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Propagation of few-cycle pulses in a nonlinear medium and an integrable
generalization of the sine-Gordon equation

S. V. Sazonov*

National Research Centre Kurchatov Institute, 123182 Moscow, Russia

N. V. Ustinov†

Moscow State University, 119991 Moscow, Russia

(Received 9 September 2018; published 3 December 2018)

The generalized sine-Gordon equation is obtained under the theoretical investigation of interaction of few-
cycle pulses in a nonlinear medium modeled by a set of four-level atoms. This equation is derived without
the use of the slowly varying envelope approximation and is shown to be integrable in the frameworks of the
inverse scattering transformation method. Its solutions describing the propagation of the solitons and breathers
and their interaction are investigated. In the case of different signs of the parameters of the equation considered,
it is revealed, in particular, that the collision of solitons with opposite polarities can lead to an appearance of
the short-living pulse having extraordinarily large amplitude, whose dynamics is similar to that of rogue waves.
Also, the solitons of “rectangular” form and the breathers with rectangular oscillations exist in the case of the
same signs of the parameters.
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I. INTRODUCTION

One of the basic tendencies of development of the nonlin-
ear optics from its origin is the generation of the pulses of ever
shorter duration. Using such pulses provided additional possi-
bilities in measurements of the relaxation times, processing of
materials, testing of high-speed devices, etc.

At the beginning, since the 1960s to 1980s of the last
century, the light pulses of duration τp from nanoseconds
to picoseconds were generated. The characteristic period Tp

of the electromagnetic oscillations corresponding to visible
and near infrared ranges is 10−15 s. Then, the number N of
the electromagnetic oscillations contained in such pulses is
N ∼ τp/Tp ∼ 106–103. It is possible in this case to introduce
a small parameter

ε1 ∼ 1/N � 1. (1)

The existence of this small parameter gave us an op-
portunity to apply the approximation of the slowly varying
envelopes (SVE). This approximation simplifies significantly
the theoretical considerations of the nonlinear interaction of
the nano- and picosecond pulses with matter. Many resonant
and nonresonant nonlinear optical phenomena were investi-
gated in such a manner [1,2]. The spectrum of these pulses
is rather narrow: ε1 ∼ δω/ω � 1, where ω is the carrier
frequency and δω is the width of the pulse spectrum. For this
reason, such pulses are called quasimonochromatic.

At the beginning of the 1990s, the femtosecond pulses were
involved in consideration [3]. Taking τp ∼ 1 fs = 10−15 s, one
has N ∼ 1 and ε1 ∼ 1. Here the pulse contains about one
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period of oscillations, and the SVE approximation is inap-
plicable since the small parameter allowing us to exploit it
disappears. It is necessary in this case to search for other ap-
proximations and to derive the simplified wave equations for
the electric field E of the pulse rather than for the envelopes
[4–7].

Usually the pulses containing only several oscillations of
the electromagnetic field are referred to as the few-cycle
pulses (FCPs) [4,7–9]. The spectrum of the FCPs is wide so
that it is almost impossible to allocate the carrier frequency.
Therefore, the FCPs are called the broadband pulses some-
times.

The absolute duration of the FCPs lies in the range from
pico- to femtoseconds [5–8,10]. Sometimes, the picosecond
FCPs are called terahertz FCPs. The intensity of such pulses
is so high that the development of “nonlinear terahertz optics”
gained a push. It should be noted that the terahertz range is
still the least investigated with respect to an interaction of
electromagnetic radiation with matter [11].

It is necessary to mention briefly the pulses of the at-
tosecond duration [12], for which τp ∼ 100 as = 10−16 s. The
theory of interaction of such pulses with matter is very dif-
ficult and far from completion. An electric field of powerful
attosecond pulses is comparable in the order of magnitude
with intratomic electric field and even exceeds it sometimes.
Under these conditions, the ionization processes should al-
ready be taken into account which complicates the physical
model considerably. An investigation of such processes lies
beyond the scope of our discussion.

A creation of the model of the medium, on which the
FCPs influences, is a difficult problem. Due to the large
spectral width of FCPs, many of the quantum transitions can
be involved in the interaction with them. At the same time, the
model of the medium has to be simple enough and adequate
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to the situation considered in each case. The simplest model
of the medium is that of the two-level atoms with frequency
ω0 of quantum transition. Being rather rough, it, nevertheless,
is used often to describe the interaction of FCPs with matter
[13]. In certain cases, phenomenological nonlinear-oscillator
models are used [14–20].

One of the most effective tools of studying the nonlinear
partial differential equations is the inverse scattering transfor-
mation method (ISTM) [21–23]. The theoretical nonlinear op-
tics is a very good “supplier” of the nonlinear wave equations
and systems integrable by the ISTM [5,24]. The integrable
nonlinear equations possess the solitonic solutions (solitons)
that are the solitary waves capable of interacting elastically
with localized structures, including other solitons. It concerns
solitons of the envelope (quasimonochromatic solitons) [5]
and the FCPs [5,24]. Therefore, it is no wonder that the
nonlinear optics gives a powerful push to the development
of mathematical physics. In turn, the progress in the mathe-
matical physics stimulates the searches of the new integrable
models in nonlinear optics.

The solitons of the integrable system of the self-induced
transparency (SIT) equations are most known among the
resonant quasimonochromatic solitons [23]. In the case of
exact resonance of the pulse with the two-level medium
(ω = ω0), the SIT system passes into the famous sine-Gordon
(SG) equation integrable by the ISTM, whose solitons (“2π

pulses”) are well studied [23,25].
The nonlinear Schrödinger (NLS) equation describes prop-

agation of the quasimonochromatic nonresonant solitons in
isotropic media [2,3]. An essential development of the ISTM
was due to revealing the integrability of this equation [26].
With shortening of the pulse duration (with an increase of
parameter ε1), the propagation of pulses is described well by
integrable [27,28] and nonintegrable [2–4,29–31] modifica-
tions of the NLS equation (higher-order NLS equations). It
is assumed for the higher-order NLS equations also that the
spectral width of the pulse is much smaller than its carrier
frequency, so that the SVE approximation can be still applied.

