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Abstract

The familiar generating functionals in quantum field theory fail to
be true measures and, so they make the sense only in the framework
of the perturbation theory. In our approach, generating functionals are
defined strictly as the Fourier transforms of Gaussian measures in nu-
clear spaces of multimomentum canonical variables when field momenta
correspond to derivatives of fields with respect to all world coordinates,
not only to time.
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1 Introduction

Contemporary field models are almost always the constraint ones. In

order to describe them, one can apply the covariant multimomentum

generalizaLion of the Hamiltonian formalism in mechanics [8, 9]. The

multimomentum canonical variables are field functions /d and momenta

p) asrociated with derivatives of /i with respect to all world coordinates

rP, not only'  the t ime.

In classical field theorl', if a Lagrangian density is degenerate, the

system of the Euler-Lagrange equations becomes underdetermined and

requires additional conditions. In gauge theory, these are gauge con-

ditions which single out a representative from each gauge class. In

general case, the above-mentioned supplementary conditions remains

elusive. In the framework of the multimomentum Hamiltonian formal-

ism, one obtaines them automatical ly because a part,  of the Hamilton

equations play the role of gauge condit ions. The kev point consists in

the fact that, given a degenerate Lagrangian density, one must consider
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a family of associated multimomentum Hamiltonian forms in order to

exaust solut iols of the Euler-Lagrange equations [8, 9].  There erist the

comprehensive relations between Lagrangian and multimomentum Ha-

milt ,onian formalisms for degenerate quadratic and afl f tne densit ies. The

most of f ield models are of these types. As a result,  we get the general

procedure of describing constraint systems in classical f ield theory.

The present work is devoted to the mult imomentum quantum f ield

theor1,. This theory as like as the well-known current algebra models,

has beel hamper.ed by the lack of satisfactory commutation relations

between multimomentum canonical variables [2, 4]. We are based on

the fact that the operation of chronological product of quantum bosonic

fields is commutative and, so Euclidean chronological forms can be rep-

resented by states on commutative tensor alebras. Therefore, restrict-

ing our consideration to generating functionals of Green functions' we

can overcome the difficulties of establishing the multimomentum com-

mutation relat ions.

Moreover, the multimomentum quantum field theory may incorpo-

rate together the canonical and algebraic approaches to quantization of

fielcls. In ph1'sica,l models, the familiar expression

1:-1 exp[i I trd)] U @6(,)l

of a generating functional fai ls to be a true measure since the Lebesgue

measure in infinite-dimensional linear spaces is not defined in general.

In the algebraic quantum field theory, generating functionals of

chronological forms result from the Wick rotation of the Fourier trans-

forms of  Gaussian measures in  theduals tonuclear  spacet  [1 ,6,7] .  The

problem has consisted in constructing such measures. In the present

work, we get these measures in terms of mult imomentum canonical

variables. Thel '  have the universal form due to the canonical spi i t t ing

of mult imomentum Hamiltonian forms. In part icular, we reproduce the

Euclidean propagators of scalar fields and gauge potentials. Note that

the covariant multimomentum canonical quantization can be general-

ized to any field model with a degenerate quadratic Lagrangian density.
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2 Multimomentum Hamiltonian Formalism

We consider the multimomentum generalization of the familiar Hamil-

tonian formalism to fibred manifolds zr: E + X over a n-dimensional

base X, not only X - IR. If sections of E describe classical fields, one

can appl)' this formalism to f ield theorl ' . In this case, the Legendre

manifold
J I -  T , T . X a T x E l / ' E  ( 1 )

E E

plays the role of the f ini te-dimensional phase space of f ields . By V E

and V* E are meant the vertical tangent and cotangent bundles over a

f ibred manifold E. Given an at las of f ibred coordinates (c!,yi \  of E,

the Legendre manifold is provided with the linear adapted coordinates

(rr,V,lp). In this coordinates, a mult imomentum Hamiltonian form

on fl and the corresponding Hamilton equations read

H -  p ld,y i  Acr . r  -?{a -p ld 'v i  Acu.r  -p i f l ' - f r ' ,

ogi - a\T{, ?xp! - -o;H,,

( t  -  d , r r  A .  .  .  A  d rn ,  ( ' o^ :  0x ) , ,

where f is a connection on E and fl.o;t a horizontal density on IJ -r X.

