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We study optimal control problem in infinite time, where integrand does
not depend explicitly on state variable. Special case of such problem is
Ramsey optimal capital accumulation in centralized economy. To complete
optimality conditions of Pontryagin maximum principle so called transver-
sality conditions of different types are used in the literature. Here instead
of transversality condition additional maximum condition is considered.

1. Statement of the problem

LetX be a nonempty open convex subset ofR, U be an arbitrary nonempty
set in R. Let us consider the following optimal control problem:∫ ∞

t0

e−ρtg(u(t)) dt→ max
u
,(1)

ẋ(t) = f(x(t), u(t)), x(t0) = x0,(2)

where u(t) ∈ U and exists state variable x(t) ∈ X for all t ∈ (t0,+∞).
We call such control u(·) and state variable x(·) trajectories admissible.
Functions f and g are differentiable w.r.t. all their arguments, and together
with the partial derivatives f is continuous in (x, u). Moreover function g is
strictly concave and ρ ≥ 0.1
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1Improper integral in (1) might not converge for any candidate for optimal control û(·),

i.e. the limit

(3) lim
T→∞

J(û(·), x0, t0, T ),

might fail to exist, or might be infinite, where we introduce the finite time horizon func-
tional:

J(u(·), x0, t0, T ) =

∫ T

t0

e−ρtg(u(t)) dt,

subject to state equation (2). Thus functional J may be unbounded as T → ∞. So we
can involve the following more general definitions of optimality.

An admissible control û(·) is overtaking optimal (OO) if for every admissible control
u(·) holds

lim sup
T→∞

(J(u(·), x0, t0, T )− J(û(·), x0, t0, T )) ≤ 0.
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2. Optimality conditions

2.1. Pontryagin’s maximum principle. With the use of the adjoint vari-
able ψ we introduce current value Hamiltonian

(4) H(x, u, ψ, λ) = λ g(u) + ψ f(x, u).

Theorem 1 ([1, 2, 3]). There exist λ ≥ 0 and ψ0, such that (λ, ψ0) 6= 0 and
the maximum condition holds:

(5) H(x̂(t), û(t), ψ(t), λ) = max
u∈U
H(x̂(t), u, ψ(t), λ),

along with the adjoint equation:

(6) −ψ̇(t) = −ρψ(t) + ψ(t)
∂f

∂x
(x̂(t), û(t)), ψ(t0) = ψ0.

In this theorem ψ0 remains undetermined. Notice that for ψ ≡ ψ0 = 0
maximum condition (5) might have no solution with λ > 0, while λ = ψ0 = 0
contradicts the theorem. Additional arguments are used to refine solutions
of (5)–(6) and single out nonzero value of ψ0.

It turns out that maximum condition (5) with ψ ≡ 0 and λ = 1 yields ad-

ditional nesessary optimality condition if we substitute set U by set Û(x̂(τ)),
defined as follows.

Definition 1.
Û(x) = {u : (u, x) ∈ G},

where G ⊂ U×X is the set of all admissible trajectories (u(·), x(·)) satisfying
maximum principle (5)–(6) and state equation (2).

2.2. Additional maximum condition. In order to use the following con-
dition we need first to make synthesis of control and calculate sets Û(x).

Proposition 1 (Necessary optimality condition). Let there exists an ad-
missible pair (û(·), x̂(·)).
If control û is optimal, then for almost all τ ∈ [t0,∞) and all u ∈ Û(x̂(τ))

g(u) ≤ g(û(τ)).(7)

Example 1 (Ramsey problem with ρ = 0). We maximize aggregated constant
relative risk aversion utility∫ ∞

0

c(t)1−θ

1− θ
dt→ max

c>0
,

An admissible control û(·) is weakly overtaking optimal (WOO) if for every admissible
control u(·) holds

lim inf
T→∞

(J(u(·), x0, t0, T )− J(û(·), x0, t0, T )) ≤ 0.

It is clear that if û(·) is OO, then it is also WOO. When ordinal optimality holds, i.e.
finite limit exists in (3) and for all admissible controls u(·)

lim sup
T→∞

J(u(·), x0, t0, T ) ≤ lim
T→∞

J(û(·), x0, t0, T ),

then û(·) is also both OO and WOO.
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subject to dynamics of capital

k̇(t) = k(t)α − δk(t)− c(t), k(t) > 0,

where k(0) = k0 > 0, θ 6= 1, θ > 0, and α ∈ (0, 1).

Hamiltonian:

H(k, c, ψ, λ) = λ
c1−θ

1− θ
+ ψ (kα − δk − c) , λ ≥ 0, (λ, ψ) 6= 0.

Abnormal case (λ = 0) would lead to ψ = 0 and thus impossible. Stationar-

ity condition c(t)−θ = ψ(t) and the adjoint equation−ψ̇(t) =
(
αk(t)α−1 − δ

)
ψ(t)

result in the Euler equation

ċ(t)

c(t)
=
αk(t)α−1 − δ

θ
.

Due to Euler and state equations any feasible pair (k, c), not violating con-
straints c(t) ≥ 0 and k(t) > 0, converges either to steady state (k∗, c∗), where

k∗ = (δ/α)
1

α−1 and c∗ = (1− α) k∗ > 0, or to (δ
1

α−1 , 0), where k∗ < δ
1

α−1 .
Solid lines in Fig. 1 constitute set G, which is all space below saddle path

k∗

ċ = 0

k̇ = 0

k̇ = kα − δk − c

ċ

c
=
αkα−1 − δ

θ

Fig. 1. Bold lines are the stationary curves, k̇ = 0 and ċ = 0.
Solid lines are the trajectories governed by the state and
Euler equations, for which k(t) > 0 for all t > t0.

and horizontal line c = 0. Thus condition (7)

(8)
ĉ(t)1−θ

1− θ
≥ c1−θ

1− θ
, for all c ∈ {c : (c, k̂(t)) ∈ G},
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selects saddle path as the only possible optimal.

REFERENCES

[1] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Math-
ematical Theory of Optimal Processes. Fizmatgiz, Moscow 1961; Pergamon, Oxford
1964.

[2] Shell, K.: Applications of Pontryagin’s maximum principle to economics. In Mathe-
matical Systems Theory and Economics I, volume 11 of Lecture Notes in Operations
Research and Mathematical Economics, pages 241–292. Springer, Berlin, 1969.

[3] Halkin, H.: Necessary conditions for optimal control problems with infinite horizons.
Econometrica, 42(2):267–272, 1974.


