Московский Государственный Университет им. М.В. Ломоносова Государственный Астрономический Институт им. П.К. Штернберга

На правах рукописи УДК 524.354.4

Бирюков Антон Владимирович

Циклическая и монотонная компоненты в эволюции вращения одиночных радиопульсаров

01.03.02 – Астрофизика и звёздная астрономия

автореферат

диссертации на соискание учёной степени кандидата физико - математических наук

Москва 2011

Работа выполнена на Кафедре астрофизики и звёздной астрономии Физического факультета МГУ им. М. В. Ломоносова, в Специальной Астрофизической Обсерватории РАН и в Государственном Астрономическом Институте им. П.К. Штернберга МГУ

Научный руководитель: кандидат физико-математических наук
Бескин Григорий Меерович, ведущий научный сотрудник
Специальной Астрофизической Обсерватории РАН.
Официальные оппоненты: доктор физико-математических наук
Бескин Василий Семёнович, профессор, ведущий научный сотрудник
Физического института им. П.Н. Лебедева РАН,

кандидат физико-математических наук Попов Сергей Борисович, старший научный сотрудник Государственного Астрономического института им. П.К. Штернберга МГУ.

Ведущая организация: Главная (Пулковская) Астрономическая Обсерватория РАН

Защита состоится "22" сентября 2011 года в 14^ч00^м на заседании диссертационного совета Д501.001.86 в Государственном астрономическом институте им. П. К. Штернберга МГУ по адресу: 119992, г. Москва, Университетский проспект, дом 13.

С диссертацией можно ознакомиться в библиотеке ГАИШ МГУ.

Автореферат разослан "18" августа 2011 г.

Ученый секретарь диссертационного совета д.ф.-м.н.

С. О. Алексеев

Общая характеристика работы

Диссертация посвящена проблеме аномальности наблюдаемых значений величины $d^2\nu/dt^2 = \ddot{\nu}$ – второй производной частоты вращения ν одиночных радиопульсаров. Эта проблема восходит к ещё не решённым во многом вопросам о механизмах эволюции вращения нейтронных звёзд и преобразования энергии их вращения в энергию излучения.

В последнее десятилетие появились результаты массовых однородных измерений $\ddot{\nu}$ для сотен объектов [14, 15]. Благодаря этому стал возможен совместный разносторонний статистический анализ большой, состоящей из почти 300 пульсаров, выборки. Он впервые проведён в рамках настоящей Диссертации для частоты вращения пульсаров ν и её первых двух производных.

В работе показано, что аномальные $\ddot{\nu}$ не определяются некорректностью наблюдательной процедуры или свойствами межзвёздной среды, а являются следствием долговременного процесса, влияющего на замедление пульсаров. Этот процесс, по видимому, носит регулярный характер и имеет иную природу, нежели красный шум – стохастические вариации наблюдаемых периодов пульсаров на временах в месяцы и годы [10, 15]

Был проведён статистический анализ зависимостей между ν , её первой и второй производными, характеристическим возрастом (τ_{ch}) и наблюдаемым показателем торможения (n_{obs}) пульсаров. Анализ впервые проводился раздельно для разных знаков $\ddot{\nu}$. Были обнаружены сильные корреляции между этими величинами. Отдельно отмечена корреляция $\dot{\nu} - \nu$. На основании этого анализа были определены основные свойства долговременного процесса. В первую очередь то, что он имеет циклический характер с периодами в тысячи и десятки тысяч лет, а его амплитуды достаточны для того, чтобы варьировать наблюдаемый темп замедления $\dot{\nu}$ в пределах 50 \div 70%.

В Диссертации вводится феноменологическая модель, описывающая долговременную¹ эволюцию периодов радиопульсаров в виде суммы двух компонент. Первая из которых – монотонная (эволюционная) компонента ν_{ev} , описывающая секулярные потери вращательной энергии на време-

¹По отношению к типичным интервалам наблюдений пульсаров, составляющие десятки лет.

нах порядка времени жизни пульсара ($\sim 10^7$ лет). Вторая – циклическая $\delta \nu$, ответственная за драматическое отличие измеряемых вторых производных от предсказанных теорией значений.

С использованием этой феноменологии в работе впервые проводится подробный анализ зависимости $n_{obs} - \tau_{ch}$ радиопульсаров, даётся её астрофизическая интерпретация.

Кроме того, в работе показывается, что соответствующие вариации второй производной симметричны относительно монотонной компоненты $\ddot{\nu}_{ev}$, при этом пульсар проводит одинаковое количество времени с $\ddot{\nu} > \ddot{\nu}_{ev}$ и $\ddot{\nu} < \ddot{\nu}_{ev}$. На основании этого строится количественная модель эволюции ансамбля объектов, учитывающая обе – как монотонную так и циклическую компоненты замедления. Для монотонной компоненты используется классический степенной закон $\dot{\nu}_{ev} \propto \nu_{ev}^n$, а для циклической $\delta \dot{\nu}(t)$ простое гармоническое выражение $\delta \dot{\nu}(t) / \dot{\nu}_{ev}(t) = A \cos \varphi(t)$. Модель характеризуется показателем n и параметрами распределения амплитуды вариаций A по выборке: средним $\langle A \rangle$ и дисперсий $\sigma[A]$. Фаза вариаций $\varphi(t)$ при этом принималась распределённой равномерно на интервале $0 \div 2\pi$. Оптимальные параметры модели n, $\langle A \rangle$ и $\sigma[A]$ находятся методом максимального правдоподобия (ММП).

