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a b s t r a c t

Theproblemof infrareddivergence of the effective electromagnetic
field produced by elementary charges is revisited using the
model of an electron freely evolving in a photon bath. It is
shown that for any finite travel time, the effective field of the
electron is infrared-finite, and that at each order of perturbation
theory the radiative contributions grow unboundedly with time.
Using the Schwinger–Keldysh formalism, factorization of divergent
contributions in multi-loop diagrams is proved, and summation
of the resulting infinite series is performed. It is found that
despite the unbounded growth of individual contributions to the
effective field, their sum is bounded, tending to zero in the limit
of infinite travel time. It is concluded that the physical meaning
of infrared singularity in the effective field is the existence of
a peculiar irreversible spreading of electric charges, caused by
their interaction with the electromagnetic field. This spreading
originates from the quantum electromagnetic fluctuations, rather
than the electron–photon scattering, and exists in vacuum as
well as at finite temperatures. It shows itself in a damping
of the off-diagonal elements of the momentum-space density
matrix of electron, but does not affect its momentum probability
distribution. This effect is discussed in terms of thermalization
of the electron state, and the asymptotic growth of its quantum
entropy is determined. Relationship of the obtained results to the
Bloch–Nordsieck theorem is established and considered from the
standpoint of measurability of the electromagnetic field. The effect
of irreversible spreading on the electron diffraction in the classic
two-slit experiment is determined, and is shown to be detectable
in principle by modern devices already at room temperature.
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1. Introduction

The low-energy behavior of quantum systems is an issue which is important in both fundamental
and applied aspects of quantum field theory. Investigation of the low-energy properties of particle
interactions constitutes an essential part in establishing the correspondence between classical and
quantum theories, and finds numerous applications in all areas of quantumphysics, from noise theory
to quantum cosmology. As is well known, these properties essentially depend on the presence of
massless particle states. In non-relativistic quantum mechanics, the existence of massless photons
and gravitons shows itself in the form of long-range Coulomb and Newton forces between massive
particles. Account of the radiation effects brings in, among other outcomes of the union of quantum
theory with the relativistic principle, a factor that has no counterpart in the physics of systems
involving only massive particles. Namely, the masslessness of photons and gravitons, together with
the non-conservation of the particle number, imply that production of these quanta in any scattering
process is beyond the experimental control. More precisely, finite sensitivity of any experimental
setup does not allow one to distinguish scattering processes which involve different numbers of
massless quanta with sufficiently small energy.

The role of this indistinguishability in the scattering theory is also well known. In the standard
formulation using the S-matrix, scattering processes are considered formally on an infinite time
interval, implying that the 4-momenta of virtual photons describing radiative correctionsmay take on
arbitrarily small values. Integration over such momenta gives formally infinite results at every order
of perturbation theory. On the other hand, the uncontrollable production of photons with arbitrarily
small energy means that the observed scattering cross-section is actually an infinite sum of terms,
each ofwhich represents the given scattering processwith a definite number of extra real soft photons,
that is photons with energies below the sensitivity threshold.1 Integration of the cross-section over
the real soft photon momenta brings in another divergence which exactly cancels the divergence due
to virtual photons, resolving thereby the infrared catastrophe of quantum electrodynamics [1–3]. For
brevity, this result will be referred to below as the Bloch–Nordsieck theorem. Similar cancellations
take place in quantum gravity [4], and in a more intricate way, in Yang–Mills theories [5–7].

These results, though resolve the infrared catastrophe in a physically adequateway, leave open the
question about possible physical manifestations of the infrared singularities, other than mere explicit
dependence of the cross-sections on the sensitivity threshold. That the Bloch–Nordsieck theorem
does not exhaust the infrared problem can be seen from the standpoint of the measurement theory.
A result of fundamental importance regarding measurability of the electromagnetic field, proved
by Bohr and Rosenfeld eighty years ago, asserts consistency of the principal limitations imposed
by quantum theory on realizability of field measurements with formal predictions of quantum
electrodynamics [8]. More specifically, all statistical predictions following from the formal relations
between electromagnetic field operators can be verified,with accuracy limited only by the uncertainty
principle, using an appropriately designed macroscopic measuring device. The demonstration given
by Bohr and Rosenfeld refuted objections against the possibility of such verification, raised earlier
by Landau and Peierls [9], which were based on consideration of the field measurement using single
test charge. It is the existence of uncontrollable radiation by the test charge under the influence of
the field being measured that led the authors of [9] to the conclusion that quantum electrodynamics
imposes additional limitations on the accuracy of field measurements, which turned out to be
significantly more stringent than those following from the uncertainty principle. In particular, the use
of single test charge restricts the accuracy of separate measurements of individual field components,
in contradiction with the formal apparatus of quantum electrodynamics, which implies no such
restriction. An important conclusion of the work [8] is that despite the principal impossibility to
control the radiation produced by test bodies, the effect of this radiation on their motion can be
compensated with the help of an appropriate experimental arrangement, but such compensation is
possible only when the test bodies employed consist of sufficiently many elementary charges.2

