BASt1: D.2Z4. 22781

I'I_

Astronomy Letters, Vol. 24, No. 2, 1998, pp. 228-236. Translated from Pis’ma v Astronomicheskii Zhurnal, Vol. 24, Nos. 34, 1998, pp. 275-284.

Original Russian Text Copyright © 1998 by Ilyasov, Kopeikin,Rodin.

The Astronomical Timescale Based
on the Orbital Motion
of a Pulsar in a Binary System

Yu. P. Ilyasov!, S. M. Kopeikin'?, and A. E. Rodin’
! Astro-Space Center, Lebedev Institute of Physics, Russian Academy of Sciences, ul. Profsoyuznaya 84/32, Moscow, 117810
Russia
2 Institute of Theoretical Physics, Friedrich Schiller University, Jena, Germany
Received September 9, 1996; in final form, November 25, 1997

Abstract—Assuming a highly deterministic pulsar’s orbital motion in a close binary system, we have studied
the possibility of using the orbital rotation period for establishing a new astronomical scale of the ephemeris
dynamical time, which would allow the determination with high accuracy (1012-10715) of time intervals on
long time scales of the order of several tens of years. This is necessary, in particular, for searching for ultra-low-
frequency stochastic background of relict gravitational waves in the frequency range 10°-10"'2 Hz and for
studying the limiting possibilities of testing alternative theories of gravity based on observations of binary pul-
sars. A theoretical analysis is done of the actually attainable stability of such a scale in the presence of stochastic
fluctuations of pulsar pulse arrival times, which represent a mixture of “white” and “red” noise with a power-
law dependence of the noise intensity on the Fourier frequency f* for s = 1, 2, ..., 6. It is shown that the dynam-
ical timescale realized in the pulsar’s orbital motion proves to be more stable on long time intervals than the

kinematical timescale based on the pulsar’s rotation.

INTRODUCTION

Neutron stars rotating with enormous kinetic energy
~10% J were suggested as the objects keeping time
intervals in the timescale called the pulsar timescale
(PT) by Shabanova et al. (1979). Subsequent studies
have shown that some pulsars, in particular millisec-
ond, which represent virtually “giant low-friction fly-
wheels,” are comparable in rotation period stability
with quantum frequency standards on time intervals
~10 yr (Ilyasov et al. 1989; Kaspi et al. 1994). Never-
theless, in spite of high attainable timing precision, the
PT cannot be treated as autonomous and ideally uni-
form. Its nonuniformity is determined by the following
factors:

(1) Random noise variations of the phase of the pul-
sar’s rotation caused by unpredictable variations in the
internal structure of the neutron star and/or its mag-
netosphere;

(2) Stochastic variations in the delay of pulsar’s
radio signals during their propagation through the non-
uniform interstellar medium;

(3) Stochastic character of residual errors in deter-
mining the relative position of the observer and the pul-
sar.

These noise components cannot be fully eliminated
even if we discriminate properly these effects from the
observed phase of the pulsar’s rotation and introduce
corrections by means of special data-processing tech-
niques (two-frequency timing; VLBI measurements of

coordinates, parallaxes, and proper motions). The
energy spectrum of stochastic variations in residuals of
pulse arrival times (PATs) determines the functional
nature of the time dependence of Allan variance (Rut-
man 1978), which describes the stability of pulsar’s
rotation on long observation intervals, as well as the
limiting possibilities of unambiguous reproduction of
the rotation phase which constitutes the basis for form-
ing the kinematic pulsar timescale (Ilyasov et al. 1989;
Guinot and Petit 1991).

The autonomy and significant improvement of the
given scale can be provided by observing several refer-
ence pulsars (Ilyasov ez al. 1989; Backer and Foster
1990), which gives, as a result, the group pulsar times-
cale by analogy, for example, with creating the interna-
tional atomic timescale. Such an approach does not
remove, however, from the agenda the question of
searching for other physical periodic processes, more
stable than the process of the pulsar’s rotation. They
could be used for solving fundamental astrophysical
problems, for example, for high-precision tests of gen-
eral relativity theory with the use of binary pulsars or for
searching for the low-frequency stochastic background
of gravitational waves with a frequency of <10~® Hz.