The refusal from the SVE approximation in nonlinear
optics was made, perhaps, in Ref. [32], where an alternative
approach to describe the SIT phenomenon was offered. In-
stead of the SVE approximation, the so-called unidirectional
propagation (UP) approximation was used. This approxima-
tion is based on the condition of a small concentration n of
the two-level atoms

ε2 = 8πd2n

h̄ω0
� 1, (2)

where d is the matrix element of the dipole moment operator
of the considered transition and h̄ is Planck’s constant.

The first-order wave equations are obtained by applying the
UP approximation. As a result, the reduced Maxwell-Bloch
(RMB) system was derived in [32]. This system occurred to be
integrable in the frameworks of the ISTM also. The so-called
breather solutions have a particular interest here. These solu-
tions are the solitons, whose profile oscillates periodically un-
der propagation with constant group velocity in the medium.
The breather solution possesses two free parameters: duration
τp and central frequency ω = 2π/Tp of the spectrum. If
ωτp ∼ N ∼ 1, then this solution describes propagation of the

FCPs. In the quasimonochromatic limit ωτp ∼ N � 1, the
breather of the RMB system passes into the soliton of the
envelope. If |ω − ω0|/ω0 � 1, it is the soliton of the envelope
of the SIT equations. In the opposite case |ω − ω0|/ω0 � 1,
the breather of the RMB system passes into the soliton of the
envelope of the NLS equation.

The refusal from the SVE and UP approximations was
made in Refs. [13,33–35], where the approximations of opti-
cal transparency (OT) and sudden excitations (SEs) were sug-
gested. These approximations are exploited if the following
conditions:

ε3 = (ω0τ∗)−1 � 1 (3)

and

ε4 = ω0τ∗ � 1 (4)

are fulfilled, respectively. Here τ∗ = min{τp, ω−1} is the min-
imum timescale of the pulse. Note that the SEs approximation
was, apparently, used first in the physics of nuclear reactions
[36]. It was found that the pulse electric field E obeys the
SG equation in the case of the SEs approximation [13,33,34],
while it obeys the so-called modified Korteweg-de Vries
(MKdV) equation integrable by the ISTM also in the OT
approximation case.

If the duration of laser FCPs is about 10 fs then the tunnel
quantum transitions, whose characteristic frequencies ω0 ∼
1013 s−1, satisfy the SEs approximation condition (4), for
example. At the same time, electron-optical transitions (ω0 ∼
1013 s−1) are in a good agreement with the OT approximation
condition (3).

Several versions of the model of two-component two-level
media with different frequencies of quantum transitions were
proposed [25,27,28,32]. The OT approximation was assumed
to be valid for one of the components, and the SEs approxi-
mation was applied to another component.

If the pulse spectrum is located below the so-called zero-
dispersion frequency, where the second-order dispersion van-
ishes, then its dynamics is described by the short-pulse equa-
tion (SPE) [37,38]. This equation was derived from Maxwell’s
equations using the renormalization group method and was
revealed to appear in differential geometry in an attempt
to construct integrable differential equations associated with
pseudospherical surfaces [39,40]. The ISTM integrability of
the SPE has been studied from various points of view [41,42].
Several improvements in the model leading to the SPE were
suggested later [43,44]. Under certain conditions, the inte-
grable Konno-Kameyama-Sanuki equations were obtained for
the electric field of the pulse [45–48].

At the present time, there is a need for creation of a more
complicated and realistic model of the medium, in which dif-
ferent quantum transitions are connected among themselves.
Obviously it demands a refusal from the two-level model.

This paper is devoted to a derivation of the nonlinear wave
equation for the pulse propagating in the medium with the
interconnected quantum transitions, which meet conditions
of the SEs and OT approximations, a consideration of its
integrability, and to a construction of the soliton and breather
solutions.

The paper is organized as follows. In the next section the
model of the four-level medium, which is formed by the
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FIG. 1. (a) Quantum levels of symmetric two-pit potential. Lev-
els 1+ and 2− correspond to the tunnel splitting; 3− and 4+ corre-
spond to the remote quantum levels; the superscripts “+” and “−”
designate positive and negative parity, respectively. (b) The scheme
of the allowed quantum transitions.

tunnel splitting of quantum states in the two-pit potential
and by two other remote quantum levels differing by the
energy and parity, is offered. The procedure of an exclusion
of the material variables is carried out in Sec. III by using
the conditions (3) and (4), and the generalized SG equation is
derived. It is shown in Sec. IV that this equation is integrable
by the ISTM, and families of its soliton solutions and breather
ones in the form of the FCPs are constructed. The processes
of collisions of various solitons and breathers are investigated.
Also, the NLS equation for the envelope of the breather is
obtained in limit (1) from the generalized SG equation in this
section. Finally, in Sec. V we summarize the results of our
consideration.

II. BASIC MODEL

Consider the quantum medium formed by the tunnel split-
ting of the levels of quantum states in the two-pit potential
[Fig. 1(a)]. It can be the proton states of the order-disorder
type in a ferroelectric material [49], the electron states in the
quantum dots, wells [50], etc. Besides the two quantum states
1 and 2 given by this splitting, there are remote quantum states
placed above on the energy scale. We approximate them by
two quantum levels 3 and 4 (see Fig. 1) differing by energy
and parity.

For the sake of definiteness, we assume that states 1 and
4 possess positive parity, while the parity of states 2 and 3 is
negative (Fig. 1). Then, transitions 1 ↔ 2, 1 ↔ 3, and 2 ↔

4 are allowed in the electrodipole approximation. Transitions
1 ↔ 4 and 2 ↔ 3 are forbidden by the selection rule on the
parity.