1 And with a total energy going into unobserved photons less than the uncertainty in the energy of ‘‘hard’’ particles, i.e., the
particles being scattered.
2 See also [10]. This result was carried over to the case of gravitational interaction by DeWitt [11].
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Suppose now that we want to determine the electromagnetic field produced by a free electron
in a given state. It follows from what was just said that scattering a test charge on the electron
is not the best method for this purpose. From the theoretical point of view, this means that using
the S-matrix (say, the two-particle scattering amplitude) to describe the electron field generally is
not adequate, as it unavoidably misses part of information about this field, namely that hidden by
the uncontrollable radiation. Instead, since all statistical properties of the electromagnetic field are
encoded in its operator, a complete description of the electron field can be obtained in terms of
expectation values of the products of field operators, evaluated over the given state. Then the results
of [8] guarantee that predictions obtained this way are amenable to experimental verification. One
of the most important quantities of this sort is the expectation value of the electromagnetic field
itself, called also mean, or effective, field. Thus, the very definition of the effective field excludes from
consideration the uncontrollable radiation produced by the test bodies (whereas the uncontrollable
radiation from the system that produces the field being measured is fully taken into account by the
effective field formalism, cf. Sections 2.1 and 3.1).

The purpose of the present paper is to investigate infrared properties of the effective electromag-
netic field in the casewhen the field-producing electron is embedded in a photonbath at finite temper-
ature. At zero temperature, this problemwas considered already at the dawn of quantum field theory,
to determine radiative corrections to the field of a classical point source (e.g., atomic nucleus) [12,13].
The restriction to classical, that is, sufficiently heavy source is necessary in the conventional formu-
lation precisely because of the presence of infrared divergences: radiative corrections to the electro-
magnetic form factors of charged particles vanish in the large-mass limit, which gives a formal reason
to put the question about their divergence aside. Another reason which is often used in the literature
to discard infrared-divergent contributions to the effective field is that at every order of the pertur-
bation theory, such contributions are local, in the sense that they vanish when considered within the
long-range expansion with respect to the distance from the source.3 It is worth mentioning in this
connection that despite numerous attempts [14–18], extension of the S-matrix formalism to finite
temperatures is still an open question. Therefore, regardless of the fundamental reasons given above,
the effective field is an indispensablemeans for studying temperature effects in quantum field theory.

The following circumstance is crucial for the discussion of infrared singularity in the effective field.
The infrared divergences occur because evolution of the field-producing system is considered on an
infinite time interval. An infinite temporal extent is required already by the procedure of adiabatic
switching of the interaction, which is widely employed in quantum field calculations, in particular,
in constructing the scattering matrix. The proper conclusion to be drawn from this fact is that in
the presence of massless particles, the use of the notion of infinitely remote past requires special
justification. The Bloch–Nordsieck theorem gives such justification in the case of the S-matrix, but
in the effective field formalism this notion turns out to be physically inadequate. The point is that,
as was demonstrated in Ref. [19], the infrared singularity in the effective field signifies the existence
of a peculiar spreading of the source particle, which precludes preparation of a spatially localized
particle state at finite times by operating with arbitrary free particle states in the remote past. This
was shownby evaluating the effective electromagnetic field of an electron, regularized bymeans of the
momentum cutoff method appropriately modified to allow factorization of the infrared contributions
in multi-loop diagrams (called λ-regularization in Ref. [19]). Namely, the electron was assumed to be
prepared in the remote past in such a way that it would be spatially localized at a finite time if the
electron was noninteracting. Its effective field was found to vanish at any given spatial point in the
limit of removed regularization, in away that respects the total charge conservation. Itwas argued that
the momentum cutoff can be endowed with a physical meaning as estimating the inverse duration
of the measurement process, which made it possible to explicitly describe the electron evolution
subjected to the irreversible spreading, and to estimate its possible observational effects.