В результате получено, что секулярная эволюция ансамбля пульсаров описывается степенным замедлением с показателем $n \sim 2.5 \div 4.5$, в то время как средняя относительная амплитуда циклических вариаций $\dot{\nu}$ составляет $\langle A \rangle \sim 0.6 \div 0.8$ с разбросом $\sigma[A] \sim 0.1$, что следует, в том числе, и из статистического анализа зависимостей $\ddot{\nu} - \dot{\nu}$ и $n_{obs} - \tau_{ch}$.

На основании результатов ММП строится распределение характерных периодов циклических вариаций вращения и показывается, что они могут лежать в широком интервале 5 ÷ 500 тыс. лет, с наиболее вероятными значениями в десятки тыс. лет. Такие времена согласуются с возможными периодами вынужденной прецессии НЗ вокруг своей магнитной оси под действием той части тормозящего момента, которая обусловлена излучением в ближней зоне (т.н. аномального момента) [13].

Однако, как показывается в заключительной части Диссертации, только лишь геометрические эффекты, обусловленные сложным вращением НЗ под действием аномального момента не могут приводить к наблюдаемым амплитудам вариаций $\ddot{\nu}$ и $\dot{\nu}$. Требуется дополнительный механизма-посредник, связывающий вынужденную прецессию НЗ с вариацями темпа потерь вращательной энергии. Один из такого рода механизмов предложен в работе Барсукова и Цыгана [2].

В Диссертации рассмотрены некоторые следствия, к которым приводит предложенная модель замедления. А именно – коррекция оценок наблюдаемых возрастов и магнитных полей одиночных радиопульсаров.

Актуальность темы

На сегодняшний день, значение $\ddot{\nu}$ известно у более чем 400 (из почти 2000) радиопульсаров². Интервалы времени, в течение которых проводилось хронометрирование, достигают десятков лет. Несмотря на то, что ошибка измерения $\ddot{\nu}$ в ряде случаев составляет лишь несколько процентов, значения $\ddot{\nu}$, как правило, оказываются слишком велики по абсолютной величине и для половины объектов даже отрицательны [14, 15].

Количественно, аномальность $\ddot{\nu}$ выражается в том, что вычисленный с их помощью показатель торможения пульсаров $n_{obs} = \ddot{\nu}\nu/\dot{\nu}^2$ на порядки величины отличается от значения около нескольких единиц, предсказываемого моделями замедления НЗ [18, 3]. Наблюдаемые значения n_{obs} распределены в интервале от $\sim -10^6$ до 10^6 . Только у некоторых самых молодых пульсаров измеренные n_{obs} оказываются близки к $1 \div 3$.

С другой стороны, если изменение $\dot{\nu}$ пульсаров монотонно и действительно описывается наблюдаемыми значениями $\ddot{\nu}$, то это противоречит общему количеству доступных наблюдениям объектов. При столь больших $|\ddot{\nu}|$ пульсар должен или очень быстро расходовать свою энергию вращения и "выключаться" в случае $\ddot{\nu} < 0$ или, в случае $\ddot{\nu} > 0$, переставать замедляться вообще. Это также сделает его ненаблюдаемым, поскольку его излучение определяется потерями вращательной энергии [18].

Благодаря недавно появившимся массовым однородным результатам хронометрирования пульсаров (включая измерения величины $\ddot{\nu}$), полученных на больших наблюдательных интервалах [14, 15], стал возможен совместный анализ характеристик большого ансамбля объектов.

Это и было сделано в рамках настоящей Диссертации. Работа представляет собой первую успешную попытку представить самосогласован-

² см. например ATNF Pulsar Catalogue [16], http://www.atnf.csiro.au/research/pulsar/psrcat/

ную интерпретацию аномальности вторых производных на основе статистического анализа характеристик обширного ансамбля пульсаров.

Цель работы

Основными целями работы являются:

- Проведение статистического анализа параметров вращения одиночных радиопульсаров (ν , $\dot{\nu}$ и $\ddot{\nu}$) полученных на больших интервалах наблюдения и зависящих от них величин (n_{obs} , τ_{ch}). Астрофизическая интерпретация зависимостей между этими параметрами.
- 2. Детальное феноменологическое описание долговременного циклического процесса, ответственного за аномальность наблюдаемых $\ddot{\nu}$.
- 3. Построение количественной модели эволюции периодов пульсаров, учитывающих как монотонную, так и долговременную циклическую компоненты. Определение параметров этой модели, наилучшим образом описывающих рассматриваемую выборку пульсаров.
- 4. Физическая интерпретация долговременного циклического процесса. Обсуждение его возможных наблюдательных следствий.