A radically new opportunity for solving the given
problem can be provided by constructing and using the
dynamical binary pulsar timescale (BPT) based on the
well-established periodic process of pulsar’s orbital
motion in a close binary system. As is well known (see,
for example, Damour and Taylor 1992), the formalism

1063-7737/98/2402-0228$15.00 © 1998 MAMK Hayka /Interperiodica Publishing

© MAMUK Hayxa/Interperiodica Publishing ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1998AstL...24..228I

FT99BASt1 . C.-Z4- 72781

THE ASTRONOMICAL TIMESCALE BASED ON THE ORBITAL MOTION

of relativistic celestial mechanics permits one to find
with high accuracy pulsar’s orbital parameters in a
binary system under the assumption that the orbital
motion is deterministic. It is necessary to point out that
information about pulsar’s orbital motion is gleaned by
the terrestrial observer from sets of PATs containing
noise variations caused by different factors: free pre-
cession of the neutron star, the readjustment of the star
internal structure and magnetosphere, Tkachenko
waves, the influence of the interstellar medium, etc.
This raises the fundamental question: what restricts the
limiting possibilities of reproducing the dynamical pul-
sar timescale in the presence of the noise components
in PATs of reference pulsars located in close binary sys-
tems? This work is devoted predominantly to the solu-
tion of this question. The results of analysis have shown
that the long-timing method enables one to estimate the
value and the characteristic time of gravitational effects
produced by nearby stars or planets traveling in the
vicinity of the binary system, as well as by gravitational
waves of different astrophysical origin falling on this
system, including the stochastic background originated
at the early stage of the Universe evolution (Mashkhun
and Grishchuk 1980; Kopeikin 1997a).

Obviously, the proposed dynamical pulsar timescale
(BPT) can be considered as a modified analog of the
ephemeris timescale used in classical celestial mechan-
ics, the practical implementation of which was prima-
rily accomplished so far by means of observations of
the Iunar orbital motion about the Earth (Guinot 1989).
It is evident that binary pulsars as the keepers of a new
timescale would be greatly superior to the Moon—Earth
system, the fact which allows us to expect higher
homogeneity and stability of the new BPT scale.

DOUBLE PULSARS AS
INTERVAL-KEEPING OBJETCS

The following characteristics are critically impor-
tant for frequency standards:

(1) Frequency stability, i.e., the ability to keep con-
stant the value of the unit reference interval of time;

(2) Reproducibility of the reference interval, i.e., the
possibility to use it for measurements at various
instants of time;

(3) Longevity of the object that keeps the standard
frequency.

In this work, we consider the binary system consist-
ing of a pulsar and its companion as a system capable
of keeping the reference frequency. Matter accretion
and tidal effects are assumed to be absent in this sys-
tem. The pulsar and its companion star may be consid-
ered, therefore, as point gravitational masses unaf-
fected by external forces. The evolution of the orbit of
two point masses is predicted with high accuracy on the
basis of the laws of relativistic celestial mechanics,
which has been considerably advanced since the dis-
covery of binary pulsar PSR B1913+16 (Hulse and
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Taylor 1975). The binary system similar to PSR
B1913+16 is an ideal laboratory for studies in the field
of fundamental metrology. Considered as a frequency
standard, it is a sufficiently long-life object for practical
use, because the time of its existence is determined by
the rate of loss of the orbital energy caused by the emis-
sion of gravitational waves, which is in excess of >10¢ yr.

As we noted above, the noise components in the
rotational motion of individual pulsars cannot be fully
excluded from the results of observations of residual
PAT deviations reduced to the barycenter of the Solar
System. This hinders the formation of an autonomous
pulsar’s stable timescale (PT) based on the pulsar’s
rotation on a time interval of ~5~10 yr. At the same
time, in a system consisting of two compact massive
bodies (pulsar and its companion) there occurs a virtu-
ally deterministic orbital motion of gravitating masses,
which is governed by the laws of relativistic celestial
mechanics. This was verified by Taylor (1992) with
high accuracy. Thus, the well-predicted periodicity of
pulsar’s orbital motion about the companion star can be
used to realize a new dynamic timescale BPT, which is
potentially more accurate on long time intervals than
other timescales (Ilyasov et al. 1996).