Except for a modification of the regularization scheme, investigation carried out in Ref. [19]
employs the conventional method of calculating the effective field, based on consideration of the

3 This is actually the only reason to get rid of infrared-divergent contributions to the effective gravitational field, for the
radiative corrections to the gravitational form factors do not vanish in the large-mass limit.
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system on an infinite time interval. This investigation is therefore incomplete in view of what
has been said regarding the role of the temporal extent in studying the infrared singularity. In
addition to that, the use of an auxiliary infrared regularization raises the question about scheme
dependence of the obtained results. At last, it is necessary to establish an exact form of the time-
dependence of the electron state affected by the infrared singularity. Thus, we have to consider the
electron evolution on a finite time interval, and to determine the leading large-time contributions
to the electron density matrix. Finiteness of the time interval renders Feynman integrals infrared-
convergent, removing thereby the question of scheme dependence, as there is no need in auxiliary
infrared regularization. The infrared singularity is now contained in the large-time asymptotic of
the effective field, or equivalently, of the effective electromagnetic current of the electron, and
the problem is to consistently extract this asymptotic. It turns out that this requires significant
modification of the standard calculational scheme, because restricting the consideration to a finite
interval raises the issue of initial conditions for the electromagnetic field, which in turn enforces
using the canonical Coulomb gauge instead of the covariant one, to avoid violation of the Gauss
law in the initial state. It will be shown below how these issues are interrelated, and why they
do not arise in the standard formulation based on the adiabatic switching of the interaction. The
paper is organized as follows. The main tools to be used to study electron evolution in a photon
bath are described in Section 2.1. In Section 2.2 we identify the time scales characterizing two
essentially different stages of the electron evolution—the infrared thermalization corresponding to
the infrared singularity, and the usual relaxation of the electron momentum, described by a kinetic
equation. Here we also give a heuristic derivation of the irreversible spreading. The complications
introduced by finiteness of the time interval are discussed in detail in Section 2.3. It is shown, in
particular, that the standard procedure of transition from a canonical gauge to the Lorentz gauge
cannot be accomplished in the usual way: the gauge-non-invariance of the electron density matrix
leads to appearance of a Lorentz-non-invariant term in the Lagrangian. The resulting modification
of the Feynman rules in the Schwinger–Keldysh method is described in Section 3. The infrared
thermalization is studied in Section 4. First of all, the set of diagrams contributing to the large-
time asymptotic of the effective current is identified in Section 4.1; this set turns out to be different
from that representing the effective current within the λ-regularization when the initial electron
state is specified at t = −∞. Factorization and summation of the infrared contributions are then
performed in Section 4.2. Section 5 contains an alternative derivation of the main result, which uses
specifics of the four-dimensional Feynman integrals to reduce the problem of extracting the large-
time asymptotic to solving a differential equation for the electron density matrix. Some applications
are given in Section 6: the physical meaning of the infrared singularity as representing an irreversible
spreading of electric charges is illustrated in Section 6.1 by working out evolution of a Gaussian
wavepacket. The effect of infrared thermalization on the electron diffraction in the classic two-slit
experiment is determined in Section 6.2, and is shown to be detectable in a proper experimental
arrangement already at room temperature. Finally, it is demonstrated in Section 7 how interaction of
the electron with non-infrared photons leads to the usual relaxation of the electron momentum. This
is shownby using themethod of Section 5 to obtain a differential equation for the electronmomentum
distribution, which turns out to be the usual kinetic equation. Conclusions are drawn in Section 8. The
paper has two appendices one of which discusses the role of the non-invariant term in the Lagrangian
in the Lorentz gauge, and the other contains a derivation of the quantum entropy of electron described
by a Gaussian wavepacket.

2. General formulation

2.1. The model

Consider a non-relativistic electron of mass m interacting with virtual and real photons in
equilibrium at finite temperature4 T ≪ m. The expectation (effective) value of any physical quantity

4 We use relativistic units h̄ = c = 1. Also, Minkowski metric is ηµν = diag{+1,−1,−1,−1}.
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F that describes the system at time t can be found as

F eff(t) = ⟨F(t)⟩ , (1)

where F(t) is the corresponding gauge-invariant Heisenberg operator built of fermion and
electromagnetic fields, and averaging over the given state of the system is denoted by angular
brackets. This formula applies at finite temperatures as well as at T = 0, and according to the general
rules of quantum theory, it yields the observable averaged over series of measurements in the given
state. We shall deal with two closely related objects: the effective electromagnetic current of the
electron, Jeffµ , and the effective electromagnetic field F eff

µν . The operators Jµ(x) = ψ̄(x)γµψ(x) and
Fµν[A(x)] = ∂µAν(x) − ∂νAµ(x) are defined at every spacetime point x. In view of linearity of the
field strength, one has F eff

µν(x) = ∂µAeff
ν (x) − ∂νAeff

µ (x), where Aeff
µ (x) is the effective electromagnetic

potential, whereas linearity of the field equations implies that

∂µF eff
µν(x) = eJeffν (x). (2)