Научная новизна работы

- В работе вперые проведён подробный статистический анализ величин ν, ν ü ü на большой однородной выборке из 297 объектов. Обнаружены сильные (r ~ 0.7÷0.9) корреляции между этими параметрами, раздельно для разных знаков ü.
- 2. Показан циклический характер изменения периодов радиопульсаров на временах в тысячи и десятки тысяч лет. Обосновывается, что его природа отлична от природы коротковременных иррегулярностей периодов вращения, обнаруживаемых в наблюдениях.
- 3. Построена количественная модель замедления пульсаров, состоящая из монотонной и циклической компонент. Получены оценки её параметров.
- 4. Впервые дана интерпретация зависимости $n_{obs} \tau_{ch}$ для одиночных радиопульсаров в терминах двухкомпонентной модели замедления.

5. Предложена гипотеза о связи аномальных значений рацением НЗ на шкале в тысячи лет. Получены уравнения, связывающие наблюдаемый период переменности пульсара и период вращения нейтронной звезды.

Практическая ценность

Результаты работы могут применяться в теории нейтронных звёзд, а именно – в описании процессов, регулирующих потери их вращательной энергии и переработки последней в энергию излучения. Полученные закономерности приводят к необходимости пересмотра оценок возрастов пульсаров, что исключительно важно при анализе их совместного с остатками вспышек сверхновых происхождения.

На защиту выносятся

- Обнаружение значимых корреляций (r = 0.7 ÷ 0.9) между частотой вращения радиопульсаров и ее первой и второй производной для большой выборки одиночных радиопульсаров, а также между показателем их замедления и характеристическим возрастом при положительных и отрицательных значениях второй производной частоты.
- Интерпретация обнаруженных статистических связей, а также самих величин
 ü и n_{obs} как проявлений комбинации монотонных потерь вращательной энергии и их циклических вариаций на временной шкале тысячи лет.
- 3. Количественная модель комбинированной эволюции вращения радиопульсаров с показателем замедления для монотонной компоненты в интервале 2.5 ÷ 4.5 и средней относительной амплитудой вариаций первой производной частоты в диапазоне 0.5 ÷ 0.8 при дисперсии ~ 0.1.
- 4. Объяснение циклической компоненты вариаций частоты вращения радиопульсаров сложным вращением нейтронной звезды вследствие ее несферичности либо действия т.н. аномального тормозящего момента.

Апробация результатов работы

Результаты работы были представлены на следующих научных семинарах и конференциях:

- 1. "Isolated Neutron Stars: from the Interior to the Surface", 24-28 апреля 2006 г., Лондон.
- 2. 36th COSPAR Scientific Assembly, 16-23 июля 2006 г., Пекин.
- 3. IAU XXVIth General Assembly, 14-25 августа 2006 г. Прага.
- 4. Всероссийская астрономическая конференция (ВАК-2010) "От эпохи Галилея до наших дней", 13-18 сентября 2010 г, Нижний Архыз.
- 5. Семинар ГАИШ МГУ "АК-48", 26 ноября 2010 г.
- 6. 25th Texas Symposium on Relativistic Astrophysics, 6-10 декабря 2010 г., Гейдельберг.
- 7. "Астрофизика высоких энергий сегодня и завтра 2010", 21-24 декабря 2010 г., Москва.
- 8. JENAM-2011, 4-8 июля 2011 г., Санкт-Петербург.
- 9. Physics of Neutron Stars 2011, 11-15 июля 2011 г., Санкт-Петербург.
- 10. Астрофизический Семинар САО РАН.
- 11. Семинар (научное собрание астрофизических подразделений) ГАО РАН.

Публикации и личный вклад автора

Основные результаты диссертации изложены в 6 работах [4]-[9], из которых две опубликованы и две одобрены к печати в реферируемых изданиях.

Во всех работах автору принадлежит статистический анализ параметров вращения радиопульсаров, создание необходимого программного обеспечения, проведение численных и теоретических расчётов, а также существенный вклад в астрофизическую интерпретацию полученных результатов: идея о долговременном циклическом характере изменения периодов радиопульсаров, интерпретация основных зависимостей $\ddot{\nu} - \dot{\nu}$ и $n_{obs} - \tau_{ch}$, анализ возможной физической природы долговременных циклических вариаций параметров вращения.

Структура диссертации

Диссертация состоит из введения, четырёх глав, заключения, списка литературы и одного приложения. Она содержит 145 страниц, 22 рисунка, 4 таблицы. Список литературы насчитывает 124 наименования.

Во **введении** даётся общая характеристика работы, характеризуется личный вклад автора, описывается апробация результатов и формулируются положения, выносимые на защиту.

В первой главе содержится краткий обзор, посвящённый физике нейтронных звёзд. Описывается процедура хронометрирования одиночных радиопульсаров. Формулируется проблема аномальных значений $\ddot{\nu}$ (и соответствующих показателей торможения). Даётся характеристика её современного состояния.