By analogy with the pulsar timescale, the BPT is
constructed as a sequence of discrete time intervals in
the barycentric coordinate system of the stellar system
under consideration according to the following algo-
rithm:

T = Ty+ Pb(N + %Psz). (1)
Here, T is the initial epoch, N is the number of orbital
periods counted off by the fictitious observer at the

barycenter of the binary system, and P, and Py are,
respectively, the pulsar’s orbital period and its time
derivative referred to the epoch 7. This exact formula
does not contain terms which depend on the higher-
order derivatives of the theoretical period P,, which
vanish identically in the pulsar’s coordinate system.
This is a consequence of the relativistic theory of pul-
sar’s orbital motion in the binary system (Damour
1987; Schifer 1985; Kopeikin 1985; Kopeikin and
Potapov 1994).

It is worth noting that in the framework of our
assumptions the orbital period and its derivative, in
contrast to the pulsar’s rotation period and its deriva-
tive, do not contain the noise components. This reflects
the deterministic character of motion of bodies in
binary pulsars, such as B1913+16 or J1713+0747, and
permits one to consider these bodies the astronomical
standards, which are more stable over long time inter-
vals than the time standard based on the pulsar’s proper
motion.

! This opportunity was first pointed out by Yu.P. Ilyasov in his
report at the scientific session of the Council on the Russian Fed-
eral Program “Fundamental Metrology” held on March 24, 1994.
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The accuracy of reproducing the unit time interval
on the BPT timescale depends on systematic and ran-
dom metrological errors in the determination of rota-
tional and orbital parameters of binary pulsars. System-
atic errors are due to the specific structure of the timing
algorithm for binary pulsars (Kopeikin 1994, 1996;
Damour and Taylor 1992; Bell and Bailes 1996) and
may vary slowly with time. The residual random errors
in measuring angular and orbital parameters of a binary
pulsar within the assumptions made above arise at the
stage of observational data processing by particular sta-
tistical methods of minimization of barycentric residu-
als of pulsar’s PATs. We also note that the accelerated
radial motion of the barycenter of the binary system, in
combination with its tangential proper motion relative
to the Solar System’s barycenter, leads to the appear-
ance of higher-order time derivatives in the observed
orbital periods of the binary pulsar (Damour and Taylor
1992; Bell and Bailes 1996) and in the observed projec-
tion of its semimajor axis onto the line of sight
(Kopeikin 1996).

As a result of observational data processing, the
noise components which are present predominantly in
the pulsar’s rotational phase turn out to be superim-
posed, thereby masking the reliably determined, in the
calculations, periodic dependence of PATs on pulsar’s
orbital motion relative to the barycenter of the binary
system. In other words, in processing the data we are
dealing with the linear combination of the deterministic
signal to be inferred and the additive noise. The latter is
due to measurement uncertainties and various stochas-
tic effects of astrophysical nature. As a result, the spec-
tral composition of the noise process includes the white
noise component present in measurements and the lin-
ear set of the components of the low-frequency (red)
noise of astrophysical origin and/or of the errors of
ephemeris provision. Each of the components of the
low-frequency noise has an inverse power-law fre-
quency dependence and can be represented as A,/f*, s >
1, where f is the frequency in the Fourier transform of
the time sequence of PAT residuals and 4, is the quan-
tity characterizing the noise intensity. The presented
model can be treated as a manifestation of shot-effect
noise in the pulsar’s PAT containing both the stationary
and nonstationary component (Kopeikin 1997b). The
ergodicity of this stochastic process is not assumed.
The presence of low-frequency noise components gives
rise to specific limitations on the possibility of determi-
nation of pulsar’s rotational and orbital parameters and,
consequently, affects the stability of the pulsar rotation
rate and pulsar’s dynamical BPT.

It is significant to emphasize the necessity and time-
liness of working out the fundamental approach to the
problem of testing the general relativity theory in the
strong gravitational field of a binary pulsar, because the
presence of ill-filtered red-noise components in PAT
residuals leads to the fundamental limitation imposed
on the accuracy of determining the mass function and
relativistic effects, whose real estimates are of prime

importance for successful development of relativistic
astrophysics and theory of gravity. It should be noted
that the works by J. Taylor and his colleagues on tests
of general relativity through observations of the binary
pulsar B1913+16 (Taylor and Weisberg 1989; Taylor
1992), which have come to be classical, were carried
out under the assumption that only a white-noise com-
ponent is present in the pulsar’s PAT. This assumption
has now a firm basis but presumably cannot be
exploited with further increase of the observation time
interval.