Since the electron travels in a bath of infinite extent, it is never in equilibrium with photons, and
to further specify the state of the system one has to introduce an initial condition. The simplest and
most important in applications is the condition that the electron is spatially localized near a point x0 at
some instant t0 < t . It is convenient to assume that this state results from an auxiliary measurement
performed on the electron at times 6 t0, which is complete in that at the instant t0 the electron
is statistically independent of its surrounding. To put it differently, we assume that the effective
electric field of the electron at t0 is the Coulomb field, so that all radiative corrections to it arise as
the result of entanglement of the electron with the electromagnetic field at later times. To express
this mathematically, it is useful to go over to the Schrödinger picture. Then the condition of statistical
independence at t0 means that the initial density matrix of the system is the product of the electron
and photon densitymatrices:ϱ0e−βHφ/N . Hereϱ0 is the electron densitymatrix at the instant t0 in the
Schrödinger representation, the second factor is the densitymatrix of photons in equilibrium,withHφ
the Hamiltonian of free photons, β = 1/T , and N is the normalization constant. Let U(t, t0) denote
the evolution operator on the interval (t0, t). Then Eq. (1) specified to the given initial condition takes
the form

F eff(t) = N −1Tr

U(t0, t)FU(t, t0)ϱ0e−βHφ


, (3)

where F ≡ F(t0), and the trace is over all electron and photon states.
According to the chosen initial condition, U(t, t0)ϱ0e−βHφU(t0, t) is the density matrix of the

system in the Schrödinger picture at arbitrary time t > t0. Traced over all photon states, it reduces to
the electron density matrix

ϱ(t) = N −1Trφ

U(t, t0)ϱ0e−βHφU(t0, t)


. (4)

Indeed, since creation of the electron–positron pairs is negligible under condition T ≪ m, the initial
state is carried by U(t, t0) into a one-electron state. Expression (4) is thus nothing but the electron
density matrix at time t . It is to be noted that as defined, this matrix takes into account all radiation
effects due to the electron–photon interaction, including scattering of the heat bath photons on the
electron, and photon emission by the electron (uncontrollable radiation). In fact, the trace in Eq. (4)
is over all possible photon states. ϱ(t) plays an important role in subsequent considerations, and
naturally appears in the formalism as follows. Consider the case when F is built of the fermion fields
only (e.g., the electromagnetic current). Any state vector of the electron interacting with photons
can be expanded in the direct products of states describing a free electron, |e⟩, and states describing
arbitrary number of free photons, |φ⟩, all with definite momenta and spin/polarizations. One then has
F |φ⟩|e⟩ = |φ⟩F |e⟩, and using completeness of the products |φ⟩|e⟩ the effective value of F at time t can
be written as

F eff(t) = N −1

φ,e

⟨e|⟨φ|U(t, t0)ϱ0e−βHφU(t0, t)F |φ⟩|e⟩ =


e

⟨e|ϱ(t)F |e⟩. (5)

The electron density matrix helps to expose a certain complementarity between the effective
field and another important object—transition probability. Consider the particular casewhen electron
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is initially in a pure state |ψ0⟩. The initial probability of the photon state φ with energy Eφ is
w(φ) = e−Eφ/T/


φ e

−Eφ/T . That is, the initial density matrix of the system takes the form
φ0
w(φ0)|ψ0⟩|φ0⟩⟨φ0|⟨ψ0|; hence the probability to find the system in a state |φ⟩|e⟩ at time t > t0

reads 
φ0

w(φ0)⟨e|⟨φ|U(t, t0)|φ0⟩|ψ0⟩⟨ψ0|⟨φ0|U(t0, t)|φ⟩|e⟩.

Being interested solely in the electron evolution, we sum over all final photon states. This yields the
probability of transition of the electron into a state |e⟩

φ,φ0

w(φ0)⟨e|⟨φ|U(t, t0)|ψ0⟩|φ0⟩⟨φ0|⟨ψ0|U(t0, t)|e⟩|φ⟩ = ⟨e|ϱ(t)|e⟩, (6)

where ϱ(t) is given by Eq. (4) with ϱ0 = |ψ0⟩⟨ψ0|.

Thus, the inclusive transition probability and the effective quantities are expressed via the same
object—the electron density matrix. An important difference is that in the first instance we deal only
with diagonal elements of the densitymatrix, whereas the effective fields depend also on off-diagonal
elements. From the point of view of the infrared problem, this means that the cancellation of infrared
singularities in the S-matrix, asserted by the Bloch–Nordsieck theorem and its generalizations to
T ≠ 0 [14–16], implies finiteness of only diagonal elements of the electron density matrix in the
limit t0 → −∞, t → +∞. In other words, consideration of the effective field gives an important
piece of information about the system, which is not contained in the S-matrix. In fact, the existence
of an irreversible charge spreading, revealed by consideration of the effective electromagnetic field,
is related precisely to the off-diagonal elements of the electron density matrix.