Во второй главе приводятся результаты статистического анализа параметров вращения 297 радиопульсаров. Показывается, что аномальные $\ddot{\nu}$ навряд ли имеют ту же природу, что и красный шум пульсаров, проявляющийся внутри интервалов наблюдений. Делается вывод о существовании долговременного циклического процесса, ответственного за аномальные $\ddot{\nu}$. Из модельно-независимых соображений определяются параметры долговременных вариаций – их характерные времена и амплитуды. Описывается свойство их симметрии. Кроме того, даётся интерпретация зависимости $n_{obs} - \tau_{ch}$ и вводится феноменологическая двухкомпонентая модель замедления H3.

В третьей главе конкретизируется вид обеих компонент модели замедления. Монотонная компонента задаётся в канонической степенной форме, циклическая – в простой гармонической форме. Формулируется критерий для метода максимального правдоподобия и определяются значения параметров обеих компонент модели, применённой к эволюции ансамбля радиопульсаров. Отмечается, что для монотонной компоненты результаты находятся в согласии с существующими представлениями о замедлении пульсаров, а для циклической – с результатами, полученными во второй главе.

В четвёртой главе полученные результаты применяются для коррекции оценок возрастов и магнитных полей некоторых молодых пульсаров, связанных с остатками вспышек сверхновых. Обсуждается физическая природа механизма долговременных вариаций. Выдвигается и анализируется гипотеза о том, что подобное явление может быть связаным со сложным вращением H3 под действием т.н. аномального тормозящего момента, приводящего к вынужденной прецессии вокруг магнитной оси. Выводятся уравнения, связывающие периоды вращения и наблюдаемые интервалы между импульсами пульсаров.

В заключении обобщаются и обсуждаются результаты Диссертации.

В **приложении** приводится каталог выборки рассматриваемых пульсаров с измеренными вторыми производными.

Содержание работы по главам

Глава 1: Пульсары

Даётся краткая характеристика зоопарка нейтронных звёзд и их наблюдательных проявлений. Описывается процедура хронометрирования пульсаров, заключающаяся в наблюдательном определении величин ν , $\dot{\nu}$ и $\ddot{\nu}$. Описываются существующие представления об эволюции периодов радиопульсаров и обобщаются результаты их многолетних измерений. Особое внимание уделяется описанию наблюдаемых нерегулярностей вращения радиопульсаров на временах в несколько месяцев и лет. Эти нерегулярности (красный шум) способны существенно повлиять на наблюдаемое значение $\ddot{\nu}$, если измерение проводится на малом интервале времени. На достаточно больших интервалах величины $\ddot{\nu}$, напротив, стабилизируются, оставаясь при этом существенно аномальными.

Формулируется проблема аномальности вторых производных. Она заключается в том, что модули наблюдаемых $\ddot{\nu}$ на порядки величин отличаются от значений $\sim \dot{\nu}^2/\nu > 0$, ожидаемых при степенном законе замедлении пульсаров $\dot{\nu} = -K\nu^n$, где K = const, а $n \sim 3 \div 5$ [18, 3]. Соответствующие показатели торможения достигают $10^5 \div 10^6$. При этом почти половина измеренных $\ddot{\nu}$ даже отрицательна.

Отмечается, что при столь больших $|\ddot{\nu}|$ пульсары в любом случае должны или полностью терять свою вращательную энергию, или останавливать своё замедление за малое, по сравнению со своим временем жизни, время ~ $10^4 \div 10^5$ лет. То есть, проблема аномальности $\ddot{\nu}$ является достаточно общей и отражает неполноту существующих моделей

эволюции периодов радиопульсаров.

Поэтому необходимо дополнительное исследование значений $\ddot{\nu}$ одиночных радипоульсаров. Сегодня это стало возможным благодаря появлению в последнее десятилетие результатов однородных измерений этих величин для сотен объектов [14, 15], что вызвало к жизни настоящую Диссертацию.

Глава 2: Результаты долговременного тайминга радиопульсаров и их анализ

Вторая глава диссертации посвящена статистическому анализу параметров вращения пульсаров.

Она начинается с обсуждения физического смысла больших значений наблюдаемых величин $\ddot{\nu}$. Показывается, что, во-первых, они не являются артефактами наблюдений и не определяются свойствами межзвёздной среды, но характеризуют именно процесс замедления пульсаров на временах больше интервалов наблюдений. Во-вторых, их аномальность скорее всего имеет иную природу, чем коротковременные нерегулярности, известные как красный шум пульсаров. Те и другие проявляются в наблюдениях более-менее независимо. К тому же, поведение измеряемой $\ddot{\nu}$ с увеличением интервала наблюдений не согласуется с идеей о её стохастической природе.

Далее, строится выборка объектов, используемых для дальнейшего анализа. В неё включаются одиночные радиопульсары, не проявляющие себя как аномальные рентгеновские пульсары, не состоящие в двойной системе, с периодами большими 20 мс и уходом периода не менее 10^{-17} с/с. (Последние два критерия позволяют исключить их рассмотрений раскрученные пульсары.)

Построенная выборка исследуются на диаграмме $\ddot{\nu} - \dot{\nu}$ (см. Рис 1). На ней обнаруживаются довольно сильные корреляции логарифмов модулей $\ddot{\nu}$ и $\dot{\nu}$ для разных знаков $\ddot{\nu}$ (r = 0.9 и r = 0.82 соответственно). При этом величины $|\ddot{\nu}|$ и $|\dot{\nu}|$ подчиняются почти линейным зависимостям, что согласуется с результатами других авторов [1, 17].