ALGORITHM FOR CONSTRUCTING
THE BINARY PULSAR TIMESCALE
AND ESTIMATION OF ITS STABILITY

The comprehensive study of the problem of stability
of the pulsar’s dynamic BPT presents significant math-
ematical difficulties. To simplify calculations and pro-
vide the possibilities for analytic calculations, we
restricted the discussions to the case of a binary pulsar
with zero-eccentricity orbit. This enables us to avoid
the necessity of using the complex transcendent func-
tions present in the description of the translational
motion of the pulsar moving in an elliptical orbit.
Below we present the results of calculations providing
the estimates of stability of the BPT in the presence of
low-frequency red noise. These estimates are more
accurate than those obtained earlier by Bertotti et al.
(1983) and Petit and Tavella (1996). The problem of the
optimum estimate of signal parameters against the
background of the low-frequency red noise is a known
but inadequately advanced problem of statistical radio
physics (Van Trees 1968; Tikhonov 1983). In the case
we consider here, the signal is a linear combination of
the pulsar’s rotational phase represented by the polyno-
mial of time and the periodic sinusoidal component
which depends on the orbital phase. Taking into
account the above assumption of the noise additivity,
we can represent the functional expression for the sig-
nal to be analyzed in the form

E(t) = N(t,\) +e€(1), 0<t<t, )

where N(t, A, is the function of time describing the
deterministic multiparameter signal component, A; is

the set of the estimated parameters (v, v, V,n, i, x, X,
Ty, t;) whose meaning will be explained in the subse-
quent discussion, €(#) is the stochastic noise process
whose correlation function is presumed to be known
(Kopeikin 1997b), and 7 is the time interval on which
the measurements of the above parameters are carried
out. We assume that observations are distributed uni-
formly with frequency m within one orbital period of
the binary system. This makes it possible, in particular,
to change the summation over observation points for
integration over time, i.e., to consider the observational
process as continuous.
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. The function N(z, A;) is determined by the expres-
sions

Nt = vT+%\'/T2+éVT3+..., 3)

T+ [x+x(T-Ty))]

4
X sin[n(T = To) + i(T = Ty)’] = t—t,, @

where Vv is the pulsar rotation rate; v, V and n are the

time derivatives of the rotation rate; »n is the orbital
mean motion (n = 2r/ P, where Py is the orbital period),

n is the derivative of the orbital mean motion (n =

-2nPy/ Pﬁ ); x is the projection onto the line of sight of
the semimajor axis of the pulsar orbit expressed in light
seconds; and x is the projection of the semimajor axis.
By T we denote the time in the pulsar’s coordinate sys-
tem, ¢ is the barycentric time of the Solar System, 7} is
the instant of time corresponding to the initial orbital
phase A, and f, is the initial epoch of observations (we
recall that ¢, # T).

In order to investigate the stability of the PT and
BPT, it is appropriate to introduce two new parameters
y = 0v/v and v = dn/n, where dv and on are the differ-
ences between the real physical value of the parameter
under consideration and its estimate obtained by the
least square fitting (LSF) in the processing procedure of
pulsar’s PATs. The variances of residual estimates of

the orbital and rotation rates (0%, and Gi , respectively)

are most demonstrative for comparing two pulsar’s
timescales. The mathematical expressions for the two
variances are called true variations (Rutman 1978).
They represent an idealized version of Allan variance
used in the fundamental metrology to analyze the sta-
bility of frequency and time standards. In our problem
of constructing the dynamical pulsar timescale, the
expressions for 6, and 6, depend on the particular type
of noise. Their explicit functional dependences on the
noise amplitude i, (s =0, 1, ..., 6 and on the interval of
observations 7T are listed in Table 1 and plotted in Fig. 1.
We should emphasize that 6, is independent of pulsar’s
orbital parameters because it characterizes only the
instability of the pulsar’s rotation and has nothing to do
with its orbital motion. On the other hand, the quantity
G, depends in a natural way on the pulsar’s orbital
period P,, the projection x of the orbit onto the line of
sight, and the initial position A of the pulsar in the orbit,
because these quantities characterize the phase and
amplitude of the sinusoidal function in formula (4),
whose parameters we attempt to determine against the
additive noise. The additional dependence of G, on the
initial orbital phase A is due to the fact that the pulsar’s
orbital frequency is one of the quadrature components
of the sinusoidal functions, along with the first time
derivative of the projection of the semimajor axis. The
point is that while using the LSF, red noises with the
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Fig. 1. Schematic behavior of the relative stability of pul-
sar’s rotation rate characterized by the parameter G, (the
solid line) and of pulsar’s orbital frequency characterized by
the parameter G, (the dashed line).