2.2. Stages of electron thermalization

Our goal is to infer physical consequences of the infrared singularity in the effective
electromagnetic field of the electron, or equivalently, in its effective current. Accordingly, we will
be interested in the large-time asymptotics of these quantities. There are two essentially different
types of contributions which diverge for t → ∞, when treated within the perturbation theory.
They describe different stages of the relaxation process in the system, which are characterized by
significantly different time scales. Namely, the faster process is the infrared thermalization described
in [19] within the λ-regularization, which takes place in vacuum as well as at finite temperature, and
which shows itself in a damping of the off-diagonal elements of the momentum-space density matrix
of the electron. Consideration of this process is themain subject of the present paper. To better expose
its physical meaning, we give here a highly simplified derivation of the irreversible electron spreading
which constitutes essential part of the infrared thermalization. The derivation employs the well-
known heuristic description of the relativistic radiative effects, used initially to estimate the Lamb
shift. This description is based on the view that the interaction of electron with each of the infinite
number of electromagnetic modes, empty or occupied, causes the electron to ‘‘jiggle’’ with respect
to the nonrelativistic wavefunction treated as a background, which in the present case is the free-
electronwavepacket subject to the usual quantum-mechanical spreading. Assuming that the electron
jiggling can be described by a function r(t), and restoring for a moment the ordinary units, one has
for the Fourier component of the ‘‘position’’ r(t) in the field of a plane wave

m
d2rω
dt2

= eEω sinωt,

from which one finds the contribution of the given mode to the electron position variance

⟨r2ω⟩ =
e2E2

ω

2m2ω4
,
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where angular brackets denote time averaging. The field amplitude |Eω| can be found by noting that
the energy of nω photons in the given mode is

h̄ω

nω +

1
2


=

E2
ω

2
V ,

where V → ∞ is the volume occupied by the system. Next, by the time-energy uncertainty relation,
only the modes with ω & h̄/τ are able to affect the electron during its travel for a time τ = t − t0.
Therefore, substituting nω = [exp(h̄ω/T ) − 1]−1, and Vω2dω/π2c3 for the number of modes in the
interval (ω, ω + dω), the total position variance takes the form

⟨r2⟩ ∼
e2h̄

π2c3m2


∞

1/τ

dω
ω


1

eh̄ω/T − 1
+

1
2


.

The upper limit in this integral is actually ∼ mc2/h̄, as set by the ultraviolet renormalization.
It is seen that in the case of electron freely moving in vacuum (T = 0), the radiative effects add

e2h̄
π2c3m2

ln(τmc2/h̄) (7)

to the usual nonrelativistic spreading. At finite temperatures, the corresponding contribution is

δ⟨r2⟩ ∼
e2Tτ
π2c3m2

. (8)

We thus have the following estimate for the characteristic time of the infrared thermalization

τ1 ∼
m2c2r2

h̄αT
,

where α = e2/(4π h̄c) is the fine-structure constant, and r is the characteristic length of the problem,
e.g., the distance between electron and the point of observation of its field, or the fringe spacing of
an interference pattern in the two-slit experiment (see Section 6.2), etc. This estimate was obtained
in [19] by interpreting an expression for the λ-regularized effective electromagnetic field of the
electron. An exact expression for δ⟨r2⟩ will be found below.

The other (slower) stage of the electron thermalization is the usual relaxation of the electron
momentum due to its collisions with thermal photons, which occurs only at T ≠ 0. Its rate can be
estimated by noting that the cross-section of the low-energy electron–photon scattering is of order
(αh̄/mc)2, whereas the photon density is ∼ (T/h̄c)3. Hence, the electron mean free time is

τ2 ∼
h̄m2c4

α2T 3
.

This process is described by the usual kinetic equation for the electron momentum probability
distribution (that is, the diagonal elements of the electron density matrix), and will be considered
in Section 7.

The ratio of the two time scales,

τ1

τ2
∼ α


rT
h̄c

2

, (9)

is to be considered small within the perturbation theory. Less formally,

τ1

τ2
∼

1
137

(4.36rT )2,

where T is assumed to be expressed in kelvins, and r in centimeters, so that the ratio is small in
microscopic processes (r ∼ 10−8 cm) for all practically important temperatures.

Below, the two stages of the electron evolution are considered separately, the reason being that,
as was already mentioned, they deal with different elements of the electron density matrix.
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Fig. 1. Time-integration contour in Eq. (10).

2.3. Gauge fixing on a finite time interval

To evaluate F eff, we shall use the Schwinger–Keldysh formalism [20,21], according to which Eq. (3)
can be written in the interaction picture as

F eff(t) = N −1Tr

Tc


exp i


C
d4yLI(y)


F(t)


e−βHφϱ0


, (10)

where LI is the interaction Lagrangian, y0-integration is along the time-contour C = C1 ∪ C2 running
from t0 to tf ≥ t and back as shown in Fig. 1, and Tc denotes operator ordering along this contour. It is
conventional to take the limit tf → ∞ in this formula, but the choice tf = t is more appropriate for
our purposes.