Поскольку молодые пульсары (для которых наблюдаются остатки вспышек сверхновых) систематически смещены в левую часть диаграммы, а величина $\dot{\nu}$ сильно коррелирует с $\tau_{ch} = -\nu/(2\dot{\nu})$ следует, обнару-

ассоциированные с молодыми остатками вспышек сверхновых. Штрихованные линии обозначают нижнюю (вдоль эволюционный характер: в течении своей жизни пульсары в среднем двигаются слева направо, последовательно показаны результаты измерений, взятые из работы [14] и из других работ. Незакрашенные символы – объекты, отрицательной ветви) и верхнюю (вдоль положительной) границы амплитуды вариаций б*ё.* Диаграмма носит переходя с ветви на ветвь и меняя при этом знак второй производной.

Рисунок 2 – Иллюстрация циклического процесса в координатах $\ddot{\nu} - \dot{\nu}$. Штрихованная кривая отражает монотонную составляющую эволюции $\dot{\nu}$ и $\ddot{\nu}$, а непрерывная – результирующий путь пульсара на диаграмме. Левый рисунок изображает движение пульсара в координатах $\ddot{\nu} - \dot{\nu}$ на ранних стадиях эволюции (в первые тысячи лет), а правый – на более поздних (при возрасте в десятки тысяч лет). Более подробное описание параметров показанных кривых см. в тексте Диссертации.

женные корреляции имеют эволюционный характер – пульсары рождаются с бо́льшими по модулю $\dot{\nu}$ и эволюционируют в сторону их уменьшения (при уменьшении $|\ddot{\nu}|$). Однако, находясь на отрицательной ветви диаграммы, пульсары могут двигаться только в обратную сторону, т.е. только к всё большим $|\dot{\nu}|$. Это указывает на немонотононность, цикличность эволюции $\dot{\nu}$. Исследование той же выборки на диаграммах $\ddot{\nu} - \nu$ и $\dot{\nu} - \nu$ подтверждает эту гипотезу.

В результате делается вывод о циклическом характере изменения $\ddot{\nu}$ на временах, которые, с одной стороны, много больше типичного интервала наблюдений (10 – 20 лет), а, с другой, много меньше времени жизни пульсара.

Далее вводится описание замедления пульсаров в виде суммы двух компонент:

$$\dot{\nu}(t) = \dot{\nu}_{ev}(t) + \delta \dot{\nu}(t) = \dot{\nu}_{ev}(t)[1 + \varepsilon(t)], \qquad (1)$$

где $\dot{\nu}_{ev}(t)$ представляет монотонную часть потерь вращательной энергии, т.е. $\ddot{\nu}_{ev}(t) > 0$ и не меняет своего знака, а $\delta \dot{\nu}(t)$ – циклическую часть. Причём $\varepsilon(t) > -1$ в силу отсутствия в выборке пульсаров с положительными первыми производными. В то же время, отношение $\delta \ddot{\nu}(t) / \ddot{\nu}_{ev}(t) = \eta(t)$ варьируется в очень широком диапазоне. Для большинства пульсаров $|\eta(t)| \gg 1$, что объясняет возникновение аномальных вторых производных. При этом для молодых пульсаров $|\eta(t)|$ ещё не превосходит единицы, что приводит к недостатку объектов в области с $\ddot{\nu} < 0$ и $\dot{\nu} < -10^{-11}$ Гц/с.

Предполагая, что вариации $\ddot{\nu}$ характеризуются неким периодом T, из соотношения $2\pi/T = \Omega \sim \mathcal{A}_{\ddot{\nu}}/\mathcal{A}_{\dot{\nu}}$. Здесь $\mathcal{A}_{\ddot{\nu}}$ – амплитуда вариаций $\delta\ddot{\nu}$ – находится из дисперсии наблюдаемых $\ddot{\nu}$ старых пульсаров, а $\mathcal{A}_{\dot{\nu}}$ – амплитуда вариаций $\delta\dot{\nu}$ – ограничивается отсутствием пульсаров с положительными $\dot{\nu}$. В результате типичный период вариаций оказывается равным $T_{typ} \sim (6 \div 9) \times 10^4$ лет, а строгая верхняя граница составляет $T_{up} \sim 1.2 \times 10^6$ лет. С другой стороны T явно превосходит длину типичного интервала наблюдений, т.е. несколько десятков лет.

Вместе с этим получается ограничение и на амплитуду вариаций самой частоты: $\mathcal{A}_{\nu} \sim 10^{-3}$ Гц, что много меньше наблюдаемых значений ν .