index s = 2 upset the balance in the accuracy of simul-
taneous determination of these quadrature components
and lead to the relation between G, and the parameter
A. This relation is unacceptable from the physical point
of view, indicating presumably the statistical ineffi-
ciency of the estimates obtained by the LSF in the pres-
ence of red noises. The determination of the effective
estimates in the presence of red noises remains an as yet
unresolved problem.

When deriving the formulas given in Table 1, the
parameter A was considered as concomitant (noninfor-
mative). For this reason, in the variance calculation we
made the additional averaging over A on the interval [0,
2m] assuming the uniform probability density for this
parameter.

The white phase noise caused by measurement
errors and possibly by the correlated noises of the pul-
sar rotation phase is assumed to dominate on the sam-
pling interval [t,, T,]. Various components of the red
noise spectrum begin to manifest themselves on the
intervals T > t,. Their amplitudes A, as it follows from
the experience of operation of quantum frequency stan-
dards, progressively decline with increasing the noise
spectral index s (i.e., the exponent in the Fourier fre-
quency f in the denominator of the red noise spectral
density). For example, in the model situation consid-
ered in Fig. 1, the red flicker noise with the spectral
density 1/f dominates in the range 1,, T,, whereas in the
range T, < T < T3 the red noise of random walks with the
spectral density 1/f? prevails, etc. In general, the longer
the observing interval, the more significant is the con-
tribution of noise with large spectral index s. This is due
to the fact that, according to our assumption, the noise
with higher s has a lower amplitude A, and therefore can
provide significant contribution only over longer time
intervals T.
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Table 1. Variances 6,(t), 6,(7), and 6,(7) for noises with various power spectra. The following notation is used: &, (s =0, 1, 2,
..., 6) is the intensity of the power spectrum component; P, is the orbital period; x is the projection of the large semimajor axis
of the orbit onto the line of sight; Az is the time interval between the consecutive observations; Cs, ..., Cg are the positive con-
stants (~0.05-0.5), which depend on the nonstationary component of the noise model under consideration (Kopeikin 1997b)

S0 &*(1) 62(1) 6’ (1)
y
2
3675 2835 3 75 Py
hy —= Athyt3 = Athgt =2 Athgt3
16 16 2m2
3
4851, 2499 75 Py
h!f — i = 2p3
64 64 am2 52
4
1575, _ 441 8925 Py,
hylf? = h,t! —— hyt! L p,r3
416 416 7487 x2
4
hylf3 (Cs + InT)hs ;ﬁhB a5 Py, o
560 301 X2
4
525 203 25 Py
hylf* (C4— ——)h4‘c = _h, byl
18304 18304 22887[4 X2
4
1 ) 93 2 5 Py
hs/f3 ~(Cs+ InT)hst . il
4 20480 1792754 x2
4
581 5 21 3 5 P
helf® (Cs - ——thT hgt 2h.1
5601024 77792 6406474 12 ©

It is of interest that the behavior of 6,(T) coincides
basically with the shape of the curve for the so-called
narrow-band variance of the frequency of time stan-
dards used in fundamental metrology in the presence of
low-frequency noises (Rutman 1978). However, in the
model examined here 6,(T) depends substantially on
the nonstationary red-noise component with the spec-
tral index s = 3 (Table 1). Since the nonstationary noise
component cannot be modeled accurately, this depen-
dence G,(T) points to the need for working out another,
more practical approach to the estimate of the variance
characterizing instability of pulsar rotation. It is possi-