Suppose that the frequency ω12 [see Fig. 1(b)] of the
tunnel splitting satisfies condition (4) taking into account
replacement ω0 → ω12, and the frequencies ω31, ω42 sat-
isfy condition (3) replacing ω0 → ω31, ω0 → ω42. Owing to
condition (3), the quantum transitions 1 ↔ 3 and 2 ↔ 4 are
excited much more weakly than transition 1 ↔ 2. We assume
also that levels 3 and 4 are not occupied before the pulse
action. Therefore, we neglect a contribution from the allowed
transition 3 ↔ 4.

As a result, we come to the scheme of the quantum tran-
sitions presented in Fig. 1(b). According to it, we have the
following system of the evolution equations on the elements
of corresponding density matrix:

∂ρ21

∂t
= −iω21ρ21 + i�21(ρ11 − ρ22) + i�42ρ41 − i�31ρ

∗
32,

∂ρ31

∂t
= −iω31ρ31 + i�31(ρ11 − ρ33) − i�21ρ32,

∂ρ42

∂t
= −iω42ρ42 + i�42(ρ22 − ρ44) − i�21ρ41, (5)

∂ρ32

∂t
= −iω32ρ32 + i(�31ρ

∗
21 − �21ρ31 − �42ρ

∗
43),

∂ρ41

∂t
= −iω41ρ41 + i(�42ρ21 − �31ρ43 − �21ρ42),

∂ρ43

∂t
= −iω43ρ43 + i(�42ρ

∗
32 − �31ρ41), (6)

∂ρ11

∂t
= i�21(ρ21 − ρ∗

21) + i�31(ρ31 − ρ∗
31),

∂ρ22

∂t
= −i�21(ρ21 − ρ∗

21) + i�42(ρ42 − ρ∗
42),

∂ρ33

∂t
= −i�31(ρ31 − ρ∗

31),

∂ρ44

∂t
= −i�42(ρ42 − ρ∗

42). (7)

Here �lk = dlkE/h̄ and dlk is the dipole moment of the
allowed quantum transitions, which are assumed to be real
without loss of generality (l, k = 1, 2, 3, 4).

Equations (5) and (6) describe the dynamics of the nondi-
agonal elements of the density matrix operator ρ̂ in the cases
of allowed and forbidden transitions, respectively. System (7)
is responsible for the dynamics of the populations of quantum
levels.

Let us supplement the system of material equations (5)–
(7) by the wave equation on an electric field of the pulse,
presupposing that it propagates along the z axis and its radial
dependence is negligible. Then, this equation is written as

∂2E

∂z2
− 1

c2

∂2E

∂t2
= 4πn

c2

∂2

∂t2
[d21(ρ21 + ρ∗

21)

+ d31(ρ31 + ρ∗
31) + d42(ρ42 + ρ∗

42)], (8)

where c is the speed of light in vacuum.
Equations (5)–(8) represent the self-consistent system de-

scribing the nonlinear interaction of an electromagnetic pulse
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with medium, whose quantum transitions are presented in
Fig. 1(b).

III. THE GENERALIZED SINE-GORDON EQUATION

Now we express the elements ρ21, ρ31, and ρ42 from
Eqs. (5)–(7) through the pulse electric field by using the
OT and SEs approximations and substitute these expressions
into the right-hand side of Eq. (8). Conditions of the type
(3) and (4) are assumed to be fulfilled in the appropriate
cases discussed in the previous section. We restrict ourselves
by the first-order approximations with respect to the small
parameters ε3 and ε4.

In accordance with condition (3), the derivatives on the
left-hand sides of the second and third equations in system
(5) and in Eqs. (6) should be neglected. We then obtain

ρ31 = �31(ρ11 − ρ33) − �21ρ32

ω31
,

ρ42 = �42(ρ22 − ρ44) − �21ρ41

ω42
, (9)

ρ32 = �31ρ
∗
21 − �21ρ31 − �42ρ

∗
43

ω32
,

ρ41 = �42ρ21 − �21ρ42 − �31ρ43

ω41
, (10)

ρ43 = �42ρ
∗
32 − �31ρ41

ω43
. (11)

Owing to the type (3) inequalities, we have ω31 ≈ ω32,
ω41 ≈ ω42. Therefore, in the first-order approximation with
respect to the small parameter ε3 taking into account replace-
ments ω0 → ω31 and ω0 → ω42, one has to discard the last
terms in the numerators of expressions (9) and to neglect
element ρ43 in what follows [see relations (11) and (10)].
Thus,

ρ31 = �31(ρ11 − ρ33)

ω31
, ρ42 = �42(ρ22 − ρ44)

ω42
. (12)

It is easy to see from Eqs. (12), (10), and (7) that the change
of the populations of the third and fourth levels has to be
neglected also in the approximation accepted. We put ρ33 =
ρ44 = 0 as they were unpopulated before the pulse impact.
Then we have

ρ31 = �31

ω31
ρ11, ρ42 = �42

ω42
ρ22. (13)

Substitution of the expressions for ρ31 and ρ42 into
Eqs. (10) leads to an account for the processes of the second
order with respect to ε3. For this reason, the first term in the
numerator of expressions (10) has to be retained only. As a
result, we obtain

ρ32 = �31

ω32
ρ∗

21, ρ41 = �42

ω41
ρ21. (14)

Inserting these expressions into the first equation of system (5)
and using approximate equalities ω31 ≈ ω32 and ω41 ≈ ω42,
we get

∂ρ21

∂t
= −i

(
ω21 + �2

31

ω31
− �2

42

ω42

)
ρ21 + i�21(ρ11 − ρ22).