The multimomentum Hamiltonian formalism is associated with the

Lagrangian formalism in jet manifolds where the jet manifold Jr E of E

plul,r the role of a finite-dimensional configuration space. The jet ma-

nifold Jt E comprises cla,sset jld of sections d of E which are identified

by the first two terms of their Taylor series at points r. It is provided

with the adapted coordinates (r) ,Y',y\) where

y\Uii l  _ 0.rd,(r).

A first-order Lagrangian densitl '  I  - L(x^,Ai,U\)i.. '  on Jr E defines

the Legendre morphism L of JrE to f l:

( r ^ , y t , p i )  o  L  -  @^ , y i , n ! ) ,  t i  :  a i L .

Conversely, a multimomentum Hamiltonian form H on fI defines the

momentum morphisn H of II to Jt E:

( r^  ,y i  ,Y\ )  o  f r  :  ( r^  ,Yt  ,A\Tq '

(2)

(3 )
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We sa1, that a multimomentum Hamiltonian form f/ is associated with

a Lagrangian density I i f

L " f r 1 a - r d Q ,  Q - L g ' n 1 ,
L(r ' ,y ' ,  7LH) - pial7t - H.

In general,  dif ferent mult imometrtum Hamiltonian forms ma)' be asso-

ciated with the same Lagrangian density. The most of f ield models

meet the following relations between Lagrangian and multimomentum

Hamilt,oni an formalisms.
( i)  Al i  mult imomentun Hamiltonian forms ,[ /  associated with a La-

grangian density L are equal to each other on the constraint space Q.'

that is, I/ lq : Hr. Mot'eover, for every section d of E, we have

(L o j '6)-  (H )  --  ( j '6)-Q) :  L(6).

( i i )  I f  a solut ion r of the Hamilton equationt (3) corresponding to

a mult imomentum Hamiltonian form l/  associated with a Lagrangian

density I  belongs to the constraint space Q, then ?rn o r is a solut ion of

the Euler-Lagrange equations for L. Conversely, for each local solution

-* of the Euler-Lagrange equations defined by u Lagrangian density I,

there exists an associated mult imomentum Hamiltonian form such that

L o t is a solut ion of the corresponding Hamilton equations.

The relat ion (4) gives the reason to use sections r of the Legendre

manifold fJ -r X as fulctional variables in quantum field theory. On

physical level,  one can consider the naive generating functional

(4)

Z - //-1 le"plt
r 'H  -  (p l ( r )0 ,6

Note that the canonical spl i t t ing (2) of mult imomentum Hamiltonian

forms leads to s tandard terms p l7rd ' in  generat ing funct ionals  in  mul-

t imomentum canonical variables.

The generating functional (5) fai ls to be a true measure. The prob-

lem of representation of generating functionals by measures can be set-

tled in the framework of the algebraic quantum field theory [6' 7].

It
t ( ' )

* H + aidiu + ai,pla)l IIld6'(r)llapi(")1, (5)
t

- 77\c':.
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3 Algebraic Quantum Field Theory

In accordance with the algebraic approach, a quantum field system can

be characterized by u topological .-algebra A and by u continuous state

f on A. To describe part icles, one considers usuall l '  a tensor algebra

A6 of a real l inear local l l '  convex topological space O endowed with

involution operation. \\ie further assume that O is a nuclear space.

In the axiomatic quantum field theory of real scalar fields, the quan-

tum field algebra is Ao with O - IRS4. By R.9- is meant the real sub-

space of the nuclear Schwartz spa,ce S(R-) of complex functions d(r)
on IR- such that

6 la l
l l d l l * , ,_  max  sup(1  +  l r l )a

l a l ( l , c (R - ( 1 r t  ) " '  . .  . ( 0 r ^ ) " ^ 6@),

l o l  - o r * " ' * o - ,

is f ini te for any col lect ion (or., .  . . ,e^) and al l  l ,  f t  € Z>o. A state /
on Ans. is represented by u family of temperate distributions Wn €

s'(lR,a" ):

f ( d r . . - o ^ ) :  I v / n ( r , , .,  rn )6 r ( r t )  .  .  .  d " (x^ )da  11  .  .  .  dn  rn .