To completely specify the scheme of calculations, one has to fix gauge invariance of the theory,
which can be done by including a gauge-fixing term into Lagrangian density in Eq. (10). The amount
of computational labor essentially depends on the gauge choice, and covariant gauges arewell-known
to be of great advantage over canonical ones in this respect, but their use requires special justification.
Amere reference to gauge-independence of the effective electromagnetic current is not sufficient: one
has to prove that the use of covariant rules gives the same results as the original canonical method.
It turns out that Eq. (10) is the case where covariant techniques are not applicable, the failure being
directly related to finiteness of the initial instant t0. To explain the point, it will be convenient to
follow the general Faddeev–Popovmethod [22] of transition to covariant gauges, despite the fact that
the gauge group in the present case is only Abelian.

We choose to start with the Coulomb gauge, as it admits canonical quantizationwherein the gauge
condition can be regarded as an operator relation (i runs over 1, 2, 3)

∂iAi
= 0. (11)

According to the standard quantization procedure,5 Eq. (10) written in terms of the functional integral
takes the form

F eff(t) = N −1


dψdψ̄⟨ψ1
|ϱ0|ψ

2
⟩


dAν⟨A1

i |e
−βHφ |A2

i ⟩BCδ(∂iAi)

× exp i


C
d4yL(y)


F(t). (12)

Here dψdψ̄ is shorthand for the fermion functional integral measure,
x,t ′∈C1

dψ1(x, t ′)dψ̄1(x, t ′)


x,t ′∈C2

dψ2(x, t ′)dψ̄2(x, t ′),

and similarly for the A-field; the superscripts 1, 2 distinguish fields belonging to the corresponding
branch of the time contour C; integration is over all fields satisfying ψ1(t) = ψ2(t), ψ̄1(t) =

ψ̄2(t), A1(t) = A2(t). Next, |ψ1,2
⟩, |A1,2

i ⟩ are eigenvectors of the field operators at t0, e.g.,
ψ̂(t0, x)|ψ1

⟩ = ψ1(t0, x)|ψ1
⟩, Âi(t0, x)|A1

i ⟩ = A1tr
i (t0, x)|A

1
i ⟩, etc., where A1,2tr

i are the transversal
components of A1,2

i (Âi ≡ Âtr
i in the Coulomb gauge). Finally, the factor BC (a formally infinite constant)

is defined by

BC


dωδ(∂iAωi ) = 1, (13)

5 Details of canonical quantization in the Coulomb gauge can be found in Refs. [23,24].
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where integration is over the gauge group, and Aων is the result of action of the gauge group element
ω on the field Aν . Being built of the transversal components of A, vector |Ai⟩ is independent of the
non-dynamical variables—A0 and the longitudinal component of A. In fact, integration over A0 yields
the Coulomb law

A0 = −△
−1 J0, (14)

which is thus also treated as an operator relation. Now, to go over to a covariant (Lorentz) gauge, we
use the following trick [25]. Let us define BL (another infinite constant) by

BL


dωδ(∂µAωµ(x)− a(x)) = 1,

with a(x) an arbitrary function of spacetime coordinates, and multiply (12) by unity:

F eff(t) = N −1


dψdψ̄ ⟨ψ1
|ϱ0|ψ

2
⟩


dAν⟨A1

i |e
−βHφ |A2

i ⟩BCδ(∂iAi)

× BL


dωδ(∂µAωµ − a) exp i


C
d4yL(y)


F(t). (15)

A change of integration variables ψω
→ ψ, ψ̄ω

→ ψ̄, Aω → A, ω → ω−1 gives

F eff(t) = N −1


dω


dψdψ̄ ⟨ψ1ω
|ϱ0|ψ

2ω
⟩


dAν⟨A1ω

i |e−βHφ |A2ω
i ⟩BCδ(∂iAωi )

× BLδ(∂
µAµ − a) exp i


C
d4yL(y)


F(t, x),

where gauge invariance of the Lagrangian L and of the operator F was taken into account. Moreover,
since the photon state vectors are defined by transversal components of A, they are gauge-invariant,
|A1,2ω

i ⟩ = |A1,2
i ⟩. But this is not true of the fermion states |ψ1,2

⟩. Therefore, ⟨ψ1ω
|ϱ0|ψ

2ω
⟩ ≠

⟨ψ1
|ϱ0|ψ

2
⟩, for ϱ0 is not gauge-invariant. Therefore, integration over ω leads to the following

expression for the effective current in the Lorentz gauge

F eff(t) = N −1


dψdψ̄


dAν ⟨eieα(A)ψ1
|ϱ0|eieα(A)ψ2

⟩⟨A1
i |e

−βHφ |A2
i ⟩

× BLδ(∂
µAµ − a) exp i


C
d4yL(y)