(15)

After the substitution of expressions (12) into the right-
hand side of the first and second equations in (7), we find

∂ρ11

∂t
= i�21(ρ21 − ρ∗

21),
∂ρ22

∂t
= −i�21(ρ21 − ρ∗

21).

(16)

Thus, an influence of the quantum transitions 1 ↔ 3 and
2 ↔ 4 on transition 1 ↔ 2 is reduced in the first order in
small parameter ε3 to dynamic Stark shift of frequency ω21

[see Eq. (15), the first term on the right-hand side]. In turn,
transition 1 ↔ 2 has dynamic impact on transitions 1 ↔ 3
and 2 ↔ 4 by changing the susceptibility formed by them due
to the change of populations of levels 1 and 2 [see Eqs. (13)].

Let us introduce the Bloch’s variables

U = ρ21 + ρ∗
21

2
, V = ρ∗

21 − ρ21

2i
, W = ρ22 − ρ11

2
.

(17)

Then, Eqs. (15) and (16) are rewritten as

∂U

∂t
= −ω̃21V,

∂V

∂t
= ω̃21U + 2�21W,

∂W

∂t
= −2�21V, (18)

where

ω̃21 = ω21 + �2
31

ω31
− �2

42

ω42
. (19)

It follows from Eqs. (18) that |�21| ∼ 1/τ∗. Taking into
account the expressions for �lk given after system (7), we
conclude that |�31| ∼ |�42| ∼ 1/τ∗. Now it is seen that the
relation of the first term on the right-hand side of Eq. (19) to
the second and third ones is of the order of ε4/ε3. This means
that all terms on the right-hand side of (19) are the quantities,
generally speaking, of the same order.

In the zeroth approximation in small parameter ε4, we put
formally ω̃21 = 0 in Eqs. (18). Then U = 0,

V = W0 sin θ, W = W0 cos θ, (20)

where W = (w1 − w2)/2 and w1 and w2 are initial popula-
tions of the first and second levels, respectively,

θ = 2
∫ t

−∞
�21dt ′ = 2

d21

h̄

∫ t

−∞
Edt ′. (21)

Next, we find from Eqs. (17)–(20) in the first order approxi-
mation

∂U

∂t
= −W0

(
ω21 + �2

31

ω31
− �2

42

ω42

)
sin θ. (22)

From the normalization condition ρ11 + ρ22 = 1 and defi-
nition of W in (17), we have ρ11 = W − 1/2, ρ22 = W + 1/2.
Using these expressions and relations (20) and (13), we obtain

ρ31 = �31

ω31

(
1

2
− W0 cos θ

)
, ρ42 = �42

ω42

(
1

2
+ W0 cos θ

)
.

(23)

Now, substituting Eqs. (22) and (23) into the right-hand
side of Eq. (8), integrating the equation resulting on time, and
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taking into account expression (21), we obtain the nonlinear
wave equation

∂2θ

∂z2
− n2

0

c2

∂2θ

∂t2
= 2n0

c

{[
α − β

(
∂θ

∂t

)2
]

sin θ

− 4β
∂2θ

∂t2
sin2 θ

2

}
, (24)

where

α = −8πd 2
21nω21

h̄cn0
W0, β = α

4d 2
21ω21

(
d 2

31

ω31
− d 2

42

ω42

)
,

the inertialess part n0 of the refraction index is defined by
expression

n0 =
√

1 + 8πn

h̄

[
d 2

31

ω31

(
1

2
− W0

)
+ d 2

42

ω42

(
1

2
+ W0

)]
.

The right-hand side of Eq. (24) contains small parameters
ε3 and ε4. This allows us to apply the UP approximation
[32] to Eq. (24). In accordance with this approximation, we
introduce “local” time τ = t − n0z/c and “slow” coordinate
ζ = εz, where ε ∼ ε3, ε4. We have

∂

∂t
= ∂

∂τ
,

∂

∂z
= −n0

c

∂

∂τ
+ ε

∂

∂ζ
,

∂2

∂z2
≈ n2

0

c2

∂2

∂τ 2
− 2ε

n0

c

∂2

∂τ∂ζ
.

The term quadratic in ε is neglected in the last relation. After
returning to the initial variable z, we finally obtain from
Eq. (24) the following equation:

∂2θ

∂z∂τ
= −

[
α − β

(
∂θ

∂τ

)2
]

sin θ + 4β
∂2θ

∂τ 2
sin2 θ

2
. (25)

If transitions 1 ↔ 3 and 2 ↔ 2 are absent, then β = 0.
In this case, Eq. (25) passes into the sine-Gordon equation
derived by applying the SEs approximation to the two-level
system in Ref. [13].

It is important to emphasize once again that Eq. (25) is
written not for the envelope but for the full electric field as a
whole.

It is easy to see that Eq. (25) can be written in the following
form:

∂2θ

∂z∂τ ′ = −
[
α + β

(
∂θ

∂τ ′

)2
]

sin θ − 2β
∂2

∂τ ′2 sin θ, (26)

where τ ′ = τ + 2βz = t − (n0/c − 2β )z.
Note also that condition (2) of a small concentration of

atoms was not exploited under the derivation of Eq. (25).
Indeed, parameter α is proportional to ε2ε4 � 1, while param-
eter β is proportional to ε2ε3 � 1. Since we have ε3 � 1 and
ε4 � 1 here [see conditions (3) and (4)], parameter ε2 can be
rather large. As a consequence, the inertialess refraction index
can differ from 1 considerably.

Equation (25) was obtained in Ref. [51] within the physical
model accepted here. In the present consideration, we derived
it in a shorter way. Besides, the integrability of Eq. (25) with
arbitrary values of parameters α and β in the frameworks of
the ISTM will be shown in the next section. This allows us to
construct and investigate comprehensively its two-soliton and
breather solutions.