If / obeys the Wightman axioms, W'n are the familiar n-point Wight-
man functions.

To describe particles created at some moment and destructed at
another moment, one uses the chronological forms /'given by the ex-
pressions

wi@r, .  .  . ,  xn) :  t  0(r?,- r?,) .  .  .  0(r l"_, -"1, )w,(rr,  .  .  . ,  r ,)  (6)
( i r  . . . t '  )

where ( i t  . .  .  i " )  i s  a  rear rangement  o f  numbers  1  , . . . , f r .  The forms (6)
fail to be distributions and do not define a state on Aj5.. At the same
time, they issue frorn the Wick rotation of the Euclidean states on Ai5.
describing particles in interaction zone.

Since chronological forms (6) are symmetric, Euclidean forms can
be introduced as states on a commutative tensor algebra. Note that
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they differ from the Su'inger functions associated
funct ions.

with the Wightman

Let 86 be the commutative quotient of A6. This algebra can be
regarded as the enveloping algebra of the Lie algebra associated with
the Lie commutative group Go of translat ions in O. We therefore can
construct a state olt  the algebra 86 as a vector form of i ts cycl ic repre-
sentation induced b1' a strong-continuous unitarl '  cycl ic representation
of Go. Such representation is characterized by 

" 
posit ive-type contin-

uous generating function Z on O, that is,

Z(d ,  -  d , ) o ' o '  >  0 ,  Z (0 )  =  t ,

f o r  a l l  co l l ec t i ons  o f  6 t , . . . , dn  and  comp lex  numbers  o1 , . . . ,  o ' .  I f  t he
function e + Z(oil on IR is analytic at 0 for each d e e, the posit ive
continuous form ^F on 86 is given by the expressions

F , ( 6 t " ' 6 , )  :  i - " *  j
1ar a; ;Z(o'd;) l ' '=0.

In virtue of the well-knor+'n theorem [3],, &ry function Z ofthe above-
mentioned type is the Fourier transform of a positive bounded measure
p in  the dual  (D '  to  O:

z(d) : ( i )

where (, ) denotes the contraction between O'and O. The corresponding
representation of G6 is given by operators

s@): u(u;)  *  
"*p[ i ( . , i l ] "@)

in the space of quadraticly p-integrable functions u(tr) on e,, and we
have

I

/  " *o l i ( r ' ,6) ldp(" , )
o ,

|  {u ' ,  d , )

function

F " ( e , - . . d ^ ) :

For instance, a generating
reads

. . . ( r , d " ) d p ( * ) .

Z of a Gaussian state .F on ,86

I
2(6)  -  exp[ -  ;h(0, i l ] (8 )
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where the covariance form A(dr ,6r) is a posit ive-definite Hermitian
bil inear form on O, continuous in $1 and $2. This generating function
is the Fourier transform of a Gaussian measure in Q'. The forms Fn>z
obey the Wick rules where

Fr :  0 ,  Fr(Qr,  dr )  
-  A(  dr ,  dz) .

In part icular, i f  O - RS", the covariance form of a Gaussian state is
uniquel ly defined by a distr ibution W € S'(1R,2"):

L(dr ,  dr) W ( r r ,  xz )d r@r )d r@rW r1d"  x2 .

In field models, a generating function Z plays the role of a gen-
erating functional represented by the functional integral (7). If Z is
the Gaussian generating function (8), its covariance form A defines Eu-
clidean propagators. Propagators of fields on the Mincowski space are
reconstructed by the Wick rotation of A (see Appendix).