F(t),

where α(A) = − △
−1 ∂iAi. If the limit t0 → −∞ is taken, and the interaction is negligible in

the remote past, the function ⟨eieα(A)ψ1
|ϱ0|eieα(A)ψ2

⟩ can be replaced by ⟨ψ1
|ϱ0|ψ

2
⟩, for then the

interaction can be adiabatically switched off in the remote past,
e → 0, t → −∞,

which kills the phase factor eieα(A). This is exactly what happens in the S-matrix formalism, and is
realized there through the use of in- and out-states. At finite t0, one can get rid of the phase factor by
making the inverse change of the fermion integration variables ψ → e−ieα(A)ψ, ψ̄ → eieα(A)ψ̄ , but
then an additional term appears in the Lagrangian

F eff(t) = N −1


dψdψ̄


dAν⟨ψ1
|ϱ0|ψ

2
⟩⟨A1

i |e
−βHφ |A2

i ⟩

× BLδ(∂
µAµ − a) exp i


C
d4y


L(y)− eψ̄γ µψ △

−1 ∂µ∂iAi


F(t).

Finally, independence of a allows one to average this equationwith aweight exp

−i

d4ya2(y)/2ξ


,

ξ = const, to obtain

F eff(t) = N −1


dψdψ̄


dAν ⟨ψ1
|ϱ0|ψ

2
⟩⟨A1

i |e
−βHφ |A2

i ⟩

× BL exp i


C
d4yLl(y)


F(t), (16)
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where

Ll = L −

∂µAµ

2
/2ξ − eJµ △

−1 ∂µ∂iAi. (17)
The averaging affects only the normalization factor denoted N , as before. The Lagrangian Ll generates
Feynman rules to be used to compute the effective field in the Lorentz gauge. It is seen that in contrast
to the S-matrix formalism (based on taking the limit t0 → −∞, tf → +∞), these rules are not
Lorentz-covariant: explicit Lorentz invariance is broken by the last term in Eq. (17), which largely
deprives Lorentz gauge of its advantage over the Coulomb gauge. That the non-invariant term in Ll
cannot be discarded is demonstrated in Appendix A where it is shown that doing so would violate the
Gauss law already in the tree approximation.6

At last, it is worth mentioning that

∂µAeff
µ (x) = const. (18)

Indeed, it follows from Eq. (16) that Aeff
µ satisfies

�Aeff
µ (x)−


1 −

1
ξ


∂µ∂

νAeff
ν (x) = Jeffµ (x).

On the other hand, Eq. (2) is still in force, implying that ∂µ∂νAeff
ν (x) = 0.

3. Perturbation theory

3.1. Feynman rules

Perturbation expansion of Eq. (10) generates expressions of the form
TrφTre


Tc

Aµ(x1)Jµ(x1)Aν(x2)Jν(x2) · · ·


e−βHφϱ0


which on account of commutativity of the interaction picture operators factorize to

Trφ

Tc

Aµ(x1)Aν(x2) · · ·


e−βHφ


Tre (Tc [Jµ(x1)Jν(x2) · · ·] ϱ0) .

The resulting Green functions can be further expanded in the products of particle propagators using
the real-time techniques [26,27]. As usual, the Tc-ordering promotes the field propagators into 2 × 2
matrices, e.g.,

D(ij)(x − y) = iTrφ

Tc

A(i)µ (x)A

(j)
ν (y)


e−βHφ


for the electromagnetic field, and similarly for the fermion field; the matrix indices i, j take the value
1(2) for fields on the forward (backward) branch of the contour C . In momentum space, the electron
propagator has the form

D(11)(q) = −D̃(22)(q) =
+ m

m2 − q2 − i0
,

D(21)(q) = 2π iθ(q0)δ(m2
− q2)( + m),

D(12)(q) = 2π iθ(−q0)δ(m2
− q2)( + m), (19)

where the tilde symbolizes an operation of complex conjugation with respect to which the Dirac
matrices are real. The photon propagator reads

D(11)µν (k) = −D̃(22)(k) =


1

k2 + i0
− 2π in(k)δ(k2)


dµν(k),

D(21)µν (k) = −2π i [θ(k0)+ n(k)] δ(k2)dµν(k),

D(12)µν (k) = −2π i [θ(−k0)+ n(k)] δ(k2)dµν(k), n(k) =
1

eβ|k| − 1
, (20)

6 Note that the charge conservation ∂µJµ = 0 does not entail vanishing of the non-invariant contribution: integration by
parts in Eq. (16) yields an integral of e(J10 − J20 )△