ble that the modified dispersion measure Gf suggested
by Taylor (1992), which is related to the use of the for-
malism of transitional filtering functions in the spectral
region is a quite constructive and fruitful step in this
direction. In particular, Matsakis et al. (1997) obtained
the expression for 6,(1) in which 6,(t) is proportional
to the variation of the second derivative of the pulsar’s
rotation rate. We used our algorithm for calculating o,
(see Table 1). It was found that the ¢, value does not
depend on the nonstationary noise component and does
not contain logarithmic trends. The same inference is
also valid for the variance . In addition, our calcula-
tions show clearly that the instability of the pulsar’s
orbital phase G,(T) is insensitive to the noises with

spectral indices s = 1, 2 and, therefore, does not allow
one to differentiate these noises from the white noise.
On the other hand, such a behavior permits one to use
the binary pulsar orbital phase as a new time standard,
which is more stable at long time intervals. It is also
worth noting that we included in Table 1 only the main
terms in the expansions of the quantities ¢, 6,, and G,
in inverse powers of T. This means that these formulas
are valid only for sufficiently long observation inter-
vals.

As is evident from Fig. 1, the 6,(t) value of the pul-
sar’s rotation rate begins to grow from the instant t,,
whereas the value of 6,(7) of the orbital frequency pro-
ceeds to decrease until the noises with s > 5 begin to
dominate. This result is quite general and does not
depend on particular numerical values of the noise
amplitude. As theoretical analysis shows, a minimum
of the ¢ (1) curve can be occasionally reached at a
much later time than the similar minimum for 6,(7).
The depth of the minimum for 6,(t) is determined by
noise with the spectral index s = 3, generated by large-
scale inhomogeneities of the interstellar medium
(Blandford et al. 1984). The depth of the minimum for
0.(7) is determined by noise with spectral index s = 5,
which is attributable to the existence of stochastic back-
ground of gravitational radiation generated by physical
processes at the initial stage of the birth of the Universe
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Fig. 2. The curves 6, and o, calculated for pulsar
J1713+0747 under the assumption that the orbital eccentric-
ity e = 0. The minimum of the curve G, is reached on the
interval T = 20 yr and is determined exclusively by the
amplitude of noises of stochastic background ?avitational
radiation (the power spectrum of the form 1/f°) originated
at the early stages of the evolutlon of the Umverse The
noise amplitude is ks = 2Q, h? =2 x 1078, The dashed and
dot- dashed lines show the 1nten51t1es of the noises of the
form I/f and 1/]‘6 and bound below the behavior of the
curves O, and G,,. The given pulsar is a suitable candidate
for establishing the upper limit on the amplitude of back-
ground gravitational radiation, because the time interval on
which minima of the curves ¢, and G, are reached is short
enough to conduct experimental studies.

(Mashkhun and Grishchuk 1980; Bertotti ef al. 1983).
The noise with index s = 5 might also arise, in principle,
as a result of random fluctuations of the first derivative
of the rate of the pulsar’s rotation, although the appear-
ance of such fluctuations is extremly unlikely (Cordes
and Greenstein 1981) and will not be considered below.
As an observational example, we can indicate the min-
imum of the 6,(t) curve for the single pulsar PSR
B1937+21, which has a value of 107'# for a two-year
observation interval; its appearance is probably due to
the dominating influence of instability of the rotational
phase for the given pulsar (Kaspi et al. 1994).

It is of fundamental and practical importance that
the value of the absolute minimum of 6 (t) can be cal-
culated with certainty by neglecting noise with s = 6,
because it is completely determined by the amplitude
of stochastic gravitational-wave noise with spectral
index s = 5, which is of fundamental cosmological ori-
gin. Specifically, the minimum of G (7) is determined
by the formula

,=24x107,/Q,Pox 'h, (5)

where €2, is the energy density of the stochastic back-
ground of gravitational waves in the log frequency
range and h is the dimensionless Hubble constant (h =
H/100 km s™! Mpc™). It must be emphasized that the
absolute minimum of ¢,(T) depends not only on the
value of the fundamental constants Qg and h, but also
on the pulsar’s orbital parameters. As indicated above,
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Fig. 3. The curves ¢, and 6, calculated for pulsar B1913+16
without allowance for the ellipticity of its orbit. The mini-
mum of the 6, curve is reached much later than the mini-
mum of G,.. The dashed and dot- dashed lines show the inten-
sities of the noises of the form 1/f and I/f6 for 0, and G,
This pulsar is not suited for searching for the amphtude of
background gravitational radiation, because the minimum
of ¢, is determined by the noise 1 /]& which begins to dom-
inate much earlier than the noise of stochastic gravitational
waves. This pulsar is a suitable candidate for keeping the
scale of the dynamic ephemeris time, because the minimum
of 6, is rather deep and because it is reached over such a that
long time interval that all other known time and frequency
standards in this interval have a much worse stability.