4 Scalar Fields

Let E be a vector bundle over a world manifold Xa. Its sections describe
scalar matter fields. In jet terms, their Lagrangian density reads

t -
L@) : I"?,1g,'@L - r; )(vi - r,,) - *'y'yi)r@lr.,

e

f  l ,  :  |  ^ '  j ( * ) Y t  , g - de| !p,,

where oE is a fibre metric in E, I is a linear connection on E and g

is a world metric on Xa. Because of the canonical vert ical spl i t t ing
V E - E x E, the corresponding Legendre manifold (1) is

fl

AT-  X

The Legendre morphism tr1-y and the unique multimomentum Hamil-
tonian form associated with the Lagrangian density L@) are given by

: l

a r x g E .
E E



- 2 3 5 -

the expressions

pi o Lr^l _ g^uo?j(vt, -rt;.,

H(, ) - pld,yi A cur - piri, -'rA,ln*pfp|gl-t +

,r '  o!1v' y') tFgl, 

e
(e)

where a6 is the fibre metric in E. dual to aE .
For the sake_of simplicity, we here examine scalar fields without

symmetries Let 6b" real Euclidean scalar f ields on the Euclidean space
X - IRa. The corresponding Legendre manifold

f r -  th r -xaTX)  x rR'  x  ' x

is  provided with the adapted coordinates ( tu, i ,F ' ) .Sect ions r  of  f r  are
represented by functionr (d( z),Fu(z)) on Ra which take their values in
the vector space

v - (i n., I Rn) * IR, Ra : (Rn)'.

Their commutative tensor algebra is .86 where O _ t/ A IRS4. The
scalar form I(rl,) * : J [6,,F,e)t e) + $,1ryan,
brings Q into the rigged Hilbert space. Let

H@) - F,rtg A o,- l t  
-5,,F,t + m2!2)a

be the multimomentum Hamiltoti; form describing Euclidean scalar
fields. The covariance form A of the associated generating function is
defined by the relation

I

|  2r-  H.-4 -  (r l f  t )"  _ -  t t ( t r ,1r) ,  r  € O, (10)
J
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where 7 is a first order linear differential operator on O. We have

I
A(r,  r )  :  

J  tnr(zt .22)O(r ,  ) ,b(rr )  + p 'Q)W6Q) +

a  ,  , ? L F  - , ,  ,6(=r)ff i0' Q) + ( 6,,5u) (2, \  ,  7'Le- i2) * 
f f i r)Fu('r)tQ)ldn'rdn'r,

- z2)ldnq,
f

Ar (  z t ,Zz )  -  
J  

A r (s )exp [ i q ( r . t

Ar (  q)  :  (^ '  +  6"qrQ,) - t  , , ( r r )

where Ap is the Feynman propagator of Euclidean scalar fields.

Remark. The Schwartz space S(R-)is the dense subset of S'( lR-).
Being continuous on S-, the scalar form (l)r- and the covariance forms

A have no continuous prolongation to S'(R-). On practise, one can

consider prolongation of chronological forms to elements of ^9'(R,') \
.9(R-) which are the generalized eigenvectors of translation operators

if the corresponding integrals coverge.

5 Gauge Theory

Let P -, Xa be a principal bundle with a structure Lie group G of
internal s1'mmetries. There is the 1:l correspondence between principal
connections on P and global sections 4c of the affine bundle C _

J\ P lG modelled on the vector bundle

e -  T 'x gvG P, vG P -  vPlG. (12)

The bundle C is provided with the fibred coordinates (r ',kT ) such that
its secti on Ac has the coordinate expression

(kT o ec )@) -  A| (r)

where AT@) are coeff icients of a local connection l- form. In gauge

theory, sections Ac ale treated as gauge potentials.

The configuration space of gauge potentials is the jet manifold JtC.

It  is provided with the adapted coordinates (ru,,kT,kT). There exists
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the canonical spl i t t ing

Jtc -  c+ @ c- -  (J 'PlG) g ( i  T*x 8vG P),

(ktr,sf,s,ff ) : (kT,kT^+ kT,* rTtkxktr,kT^- kTu- rnk\kl)(13)

where cf,1 are the structure constants of the Lie algebra g of the group
G. In the coordinates (13), the conventional Yang-Mills Lagrapgian
density LUI of gauge potentials is given by the expression

1 ^
L(ot : 

iol,n^'go'F^pry,rf lnl, (  14 )

a worldwhere cG is a G-invariant metric in the Lie algebra g and g is

metr ic  on Xa.
For gauge potentials, we have the Legendre manifold

4 _f r _A  T . x  8 r x  ? t c  xc ) .

provided with the canonical coordinates (rp ,k7,p*). This is a phase
space of gauge potentials. It also has the canonical splitt ing

pu) : pg^) + pt#\ : r@,] + py) + rrr; rl - py).