Во второй части главы обсуждается важное свойство выборки пульсаров – асимметрия в количестве объектов с положительными (172 из 297) и отрицательными (125 из 297) вторыми производными. Это различие статистически значимо на уровне 0.64%. Детальное исследование этой асимметрии показывает, что она обусловлена, в первую очередь, молодыми пульсарами: количества наиболее старых пульсаров с разными знаками $\ddot{\nu}$ значимо не отличаются. Эта асимметрия естественно интерпретируется в рамках двухкомпонентной модели замедления. Существование положительной эволюционной компоненты $\ddot{\nu}_{ev}(t) > 0$ приводит к тому, что в начале жизни пульсара амплитуда $\mathcal{A}_{\ddot{\nu}}$ ещё не достаточно велика, чтобы изменить знак второй производной, т.е. $|\eta(t)| < 1$. Со временем эта амплитуда растёт, что приводит к наблюдаемому большому разбросу n_{obs} (см. Рис. 3) и $\ddot{\nu}$. Для наиболее старых пульсаров $\ddot{\nu}$ главным образом определяются именно циклической компонентой: $\ddot{\nu} \approx \delta \ddot{\nu}$.

Это означает, что циклические вариации приводят к симметричному распредлению $\ddot{\nu}$ пульсара относительно его эволюционного тренда $\ddot{\nu}_{ev}(t)$.

Завершает главу анализ зависимости между наблюдаемыми показателями торможения $n_{obs} = \ddot{\nu}\nu/\dot{\nu}^2$ и характеристическим возрастом $\tau_{ch} = -\dot{\nu}/2\nu$. Эта зависимость схожа с диаграммой $\ddot{\nu} - \dot{\nu}$. Её также можно рассматривать как эволюционную. На ней выделяется несколько областей, в которых пульсары ведут себя по-разному. Наибольший ин-

Observed braking index n_{obs}

пульсаров, для которых измерены u и $\dot{
u}$.

Рисунок 3 – Диаграмма $n_{obs} - au_{ch}$ для исследуемой выборки пульсаров. Молодые пульсары в области III – объекты, зависимости $n_{obs}(au_{ch})$, соответствующие строго монотонному замедления в рамках степенного закона $\dot{
u}=-K
u^3$ где распределения n_{obs} пульсаров в области III. Вертикальные штрихи отмечают значения au_{ch} 1337 одиночных существование которых можно объяснить только большими амплитудами вариаций $\dot{
u}$. Прерывные линии $K/\dot{K}=5 imes 10^4$ (a) и 10^7 (b) лет. Видно, что даже быстрая эволюция K не может объяснить асимметрию

терес представляет область III (см. Рис. 3). В этой области находятся пульсары, для которых измеренные n_{obs} больше предсказанных теорией значений. Их значения достигают $n_{obs} \sim 50$, а значит, отягощены влиянием циклического процесса. Но в то же время почти все они положительны. (Наблюдаемая асимметрия по знаку n_{obs} этих пульсаров значима на 0.02% уровне значимости.) Так как знак n_{obs} определяется знаком $\ddot{\nu}$, это означает, что амплитуда циклических вариаций их $\ddot{\nu}$ ещё мала по сравнению с $\ddot{\nu}_{ev}$, т.е. аномальность этих значений обусловлена вариациями $\dot{\nu}$. Отклонения этого параметра от эволюционного значения не меняют знака наблюдаемого показателя торможения, но могут достаточно сильно изменить его величину. Действительно: $n_{obs} \propto \dot{\nu}^{-2} \propto \dot{\nu}_{ev}^{-2} \cdot (1 + \varepsilon)^{-2}$.

В предположении, что для этих пульсаров $\delta \ddot{\nu} = 0$ и их секулярное замедление соответствует степенному закону с показателем $n \sim 3 \div 5$, получается оценка для их текущей вариации первой производной: $\varepsilon \sim -0.8 \div -0.7$.

Таким образом, величина $\dot{\nu}$ может изменяться вследствие долговременных вариаций в пределах $70 \div 80\%$. Это дополнительно говорит в пользу существования процесса, действующего на временах в несколько тысяч лет. Чисто стохастический процесс, при наблюдаемых амплитудах $\ddot{\nu}$ и интервалах наблюдений ~ $10^8 \div 10^9$ сек., не смог бы обеспечить столь больших амплитуд первой производной.

Глава 3: Модель замедления одиночных радиопульсаров

В третьей главе Диссертации строится количественная двухкомпонентая модель эволюции ансамбля объектов.

Для монотонной компоненты замедления используется канонический степенной закон:

$$\dot{\nu}_{ev} = -K\nu_{ev}^n,\tag{2}$$

где n, K = const, причём показатель n однаков для всех пульсаров. Циклическая компонента задаётся в простой гармонической форме:

$$\varepsilon = A\cos\varphi,\tag{3}$$

где A – относительная амплитуда вариаций, остающаяся постоянной в течени жизни пульсара.

Ансамбль пульсаров описывается интегральными характеристиками параметров составляющих его объектов. В части циклической компоненты замедления это среднее $\langle A \rangle$ и стандартное отклонение $\sigma[A]$ относительной амплитуды вариаций A. Принимается что величина A распределена по выборке нормально, тогда как фаза вариаций φ – равномерно на интервале $0 \div 2\pi$.