this is related to the fact that we determine parameters
of pulsar’s deterministic orbital motion, which obeys
the sinusoidal law, against the background of the addi-
tive noise, which is exterior with respect to the sinusoid
of interest. However, the real minimum of the ¢ (7)
curve depends on the amplitude of the noise with the
spectral index s = 6. If the amplitude of the noise with
the index s = 6 is lower than the amplitude of the sto-
chastic background of gravitational waves, then the
practically attainable minimum of the ¢ (1) curve coin-
cides with the absolute minimum calculated from for-
mula (5). Otherwise, the minimum of the ¢ .(T) curve
lies above the given absolute minimum. Our estimates
show that the ¢,(t) minimum may have the value 10~
13-107'¢ on the assumption that Q, < 10~ (Starobinskii
1979; Vilenkin 1981; Rubakov et al. 1982).

The result obtained can be used in two different
ways. First, using pulsars with small orbital periods and
small P, /x ratios we can obtain the lowest possible
value of the minimum of 6.(7) in order to provide the
longest possible interval of BPT stability. Second, the
presence of the minimum of ¢ (t) makes it possible to
search for (or to establish the upper limit on the ampli-
tude of) stochastic gravitational radiation by using pul-
sars with large P, /x ratios and choosing the optimum A
value that would permit us to measure equally well the
frequency and amplitude of the orbital sinusoid. The
large Py/x value is necessary to obtain the highest pos-
sible value of the minimum of 6 (7), thus reducing the
time interval required for its attainment. It should be
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Table 2. Orbital parameters of some binary pulsars: P is the pulsar period; d is the distance to the pulsar; Py is the pulsar
orbital period, x is the projection of the semimajor axis of the orbit onto the line of sight in light seconds; e is the orbital ec-

centricity; and r is the amplitude of the Shapiro effect

PSR P, ms d, kpc Py, days X, C e r, us
J1713+0747 4.5701 1.1 67.82512988 32.342413 7.492 x 107 >13.5
B1855+09 5.3621 0.9 12.32717119 9.2307802 2.168 x 107 1.15
J0437-4715 5.7574 0.14 5.741042329 3.3666787 1.87x 1073 -
J2317+1439 3.4452 1.89 2.459331464 2.3139483 5x1077 -
J1537+1155 37.9044 0.68 0.420737299 3.729468 0.2736779 6.70
J2130+1210C 30.5292 10 0.335282052 2.52 0.68141 -
B1913+16 59.0299 7.13 0.322997463 2.3417592 0.6171308 6.83

particularly emphasized that the measurement of the
minimum of the ¢,(T) curve presumably gives us a
more accurate indicator of the upper limit of the ampli-
tude of stochastic gravitational waves than the mea-
surement of the respective slope of the 6,(t) curve. The
point is that the minimum of the G (t) curve can be
determined with higher confidence than the slope of the
c,(T) curve does, which depends on sufficiently large
errors in the measurement of ¢,(t) for long observation
intervals (Kaspi et al. 1994; Thorsett and Dewey 1996).

To date, 46 binary pulsars have been discovered. By
way of illustration, we present in Table 2 the parame-
ters of some binary pulsars which can be used as detec-
tors of the statistical background of gravitational waves
(J1713+0747, B1855+09) or as BPT-keeping objects
(B1913+16).