The fibred manifold fI -r X is ti" .mn" U,rndtJ-odelled on the vector
bundle

i , r 'x  gv-e -> x.
C

The Legendre morphism corresponding to
( l a )  i s

( 1 5 )

the Lagrangian density

p y ^ )  o L 6 )  : 0 ,

pt#^J o L1o) : aT^g^" g'g r o16l

( 1 6 a )

( 1 6 b )
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The multimomentum Hamiltonian forms associated with the Lagran-
gian density (14) read

Ha: p*aPT Acur - pilFf,^, -frr,
I

fr - io?" g,' g ̂BPt#^t PYalgl-' / 

"
ryl - 

t 
rf,k\k', * o,BT + o^BT

rf.,( Bt - kT),

where B is some section of. C, I is a connection on

Christoffel symbols of a world metric A. We have

Hale: pt#\dkT ALrJl - 
f,n*^trT,k\ktuu 

-i lr.

The Hamilton equations corr"roorld,ng to the multimomentum Ha-
miltonian form (17) read

0>,p') - -cf^k',pY'l + ci,Bt py") - l\,p|") ,
0^kT * 7ukT :zTT,^t

plus the equat ion (16b).  On the constraint  space (16a),  the equat ions
(16b) and (18) are the fami l iar  Yang-Mi l ls equat ions. The equat ion (10)
plays the role of ga,uge condition.

In the algebraic quantum field theory, only fields forming a linear
space are quantized. We therefore fix a background gauge potential
B and consider deviation fields Ct _ Ac - B which are sections of
the vector bundle ( I 2) . The corresponding Legendre bundle (15 ) is
endowed with the adapted coordinates

@,,Ti ,p*)  -  ( "  ,kT -  BT@),p*) .  (20)

Sections r of the Legendre bundle (15) over the Eucl idean space IRa

are represented by functions (Ctf,  (r),p')(z)) taking their values in the

vector  space 

F - (A ren E R8 g g. )  x  (Ro s g) .

- cTt(kiB| + kXBt)) -

( 1 7 )

C and lor^ are

( 1 8 )

(1e)
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The commutative tensor algebra of r is Bo where O - F I R.9n. The
nuclear space Q is provided with the corresponding scalar form (l)"
which brings O into the rigged Hilbert space.

To define a Gaussian state on this algebra, let us consider the mul-
t imomentum Hamil tonian form (17).  In the coordinates (20),  i t  reads

H 
" 

: p': dT: A cur - pilflI^a - fr.Bus,

where fs is the strength of the background gauge potential B, and
fa is a connection on d associated with the principal connection B.
One can use the multimomentum Hamiltonian form (21) in order to
quantize the deviation fields Q on X - IRa.

For the sake of simplicity, let us assume that the structure group G
is compact and simple (oE" - -26^"). We have

r*Hn: r*  Hr *  r 'Hz: t ;  6r,6xB6^"pI#\p*P) + pr lv)CIf ]d4z -

lok^r @aix + cil(^T';dn, (22)
, r ^

where V 

-d"notes 

the covariant derivative corresponding to the principal

connection B.
To construct the associated Gaussian state, we use the quadratic

part r*Ht of the form (22). The term r'Hz describes interaction con-

sidered by the pertubation theory.

The scalar form [ ,* H, on O however is degenerate. There are two

ways for this difficulty to be overcomed.
(i) In accordance with the conventional quantization scheme, we

can restr ict ourselves to sections r taking values in the constraint space
( 1 6a ) .  Since the form

r 'HB - + pt:\f3^lda z -

Bl xcrl, + B',)dn ,

il" : 
IoE" n,,s^ppt#^tpvBtlsl-'/' + f,n!:^t(f BT^ + c7,T^Et,),

T"T^- cTtB\T',+ft ,^$

r* Ho

f,lu,,u ^06^^ ptux)ovo)

- 
io,:ucfr(oi +

(21)

(23)
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is degenerate, we must then consider the gauge orbit space Ec which

is the quotient of the space E of connections Ac by the group of gauge

transformations. There exists a neighborhood .lf centered at the image

of B in 3c such that there is a local section s6: /t' -r E whose values

are elements Ac e E satisff ing the gauge condition

6r 'Y u@i -  B,)  = o

15] Hence, /V is locally isomorphic to a Hilbert space. Not discussing

here the Gribov ambiguity problem, let us a^ssume that there exists a

connection .B such that s5 is a global section. If the bil inear part r* Ho

of the form (23) induces a nuclear scalar form on Et, one can construct

the associated Gaussian measure p in 36. If ss is p-measurable mor-

phism, there exists a measure pcp in F which is the image of p with

respect to s6. If this measure exists, it is concentrated in ss(Ec) C E.

