Morishita
et al.,2007; Meng et al., 2011).

6. Conclusions

Major element (Na, Al and Si) and trace element
(Sr-Ba and Zr-Hf) enrichment and depleted mantle-
like Sr-Nd isotopic compositions in the jadeitite
from the Polar Urals suggest that the fluids, from
which the jadeitite were precipitated, were derived
mainly from subducted oceanic igneous rocks.
Contributions from sediments in the subduction zone
were minor. Zircons in the jadeitite show both
“igneous” and “hydrothermal” features, which suggest
that magmatic zircons were picked up from the
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subducted igneous rocks and transported by fluids in
the suprasubduction-zone mantle wedge.
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