We will refer to Eq. (25) as the generalized sine-Gordon
(GSG) equation below. It has to be stressed that this equation
cannot be considered as a weakly perturbed SG equation. The
terms containing parameter β in (25) can be comparable with
the term α sin θ or can even exceed it [see the discussion
after Eq. (19)]. Thus, the GSG equation (25) [or its equivalent
form (26)] represents independent mathematical interest, and
its solutions of various types deserve separate attention and
physical analysis.

IV. INTEGRABILITY OF THE GSG EQUATION:
SOLITONS AND BREATHER SOLUTIONS

The GSG equation (25) can be obtained in the appropriate
limit from the integrable version of the nonlinear wave equa-
tion considered in [52]. Hence, Eq. (25) is integrable by the
ISTM also. It admits the representation as the zero-curvature
condition

∂L̂

∂z
− ∂Â

∂τ
+ [L̂, Â] = 0, (27)

where

L̂ = 1

2

⎛
⎝ i ∂θ

∂τ
λ
[
α + β

(
∂θ
∂τ

)2 − iκ ∂θ
∂τ

]
λ
[
α + β

(
∂θ
∂τ

)2 + iκ ∂θ
∂τ

] −i ∂θ
∂τ

⎞
⎠, Â = −1

2

(
−iκ sin θ eiθ

λ

e−iθ

λ
iκ sin θ

)
+ 4β sin2 θ

2
L̂,

λ is the spectral parameter,

κ = 2
√

−αβ,

and is connected by the change of variables (x̃, t̃ , ξ ) → (τ, z, θ ) defined in the following manner:

dτ = 1

2α
(1 +

√
1 − κ2u2) dx̃ − 4β sin2 ξ

2
dt̃, dz = dt̃, θ (τ, z) = ξ (x̃, t̃ ), (28)

where

u = ∂ξ

∂x̃
,
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with the so-called modified SG (MSG) equation

∂2ξ

∂x̃∂t̃
= −

√
1 − κ2u2 sin ξ. (29)

It follows from these relations that

∂θ

∂τ
= 2αu

1 + √
1 − κ2u2

. (30)

The MSG equation is known to be integrable in the frame-
works of the ISTM [53–56]. It admits the representation as the
zero-curvature condition

∂L̂MSG

∂t̃
− ∂ÂMSG

∂x̃
+ [L̂MSG, ÂMSG] = 0, (31)

where matrices L̂MSG and ÂMSG are defined as

L̂MSG = 1

2

(
iu λ[

√
1 − κ2u2 − iκu]

λ[
√

1 − κ2u2 + iκu] −iu

)
,

ÂMSG = −1

2

⎛
⎜⎜⎝−iκ sin ξ

eiξ

λ
e−iξ

λ
iκ sin ξ

⎞
⎟⎟⎠.

The change of variables (28) transforms the zero-curvature
condition (31) into the zero-curvature condition (27).

The MSG equation (29) was derived under an investigation
of the propagation of a two-component electromagnetic and
acoustic FCPs in the anisotropic media [57,58]. Its multisoli-
ton solutions were studied in detail in [57]. These solutions
and the change of variables (28) will be used below to
construct the multisoliton solutions of the GSG equation (25).
Note that the previous considerations of the MSG equations
were performed only if parameter κ is real or, respectively,
αβ < 0. In the physical problem studied here, the sign of the
product αβ is determined by the sign of difference

d 2
31

ω31
− d 2

42

ω42

and can take any value.
Let us start from the case, when parameter κ is real (αβ <

0). Then, the one-soliton solution of the MSG equation (29) is
written in the following manner:

ξ = (−1)k2 arccos
μκ − tanh χ√

1 − 2μκ tanh χ + μ2κ2
. (32)

Here

χ = μx̃ − t̃

μ
+ χ (0),

μ and χ (0) are real constants and k = 0, 1. Its topological
charge S = (ξ |x̃→∞ − ξ |x̃→−∞)/π takes the following val-
ues:

S =
{

(−1)k sgn(μ), |μκ| < 1,

0, |μκ| > 1.

Thus, one-soliton pulses are divided into three families char-
acterized by the topological charges 1, −1, and 0, respectively.
The first two families are analogous to the kinks and antikinks

(2π pulses) of the SG equation. The solitons of the last family
were referred to as neutral kinks in [52]. Unlike the zero-area
breather solution to the SG equation (0π pulse), these solitons
are steady in the co-moving frame of reference.

From Eq. (32) we have

u = ∂ξ

∂x̃
= 2μ sech χ

1 − μκ tanh χ

1 − 2μκ tanh χ + μ2κ2
. (33)

Then, the amplitude of u is equal to

max |u| =
⎧⎨
⎩

2|μ|
√

1 − μ2κ2, |μκ| < 1√
2
,

1
|κ|, |μκ| � 1√

2
.

(34)

We see that the amplitude is independent of parameter μ

if |μ| > 1/
√

2|κ|. In this case, the profile of u consists of
two peaks with amplitude 1/|κ|, which are separated by the
interval depending on μ [52]. The polarities of the peaks
coincide if 1/

√
2 < |μκ| < 1, while they are opposite in the

neutral kink case |μκ| > 1.
The one-soliton solution of the GSG equation (25) is

obtained in the case αβ < 0 by the substitution of the ex-
pressions (32) and (33) into Eqs. (28). Then, variable τ is
expressed as

τ = x̃

α
+ κ

2α
ln[1 − 2μκ tanh χ + μ2κ2]. (35)

It follows from this relation that the one-soliton solution of
Eq. (25) is steady.

It should be noted that the square roots in Eqs. (28) and (30)
change the branch in the points, where |u| takes its maximum
value equal to 1/|κ|. Taking into account also that variable u

changes the sign in the case of the neutral kinks (|μ| > 1/|κ|),
we see that the corresponding one-soliton solutions of Eq. (25)
are singular.