We call it the gauge-fixing measure. In contrast with the naive ex-

pressions used in the gauge models, it is not the measure whose base

is a Gaussian measure and density is the Faddeev-Popov determinant.

Determinant densities are attributes of Lebesgue measures which fail

to be defined in general case.
(ii) The first procedure fails to be applied to general case of degen-

erate field systems, without gauge invariance. At the same time, one

can insert additional terms quadratic in p9') into the multimomentum

Hamiltonian form (21) which bring [ , 'Ht into a nondegenerate scalar

form. In general case, we have

E a : T [ s - h u ,  h  - : [ a 1 6 u , 6 x B 6  " p * ^ ) p y P )  * a z ( p l ' ) ' ] ,  ( 2 4 )
t-

where a1 I 0 and a2 d,r-€ some constants. The Lagrangian L'6y asso-

ciated with the multimomentum Hamiltonian form (24) includes addi-

t ional terms quadratic in 4r,l*rTtk(-B',1. If the quadratic form [ ,- Hi

is nondegenerate, one can use the relation similar the relation (10) in

order to construct the covariance form As of the associated Gaussian

generating function Z p.
For instance, i f  a1 -  I  and az:0,  we have

1
,' H', - l;5 r,6 xp6 " p* piP + puiY fiTlan , .

L)
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The associated covariance form A6 exists. In particular, it defines the
propagator of Euclidean deviation fields fl which coinciders with the
Green's opera,tor of the covariant Laplasian 6u"YuV,. This Green's
operator exists [5]. In the case of B - 0, the propagator of deviation
fields 0 coinciders with the familiar propagator of gauge potentials
which cor responds to  the Fevnman gauge (o_ 1) .  but  there  are  no
ghost f ields. In comparison with the measure pcr, the Gaussian mea-
sure prs defined by the generating function Z6 is not concentrated in a
gauge-fixing subset.

Note that, after gauge transformations B + .B', measures /.16 and

FB, are not equivalent in general. It means that a ga,uge phase of a
background gauge potential may be valid, otherwise electromagnetic
potentials. In the case of an abelian structure group G, the multimo-
mentum Hamiltonian form (23), the associated covariance form As and
the Gaussian measure p6 are independent on a background potential
B.

Appendix

We use the Fourier-Laplace (F-L) transforms in order to construct
str ict ly the Wick rotat ion.

Remark. Bl 'Ri  and ( '  w€ denote the subset of  IR" with the
Descartes coordinates rp > 0 and its closure respectively. Elements of
S(Ri )  are  d  e  S1n")  such that  6 :0  on lR"  \  R i .  E lements  o f  S(q)
correspond to distributions W' € S'(R") with suppl;/ C q.

Given V/ e ^9'(R"), let Qw.be the set of g € IR,, such that

exp( -qr)V/ e S'(R").

6

The L-F transform of \\/ is defined

V:FL( f t  +  iq )  -  ( "xp ( -qr ' ) l { ' )F  -

It is a holomorphic function on the
the interiority of Qw,. I\{oreover, it

to be the Fourier transform

+ iq)rll4; d"z e .S'(lR"),

tubular set IR,, + iQu. C C,, over
defines the familv of distributions

/ 
exp[e(A'
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Wdt(k) e S'(R^) which is continuous in the parameter q. In particular,

if W e S'(q), then R*,. C Q* and l4dt it a holomorphic function

on the tubular set IR,, * i lR+,, so that WFL(& + i0) - W'(ft), i .e.,

, r , - L i f t u * ^ { r y ' f t ' 6 ) - ( w ' ' 6 ) ' ' d ( k ) € ' 9 ( R ' " ) '

Let WFL(k + iq) be the L-F transform of some distribution W e

S'(q).  Then, the relat ion

I  
wFLuq)dk)dnQ:

R+',

f
d( ' )  -  /  "*p(  

-qr)6(q)d^e,
J

I+r,

defines the continuous l inear function al WL(q) - WFL(iq) on -q(R+").