Another clear illustration of using the variance 6(t)
from the standpoint of fundamental applications is
shown in Figs. 2 and 3, where we plotted 6,(1) and
6.(7) as a function of T for J1713+0747 and B1913+16
with significantly differing orbital parameters. When
constructing these figures, we disregarded for clarity
the noises with spectral indices s = 1, 2, 3, 4, because
they affect the variance only slightly in the time inter-
vals considered here. Figure 2 demonstrates the behav-
ior of (1) showing the effect of the white noise [the
initial part of the curve is taken from the work by Foster
et al. (1996)]. We assume that Q,h = 10°%, although it
is quite probable that its actual value is much lower.
The amplitude of the noise with s = 6 was chosen in
such a way that this noise would begin to affect signif-
icantly the behavior of the G,(T) curve after 20 yr of
continuous observations. The o,(t) function thus
depicted can be recalculated into the corresponding
function 6,(t), which is also shown in Fig. 2, by using
the formulas in Table 1 and the values of the
J171340747 orbital parameters listed in Table 2. A
comparison of the curves in Fig. 2 shows that the binary
pulsar J1713+0747 is a sufficiently good detector of
stochastic gravitational radiation, as suggested by mea-
surements of both 6, and . It is significant that the use

for this purpose of the 6 () curve should help avoid the
uncertainty in the identification of the spectral charac-
ter of the noise contained in pulsar’s PAT residuals. For
example, the mere existence of the minimum in the
¢6,(7) curve indicates immediately the presence of the
noise with index s = 5. At the same time, the presence
of a similar noise can be judged from the 6,(t) curve on
condition that we have measured with rather good
accuracy the slope of this curve, which is quite prob-
lematic. Figure 3 was constructed in a similar way.
When plotting the ¢,(T)curve, we took the error in the
parameter y equal to 107!3 on a time interval of 7 yr,
according to the work by Taylor and Weisberg (1989).
We also assumed that measurements in this time inter-
val are dominated by the white noise. The 6 (t) curve
was obtained by the corresponding recalculation using
formulas in Table 1. The relative behavior of the curves
o,(7) and ¢(7) for pulsar B1913+16 in Fig. 3 differs
from that for pulsar J1713+0747. The minimum of the
6,(1) curve equals approximately 107'4; it lies deeper
than the minimum of the curve ¢,(7) and is reached
after an extraordinarily long time span of ~2000 yr.
Such a behavior of the variances of the rotational and
orbital frequencies for B1913+16 does not permit one
to obtain a satisfactory limit on the amplitude of sto-
chastic gravitational waves, but makes this pulsar a
highly reliable, stable standard of dynamic BPT over
time intervals where random fluctuations of pulsar PAT
residuals no longer represent the white noise and are
due chiefly to the presence of the red noise with spectral
index s > 1.

CONCLUSION

We have carried out the calculations of stability of
the rotational and orbital timescales in binary pulsars. It
is shown that in certain situations the scale of dynamic
time (BPT) is far more stable than the kinematical
timescale (PT). Nevertheless, the limiting uniformity of
the BPT, even in the absence of intrinsic noises in the
pulsar’s orbital motion, is restricted by the presence of
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noise components in pulsar arrival times (PATs),
although this limitation begins to show up much later
than the time the instability of the pulsar’s rotational
phase begins to manifest itself. This property of the
BPT gives hope that the use of the BPT in the future
may provide a deeper insight into the laws of gravita-
tion physics and must undoubtedly find practical appli-
cations in fundamental metrology.

The study of the problem of constructing and using
the BPT for solving various problems of modern
astronomy is connected intimately with the problem of
the study of the noise origin in pulsar’s PATs. The pub-
lication of the work by D’Allessandro et al. (1996),
which involves a detailed discussion of the spectra of
noises in PAT residuals for 18 single pulsars, is likely to
give evidence for the renewed interest of observers to
this problem.

The theoretical development of ideas related to the
study of the behavior of the BPT can be continued
along several lines. It is likely that we should examine
first of all the binary systems with elliptical orbits with

the maximum possible Pf,/x ratio, which might

improve the quality of the BPT and the accuracy of test-
ing the general-relativity effects. The possible varia-
tions in the orbital elements of the binary system,
which are caused by unpredictable external factors
such as passages of massive bodies near the binary pul-
sar or gravitational waves with periods close to the
orbital period, should also be taken into account.

It is easy to show that the binary systems with suffi-
ciently low m,,/m; ratio (m, and m, are, respectively, the
masses of the pulsar and its companion), large semima-
jor axis a,, small period Py, and with sini = 1, i.e., large
x, are preferable for constructing the BPT. We would
like to emphasize the significance of the regular long-
term timing of the set of reference binary pulsars at the
leading radio astronomical observatories that have at
their disposal radio telescopes with large effective area
providing a high signal-to-noise ratio and the limiting
accuracy of measurements of pulsar’s PATs.
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