Let us define the decreasing of ∂θ/∂τ of the one-soliton
solution of the GSG equation (25) in the case considered as
∂θ/∂τ ∼ exp(−|t − z/v|/τp ) on the tails, where parameters
τp and v are a characteristic duration of the one-soliton pulse
and its velocity in the laboratory frame of reference (z, t ),
respectively. From Eqs. (30), (33), (35), and expressions for
κ and χ , we have

τp = 1

|μα| , v = c

1 + c
(
ατ 2

p + 2β
) . (36)

These formulas coincide with ones for the SG and MSG
equations if β = 0. It follows from these relations that the
duration of the nonsingular one-soliton pulse satisfies condi-
tion τp > 2

√−β/α. Its velocity v is smaller than c if α > 0.
In this case W0 < 0, i.e., the medium is in the equilibrium
state.

The profiles of the variable ∂θ/∂τ of the one-soliton so-
lution of Eq. (25) for different values of the parameter μ are
presented in Fig. 2. Corresponding profiles of the variable u of
the one-soliton solution of the MSG equation (29) are depicted
here by thin lines. In the last case, the designations of the axes
are given in the parentheses.

As we can see from Fig. 2(c), the amplitude of |∂θ/∂τ |
tends to infinity and the form of the soliton becomes sharp in
the limit |μ| → 1/|κ|. This is a sequence of the change of the
branch by the square root in Eq. (30) in the points, where |u|
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FIG. 2. Profiles of ∂θ/∂τ and u (thin line, the designations of the
axes are in the parentheses) of one-soliton solutions with parameters
α = 0.5κ2c, β = −0.5/c, χ (0) = 0, k = 0, and μ = 0.2/|κ| (a),
μ = 0.5/|κ| (b), and μ = 0.65/|κ| (c).

is equal to 1/|κ|. We can say that the sign “−” has to be at the
square root in expression (30) between the peaks of variable u.
In this case, the absolute value of ∂θ/∂τ increases as variable
u decreases.

The two-soliton solution of the MSG equation (29) in the
case of real parameter κ is defined as

ξ = −2 arctan
μ+ sinh χ−
μ− cosh χ+

− 2 arctan
μ+[ε− sinh χ− − 2μ−κ cosh χ−]

μ−[ε+ cosh χ+ − 2μ+κ sinh χ+]
, (37)

–4 –2 0 2 4–60
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60
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– 0
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– 0

0

0
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0

0.4

(b)1
c|κ|

∂θ

∂τ

τc|κ|

z|κ|

FIG. 3. Profiles of ∂θ/∂τ of two-soliton solutions with pa-
rameters α = 0.5κ2c, β = −0.5/c, χ

(0)
1 = χ

(0)
2 = 0, k1 = k2 = 0

and μ1 = 0.2/|κ|, μ2 = −0.3/|κ| (a) and μ1 = 0.1/|κ|, μ2 =
−0.45/|κ| (b).

where

μ± = μ1 ± μ2

2
, χ± = χ1 ± χ2

2
, ε± = 1 ± μ1μ2κ

2,

χ1,2 = μ1,2x̃ − t̃

μ1,2
+ χ

(0)
1,2 + ik1,2π,

μ1,2 and χ
(0)
1,2 are real constants and k1,2 = 0, 1. The sub-

stitution of the expression (37) into Eqs. (28) gives us the
two-soliton solution of the GSG equation (25) in the case
αβ < 0. Note that this solution can be well defined only if
|μ1| < 1/|κ| and |μ2| < 1/|κ|. In that case, the two-soliton
solution describes the collision of the nonsingular solitons,
whose durations and velocities are defined by the relations
(36) with μ = μ1 and μ = μ2.

Let us discuss the collision of the solitons of Eq. (25)
in detail in the terms of the variable ∂θ/∂τ . In the case
(−1)k1+k2μ1μ2 < 0, the solitons of the same polarities col-
lide. Here the character of the soliton interaction is similar
to that for the Korteweg–de Vries and MKdV equations (see,
e.g., Refs. [59,60]). If the absolute values of the parameters
μ1 and μ2 of the solitons are close, the process of exchange of
the energy between them is observed [Fig. 3(a)]. An interval
separating the solitons exists always in such a collision. If the
amplitudes of the solitons are very different, then the fast one
passes through the other soliton. The monopolar pulse consist-
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ing of a single peak with the amplitude smaller than the am-
plitude of the larger soliton is formed in this case [Fig. 3(b)].

If (−1)k1+k2μ1μ2 > 0, then the two-soliton solution of
Eq. (25) describes an interaction of solitons with opposite
polarities. In the case when the absolute values of μ1 and μ2

are much smaller than 1/
√

2|κ|, this interaction is similar to
that for the MKdV equation and leads to an appearance of the
pulse with an amplitude equal approximately to a sum of the
amplitudes of the colliding solitons [59,60]. If the absolute
values of the parameters μ1 and μ2 are close enough to
1/

√
2|κ|, then the collision of the well-defined solitons leads

to an appearance of the short-living pulse with extraordinarily
large amplitude or to the blow-up of the two-soliton solution.

Figure 4 illustrates the main stages of the collision of the
solitons of the GSG equation (25) with opposite polarities in
the last case. As we see from Fig. 4(b), the amplitude of the
short-living pulse appearing under the interaction of solitons
is larger than the ones of the colliding solitons on the order.
The dynamics of these short-living pulses is similar to that
of rogue waves [61]. Note that the rogue waves are solutions
evolving on constant (or periodic) background.