В части монотонной компоненты замедления это эволюционный показатель торможения *n* и медианное по выборке значение коэффициента *K*:

$$\hat{K} = \mathcal{M}\left[\frac{-\dot{\nu}}{\nu^n}\frac{1}{1+\varepsilon}\right].$$
(4)

Так как эта величина сама зависит от заданного n и набора ε пульсаров выборки, то её распределение полностью задаётся величинами n, $\langle A \rangle$ и $\sigma[A]$. В результате построенная модель характеризуется только тремя параметрами: n, $\langle A \rangle$ и $\sigma[A]$. Их оптимальные значения определяются методом максимального правдоподобия, на основе свойства симметричности распределения $\ddot{\nu}$ относительно монотонной компоненты замедления $\ddot{\nu}_{ev}$, установленного в предыдущей главе. Функция правдоподобия составляется из биномиальных вероятностей обнаружить одинаковое число пульсаров с $\ddot{\nu}$ большими и меньшими чем вычисленные в модели $\ddot{\nu}_{ev}$ для набора подвыборок объектов. Последние вычисляются в рамках принятого степенного секулярного замедления с использованием \hat{K} . Кроме того в функцию правдоподобия входит вероятность обнаружить, в рамках заданных параметров модели, все пульсары с отрицательными первыми производным частоты, что учитывает отсутствие пульсаров с $\dot{\nu} > 0$ в выборке из 297 объектов.

Вычисления подробно описаны в тексте Диссертации. Здесь же приводятся только окончательные результаты расчётов.

На Рис. 4 показано распределение построенной функциии правдоподобия в пространстве параметров и ограничены доверительные интервалы. Из этого рисунка следуют параметры заданной модели. На 99% уровне значимости:

$$2.5 < n < 4 \tag{5}$$

$$0.5 < \langle A \rangle < 0.8,\tag{6}$$

И

$$\sigma[A] \sim 0.1 \tag{7}$$

 $\mathbf{n} \ \sigma[A] < 0.25.$

доверительные интервалы. В результате, максимуму правдоподобия соответствуют значения $n\sim 2.5 \div 4.5,~\langle A
angle > 0.5$ Рисунок 4 – Доверительные области для параметров модели замедления n, $\langle A \rangle$ и $\sigma[A]$. Области показаны в виде набора срезов в плоскостях $\langle A
angle - n$ и $\langle A
angle - \sigma[A]$. Контуры обозначают 65, 95 и 99% (самый внешний контур)

Рисунок 5 – Распределение периодов долговременного процесса, описываемого в работе. Периоды рассчитаны из наблюдаемых частот и их производных для пульсаров выбоки и из полученных параметров модели их замедления (непрерывная линия). Видно, что времена вариаций лежат в интервале $5 \div 500$ тыс. лет и согласуются с распределением периодов прецессии НЗ вокруг магнитной оси под действием аномального тормозящего момента (прерывная линия). Вертикальными линиями обозначены строгая верхняя оценка периода $T_{up} \sim 1.2 \times 10^6$ лет, и оценка типичного периода вариаций $T_{typ} \sim 7.5 \times 10^4$ лет.

Выбор наиболее оптимального значения $\sigma[A]$ следует из проведённого во второй главе анализа зависимости $n_{obs} - \tau_{ch}$.

В завершении третьей главы строится распределение характерных времён вариаций $\ddot{\nu}$. Коль скоро введённые функции $\varepsilon(t)$ и $\eta(t)$ не являются независимыми, то, используя полученные доверительные интервалы параметров модели и наблюдаемые ν , $\dot{\nu}$ и $\ddot{\nu}$ для каждого пульсара, строилось распределение периода вариаций, в предположении о его постоянстве. Сложение этих распределений для всех пульсаров даёт интервал периодов в, в 5 ÷ 500 тыс. лет с наиболее вероятными значениями в десятки тысяч лет. Это согласуется с оценками, полученными во второй главе (см. Рис. 5).

Таблица 1 – Возраста некоторых пульсаров, скорректированные с учётом
долговременных вариаций $\dot{ u},$ по сравнению с возрастами соответствую-
щих остатков вспышек сверхновых.

PSR	$ au_{ch}$, лет	ε	$ au_{ch,ev}$, лет	SNR
B1853 + 01	2×10^4	-0.50	10^{4}	$W44, 10^4$ лет
$B2334{+}61$	4×10^4	-0.46	2.1×10^4	G114.3 $+$ 0.3, (1 -2) $ imes$ 10 4 лет
B1758-23	60×10^3	-0.89	6.6×10^3	W28, $(2.5 - 150) \times 10^3$ лет

Глава 4: Астрофизическая интепретация результатов.

В четвёртой, заключительной, главе Диссертации обсуждаются некоторые астрофизические следствия полученных результатов. Так, рассматривается возможность скорректировать характеристические возраста некоторых пульсаров выборки, ассоциированных с остатками сверхновых. Это пульсары, которые относятся к объектам области III диаграммы $n_{obs} - \tau_{ch}$, т.е. для которых можно в предположении n = 3 получить оценку для ε (см. Рис. 3), а значит и эволюционный характеристический возраст $\tau_{ch,ev} = -\nu_{ev}/(2\dot{\nu}_{ev}) \approx \tau_{ch}(1 + \varepsilon)$. Это проделано для трёх пульсаров выборки, и во всех трёх случаях скорректированный возраст оказывается ближе к оценке возраста остатка (см. Таблицу 1). Для всех пульсаров области III вычисляются и скорректированные оценки магнитного поля.