I t  is cal led the Laplace transform. The IT.ge of S(R1") under the

continuous morphism g -> 0 ir  d"ttse in S(Ri),  and the normt l ldl l ' r . ,r  :

l l0l l*, ,  induce the weakening topology in .9(1R1"). The f inct ional Wt(q)

(2b) is continuous with respect to this topology. There is the 1:1 cor-

,"rpondence between Laplace transforms of elements of S'((. ) and

elements of S'(lR*") continuous with respect to the weakening topol-

ogy in S(R*"). We use this correspondence in order to construct the

Wick rotat ion.

If the Minkowski space is identified with the real subspace IRa of Ca,

i ts Eucl idean partner is the subspace ( izorrT'2'3) of Ca. These spaces

have the same spatial coordinate subspace (tt ' t ' ' ) .  For the sake of

simplicity, we further do not write spatial coordinate dependence. We

consider the complex plane Cl : X e iZ of time r and Euclidean time

z and the complex plane c1 _ /{ 0 iQ of the associated momentum

coordinates k  and q.

Let  W'(q)  e S ' (Q) be a d is t r ibut ion such that

w, : v/* * vt_, w+ e s'(0* ), w- e s'(Q -).

| * t't$t')d' ,
rl

p €  s (R+, ) ,

" €q  6e  s1q ; ,  ( 25 )

(26)
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For every 6+ € ^S(X+), we have

t ^ f f

J w(q)6+k)dq - 
J 

dq J drlw (q) 
"*p( 

-qr)d*( ') l  :
O+ O+ xa

I dq I oo I od tl,'(q) al1,texp( -ikr - qr)] :I  ' r  r
O * K X 1

o 
! 

oo I a*1vt'f ,  r - l :  I  v,k)aL*1zq1aq eT)
8+ K 8+

due to the fact that the F-L transfor^ 6lt(k + iq) of d+ € S(X+) c
S'(X*) exists and it is holomorphic on the tubular set /( * iQ+,Q+ C

Qa*, so that Ol ' ( /c + i0) :6| f t ) .The funct ion $*k) -  6 l t ( -q) can
be regarded as the Wick rotation of 6+@). The relations (27) take the
form

| ^ f ^

J 
t4 '  (q)6*(q)dq -  

J 
t l :a@)$a@)dr,

o+ x+

fu*( r )  :  [ " * r ( -qr ) \ l : (q)dq, ,  xe Xa,  (28)

Qr

where fr*1rl. e S'(X+) is continuous with respect to the weakening
topology in .9(X1).

For every 6- € S(X- ), we have the similar relations

|  ^  ,  l - - -

J w(q)Q-k)dq - 
J w-(,)$-(x)dr,

a_ x-
^ l
W'- ( * ) -  

Jexp (  
- q r ) I | ' ( q )dq1  reX - .  ( 29 )

o_
The combination of (28) and (29) results in the relation

I n al6k)aq = I tu 1,161,ya,,
a x
6 : 6 * + 6 - ,  A : $ * + A - ,  ( 3 0 )
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where fr@) is a linear functional on functions 6 e S(X) such that {

and all its derivatives are equal to zero al x - 0. This functional can

be regarded as a functional on S(X), but it needs additional definition

at r,-: 0. This is the well-known {eature of chronological forms in

quantum field theory. We can treat V7 as the Wick rotation of. W '

For instance, let the covariance forrn A of a Gaussian state on the

commutative algebra of Euclidean scalar fields 6 A" given by u distri-

bution fr G, - tr). We have

-  z )dz1dz  -

Let frF(g) satisfy the condition (26). Its Wick rotation (30) defines the

functional

a'k)exp( -qr)dq + 0(-r)  
I  

, ' f )  
"*p( 

-qx)dq

a_

J

on scalar f ields 6 on the Minkowski space. For instance' if 6F (q) is the

Feynman propagator (11), i frt is the familiar causal Green function D'.
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