The breather solution of the MSG equation (29) is written
in the case of real κ as follows:

ξ = 2 arctan
μR sin χI

μI cosh χR

+ 2 arctan
μR[(1 − |μ|2κ2) sin χI − 2μIκ cos χI ]

μI [(1 + |μ|2κ2) cosh χR − 2μRκ sinh χR]
,

(38)

where

χR = μR

(
x̃ − t̃

|μ|2
)

+ χ
(0)
R , χI = μI

(
x̃ + t̃

|μ|2
)

+ χ
(0)
I ,

μR , μI , χ
(0)
R , and χ

(0)
I are real constants and μ = μR + iμI .

To obtain the breather solution of the GSG equation (25), we
substitute expression (38) into Eqs. (28).

Let us introduce the characteristic parameters of the
breather solution of Eq. (25). We assume that the variable
∂θ/∂τ is represented at the breather tails in the following
manner: exp(−|t − z/vg|/τb ) cos[ωb(t − z/vph)], where
parameters τb, ωb, vg , and vph are the duration of the breather,
its carrier frequency, group, and phase velocities in the
laboratory frame of references (z, t ), respectively. From the
first relation in (28), Eqs. (30) and (38) and expressions for
χR and χI , we find

τb = 1

|μRα| , ωb = |μIα|, (39)

vg = c

[
1 + c

(
ατ 2

b

1 + ω2
bτ

2
b

+ 2β

)]−1

, (40)

vph = c

[
1 − c

(
ατ 2

b

1 + ω2
bτ

2
b

− 2β

)]−1

. (41)

These formulas coincide with ones of the SG equation
if β = 0.

Now, let us consider the case when parameter κ is pure
imaginary (or αβ > 0). The formulas of the Darboux trans-
formation derived in [57] allows us to construct the real
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FIG. 4. Profiles of ∂θ/∂τ of two-soliton solution with parame-
ters α = 0.5κ2c, β = −0.5/c, χ

(0)
1 = χ

(0)
2 = 0, k1 = k2 = 0, μ1 =

−0.69/|κ|, μ2 = −0.7/|κ|, and z = −15|κ| (a), z = 0 (b), and
z = 15|κ| (c).

multisoliton solutions of the MSG equation (29) in this case.
The corresponding one-soliton solution reads as

ξ = 2 arctan
2 exp χ

1 + μ2K2 − exp(2χ )
, (42)

where

K = −iκ = 2
√

αβ

and μ are real parameters. Note that variable ξ is here nothing
but the real part of the complex solution of the usual SG
equation, which satisfies additional reduction. The maximum
of the absolute value of u = ∂ξ/∂x̃ is equal here to

2|μ|
√

1 + μ2K2.
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FIG. 5. Profiles of ∂θ/∂τ and u (thin line, the designations of the
axes are in the parentheses) of one-soliton solutions with parameters
α = 0.5|κ|2c, β = 0.5/c, χ (0) = 0, and μ = 0.2/|κ| (a), μ = 1/|κ|
(b), and μ = 16/|κ| (c).

Substituting expressions (42) into Eqs. (28), we obtain the
one-soliton solution of the GSG equation (25) in the case
αβ > 0. Here we have the following expression for variable τ :

τ = x̃

α
+ 4β

K
arctan

1 + exp(2χ ) − μ2K2

2μK
. (43)

It follows from this relation that the one-soliton solution of
Eq. (25) is steady also in the case considered. Figure 5 shows

the profiles of variable ∂θ/∂τ of the one-soliton solution and
corresponding ones of u for different values of parameter μ.

It is seen from Eq. (43) also that the duration of the one-
soliton pulse tends to

τmin = 4|β|π
|K|

in the limit |μ| → ∞. The amplitude of ∂θ/∂τ tends in
this limit to its maximum value 2|α/K| [see Eq. (30)]. It is
interesting that the form of the one-soliton pulse becomes
“rectangular” under increasing |μ| [see Fig. 5(c); the scale of
variable u is reduced here to 500 times]. These properties of
the one-soliton solution were found in [51].

The two-soliton solution of the MSG equation (29) is
written in the case of pure imaginary κ as

ξ = 2 arctan
(μ1 + μ2)s+

r−
+ 2 arctan

(μ1 + μ2)s−
r+

, (44)

where

s± = exp(−χ1) − exp(−χ2) ± K (μ1 − μ2) exp(−χ1 − χ2),

r± = (μ1 − μ2)[1 + (1 − K2μ1μ2) exp(−χ1 − χ2)]

± K (μ1 + μ2)[μ1 exp(−χ1) − μ2 exp(−χ2)].

Substitution of expression (44) into Eqs. (28) gives us the
two-soliton solution of Eq. (25) describing the collision of
the solitons in the case αβ > 0. As an example, the profiles
of the variable ∂θ/∂τ corresponding to the collision of the
rectangular solitons with opposite polarities are presented in
Fig. 6. The slow soliton conserves almost its form during
the interaction, which becomes more rectangular with the
duration equal to τmin approximately [see Fig. 6(b)]. Such kind
of soliton interaction can be called “seepage.”

The breather solution of the MSG equation (29) is written
in the case of pure imaginary κ in the following manner:

ξ = −2 arctan
μRq+
μIp+

+ 2 arctan
μRq−
μIp−

, (45)

where

p± = 1 + KμI ± 2KμR sin(χI ) exp(−χR )

+ (1 − KμI ) exp(−2χR ),

q± = p± − 1 ± 2 cos(χI ) exp(−χR ) − exp(−2χR ).

Substituting expression (45) into Eqs. (28), we obtain the
breather solution of the GSG equation (25) in the case αβ > 0.
Note that the maximum of the absolute value of u = ∂ξ/∂x̃

tends to infinity in the limit μR → 0 if

|μI | >
1

|K| . (46)

In this case, the form of oscillation of ∂θ/∂τ becomes rect-
angular in the center of the breather. The corresponding plot
of variable ∂θ/∂τ of the breather solution of Eq. (25) is
presented in Fig. 7. As it can be seen, the period of the
rectangular oscillations is equal approximately to τmin. Their
amplitude reaches the maximum value 2|α/K|.