Обсуждаются особенности пульсаров области I, – у которых заниженны τ_{ch} и n_{obs} , как у пульсаров, для которых величина ε положительна.

Во второй части главы обсуждается возможная физическая природа долговременных вариаций. Показывается, что существует процесс, действующий на столь необычных для пульсара временах в несколько тысяч лет. Это вынужденная прецессия нейтронной звезды вокруг её магнитной оси, возникающая, например, из-за действия т.н. аномального тормозящего момента. По своей природе аномальный момент – компонента полного момента сил, действующего на вращающуюся НЗ, направленная перпендикулярно к угловой скорости её вращения, возникающая вследствие магнитодипольного излучения в ближней зоне [11, 13].

Такая же прецессия может возникать и по другой причине. НЗ может быть деформирована вдоль магнитной оси вследствие действия магнитного поля, что приводит к свободной прецессии с близкими характерными периодами [12].

В данной главе строится геометрическая модель, связывающая период вращения нейтронной звезды и промежуток времени между наблюдениями последовательных импульсов. Показывается, что сложный характер вращения НЗ под действием аномального момента, проявляющийся лишь в геометрических эффектах, ещё не может объяснить наблюдаемых амплитуд вариаций $\ddot{\nu}$ и $\dot{\nu}$. Он приводит лишь к тому, что измеряемая частота попадания наблюдателя в раствор диаграммы направленности пульсара незначительно отличается от частоты его вращения:

$$\nu \approx \nu_{rot} + \frac{\cos \chi}{T} \tag{8}$$

где ν_{rot} и ν – реальная и наблюдаемая частоты вращения, $T \gg 1/\nu_{rot}$ – период долговременной прецессии а χ – угол между магнитным моментом и осью вращения сферической нейтронной звезды.

Другими словами, чтобы связать сложный характер вращения H3 с наблюдаемыми эффектами, необходим механизм-посредник. Один из возможных вариантов такого механизма такого механизма приведён в работе Барсукова и Цыгана [2]. Он основывается на вариации потока частиц с поверхности пульсара вследствие долговременной прецессии H3. В работе [2] показано, что амплитуды теоретических вариаций $\ddot{\nu}$ вполне согласуются с реально наблюдаемыми величинами.

В конечном итоге вопрос о физической природе долговременных вариаций остаётся не до конца решённым. Однако, обсуждаемый в диссертации процесс является, по видимому, пока единственным, действующим на таких временах.

Приложение

В приложении приводятся каталог объектов выборки – используемых значений ν , $\dot{\nu}$ и $\ddot{\nu}$.

Список использованных источников

1. Z. Arzoumanian, D.J. Nice, J.H. Taylor, S.E. Thorsett, ApJ, **422**, 671–680 (1994) 11

2. D.P. Barsukov, A.I. Tsygan, MNRAS, 409, 1077 (2010) 5, 21

3. V. Beskin, A. Gurevich & Ya. Istomin, Physics of the Pulsar Magnetosphere, Cambridge: Cambridge University Press, 1993 5, 10

4. G. Beskin, A. Biryukov, S. Karpov, arXiv:astro-ph/0603375 (2006) 8

5. A. Biryukov, G. Beskin, S. Karpov, Astrophys. Spa. Sci., **308**, 551 (2007)

6. A. Biryukov, G. Beskin, S. Karpov, L. Chmyreva, Adv. in Space Res., 40, 1498 (2007)

7. A. Biryukov, G. Beskin, S. Karpov, Proc. of Sci., **Texas 2010**, 258 (2010)

8. А. Biryukov, G. Beskin, S. Karpov, arXiv:1105.5019, MNRAS (2011), в печати.

9. А. Biryukov, G. Beskin, S. Karpov, Ast. Bull, **66(4)** (2011), в печати 8

10. P.E. Boynton, J.E. Groth, D.P. Hutchinson, G.P. Nanos Jr., R.B. Partridge & D.T. Wilkinson, ApJ, **175**, 217 (1972) 3

11. L. Davis & M. Goldstein, ApJ, **159**, L81 (1970) 20

12. P. Goldreich, ApJ, **160**, L11 (1970) 21

13. M.L. Good & K.K. Ng, ApJ, **299**, 706–722 (1985) 4, 20

14. G. Hobbes, A.G. Lyne, M. Kramer, C.E. Martin, C. Jordan, MNRAS, **353**, 1311 (2004) 3, 5, 11, 12

15. G. Hobbs, A.G. Lyne, M. Kramer, MNRAS, **402**, 1027 (2010) 3, 5, 11

16. R.N. Manchester, G.B. Hobbs, A. Teoh, M. Hobbs, AJ, **129**, 1993 (2005) 5

17. J.O. Urama, B. Link, & J.M. Weisberg, MNRAS, **370**, L76–L79 (2006) 11

18. Р. Манчестер и Дж. Тейлор, Пульсары, пер. с англ., М., 1980 5, 10