The multisoliton solutions of the GSG equation (25) ob-
tained on the zero background describe elastic collisions of
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the steady one-soliton pulses and breathers considered in this
section.

The breather solution of the GSG equation (25) passes into
the envelope soliton under condition (1), i.e., if ωτp � 1. It is
interesting in this regard to derive from Eq. (25) an equation
for slowly varying complex envelope ψ defined as

2�21 = ∂θ

∂τ
= ψ ei(ωτ−qz) + c.c., (47)

where parameter q is connected with the wave number k by
expression k = n0ω/c + q.

–1
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–20 –10 10

1
c|κ|

∂θ
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τc|κ|

FIG. 7. Profile of ∂θ/∂τ of breather solution with parameters
α = 0.5κ2c, β = 0.5/c, χ

(0)
R = χ

(0)
I = 0, μR = 1/|κ|, μI = 12/|κ|,

z = 0.

Taking the integral by parts successively, we have

θ =
∫ τ

−∞
ψ ei(ωτ ′−qz) dτ ′ + c.c.

=
[

ψ

iω
−

(
1

iω

)2
∂ψ

∂τ
+

(
1

iω

)3
∂2ψ

∂τ 2
−

(
1

iω

)4
∂3ψ

∂τ 3
+t · · ·

]

× ei(ωτ−qz) + c.c. (48)

Since the breather amplitude decreases with an increase of
the carrier frequency, we will restrict in the subsequent con-
sideration by the cubic nonlinearity and by the terms having
an order up to (ωτp )−3. Retaining the terms oscillating at the
main frequency ω only, we write

sin θ ≈ θ − θ3

6
≈

[
−i

ψ

ω
+ 1

ω2

∂ψ

∂τ
+ i

ω3

∂2ψ

∂τ 2
− 1

ω4

∂3ψ

∂τ 3

+ i

2ω3
|ψ |2ψ+ 1

2ω4

∂

∂τ
(|ψ |2ψ )− 2

ω4
|ψ |2 ∂ψ

∂τ
+ · · ·

]

× ei(ωτ−qz) + c.c. (49)

Substitution of relations (47)–(49) into Eq. (25) gives us
the following equation:

i
∂ψ

∂z
= α

ω3

∂2ψ

∂T 2
+ i

α

ω4

∂3ψ

∂T 3
+ b

2ω
|ψ |2ψ

− ib

2ω2

∂

∂T
(|ψ |2ψ ) + ig

2ω2
|ψ |2 ∂ψ

∂T
, (50)

where

b = α

ω2
− 4β, g = 4α

ω2
− β, T = τ − αz

ω2
= t − z

vg

,

linear group velocity vg is defined by the relation

1

vg

= n0

c
+ α

ω2
.

Expression for corresponding wave number

k = n0

c
− α

ω
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is found by equalizing the coefficient at the free term of ψ to
zero.

If the dispersion of group velocity and nonlinearity in the
higher-order NLS equation (50) are kept in the minimal order
in parameter ε1, then it is reduced to the usual NLS equation

i
∂ψ

∂z
= α

ω3

∂2ψ

∂T 2
+ b

2ω
|ψ |2ψ. (51)

Its soliton solution reads as

ψ = 1

τp

√
1 − 4βω2/α

exp

(
−i

αz

ω3τ 2
p

)
sech

(
T

τp

)
. (52)

Here the expression for b given after Eq. (50) is used.
It follows from (52) that there is a restriction from above

on the carrier frequency

ω < ωmax, (53)

where

ωmax = 1

2

√
α

β
,

in the case αβ > 0. Assuming ω = |μIα| in accordance with
the second relation in (39) and taking into account defini-
tion of K , we see that the inequality (53) is opposite to
(46). If the inequality (46) takes place and μR → 0 and,
consequently, τp → ∞ [see the first relation in (39)], then
the oscillations of �21 are rectangular in the center of the
breather. Owing to this, the assumptions used under the
derivation of the NLS equation (51) are not valid if αβ > 0
and ω > ωmax.

In the case αβ < 0, the formal restrictions on the frequency
of the breather and the envelope soliton are absent.

V. CONCLUSIONS

Thus, taking into account the transitions from the two
allocated quantum levels to the ones lying above on the
energy scale led us to integrable generalization (25) of the SG
equation. It is very important that the additional terms in this
equation containing the coefficient β cannot be considered as
a slight adjustments of the SG equation. Due to these terms,
the properties of the soliton and breather solutions of the
equation differ significantly from that of the SG equation.
So, depending on the sign of αβ, the solitons and breathers
of various types can exist. If αβ > 0, then there exist the
solitons of rectangular form and the breathers with rectangular
oscillations. The interaction of the solitons displays new fea-
tures also. Unlike the SG equation, the interaction of solitons
of Eq. (25) having opposite polarities can give rise in the
case αβ < 0 to an appearance of the short-living pulse with
extraordinarily large amplitude, whose dynamics is similar
to that of rogue waves. Also, the blow-up of the two-soliton
solution can take place in some region of its parameters.

We emphasize that a simple search of the steady solutions
of Eq. (25) was carried out in [51]. The solutions in the
form of the rectangular and pointed pulses were obtained
this way. In the present paper, these solutions appeared as
special cases that correspond to the one-soliton solutions.
This circumstance is important argument in the favor of the
approach used here, which allowed us to obtain and analyze
more complicated two-soliton and breather solutions.

Note the integrable GSG equation (25) is obtained here by
considering the concrete physical model of nonlinear interac-
tion of the FCPs with matter. This can evoke an interest to the
investigation of another model in a similar manner. We hope
that such investigations will stimulate the further development
of nonlinear optics of short laser pulses.
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