−1 ∂iAi over the hyperplane y0 = t0.
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a b

Fig. 2. Diagrams contributing to the effective electron current. (a) A fourth-order diagram describing the effect of
electron–photon scattering. (b) A sixth-order diagram describing the effect of electron–photon scattering accompanied by a
photon emission by the electron. Vertical broken lines show unitarity cuts to bemade to relate these diagrams to the scattering
cross-sections.

where

dµν(k) = ηµν −
k0kµην + k0kνηµ − kµkν

k2
, ηµ = (1, 0) (21)

in the Coulomb gauge, whereas in the Lorentz gauge

dµν(k) = ηµν + (ξ − 1)
kµkν
k2

. (22)

The interaction vertices are generated by the Lagrangian LI , and are assigned indices 1 or 2, depending
on the branch of the contour C to which the given vertex belongs, with an extra factor (−1) for each
type-2 vertex. The point of observation x is assigned index 1. Each propagator connects vertices of the
types assigned to thepropagator ends, and integration in the vertices is over all space andover the time
interval (t0, t). Diagrammatically, the electron and photon propagators will be depicted by straight
and wavy lines, respectively. The operators being averaged (Aµ(x), Jµ(x), etc.) will be collectively
denoted by an open circle, while the interaction vertices by full circles.

The diagrammatic representation of the effective field in the Schwinger–Keldysh technique has its
specifics when compared to the usual S-matrix diagrammatics. As far as the single electron problem
is considered, this primarily concerns representation of the photons present in the system. The effect
of the heat bath photons is taken into account by the term proportional to n(k) in Eq. (20). As to the
photons produced by the electron, their effect is also encoded in the internal photon lines, in contrast
to the S-matrix case where photons emitted by charges (in particular, the uncontrollable radiation)
are represented by external lines attached to the charged particle propagators. It is integration of the
scattering cross-sections over momenta of these photons that cancels the infrared divergences due to
virtual photons appearing in the loops. The difference in the graphical representation arises because
in the S-matrix case, the photons emitted by charges are not present in the in-state, and appear only
in the out-state as a result of the scattering, whereas the effective field is evaluated entirely over
the given in-state, and no out-state ever appears in the formalism. In this respect, the effective field
diagrammatics bears some resemblance with that of the scattering cross-sections transformed using
the unitarity relations. This is illustrated by Fig. 2(a) which represents one of diagrams describing the
effect of the electron–photon scattering on the electron current. The vertical broken line shows the
cut to be made to relate this diagram with the cross-section of the Compton scattering (note that all
photon momenta in this diagram are on the mass shell). This effect will be considered in detail in
Section 7, where it will be shown explicitly that the expression for the electron–photon scattering
cross-section is contained in diagrams similar to that in Fig. 2(a), appearing in the kinetic equation for
the electron momentum probability distribution. Analogously, shown in Fig. 2(b) is one of diagrams
describing the effect of photon emission by the electron, which accompanies the scattering of heat-
bath photons by the electron, etc.

Because of finiteness of the time contour C , energy is not conserved in the interaction vertices. As a
result, the usual δ-functions expressing energy conservation in the S-matrix theory become smeared,
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so that the vertex factor takes the form, in the Coulomb gauge,

− ieγ µ∆t(v), ∆t(v) =
eiv

0t
− eiv

0t0

iv0
(2π)3δ(3)(v), (23)

where v is the sumof outgoing 4-momenta, to be referred to inwhat follows as the residualmomentum.
In the Lorentz gauge, the non-invariant term in Ll modifies the vertex to

− ieγ αgµα (k)∆t(v), gµα (k) = δµα +
kα (kµ − ηµk0)

k2
. (24)

It is to be noted that the gauge invariance of F implies ξ -independence of F eff, for gµα (k)kµ ≡ 0, so
that dµν in the Lorentz gauge can be replaced by ηµν . Moreover, regarding the analytic structure of
Feynman diagrams, the Lorentz gauge is completely equivalent to the Coulomb gauge when F does
not involve Aµ. In that case, there are only internal photon lines each of which has its ends contracted
with the tensor gµα (k):

gµα (k)ηµνg
ν
β(k).

A simple calculation shows that the latter is exactly the expression (21) for dαβ in the Coulomb gauge.
As a result of the smearing of the energy δ-function, the effective electromagnetic field and the

effective current become infrared finite, so that no special regularization such as the λ-regularization
introduced in [19] is needed in investigating the infrared effects.

3.2. Pole prescriptions in Feynman integrals

Regarding pole prescriptions symbolized by±i0 in Eqs. (19), (20), it is worth tomake the following
technical remark. As we shall see below, evaluation of multiple Feynman integrals is often facilitated
by the use of residual momenta as integration variables. However, this requires some care to avoid
appearance of ambiguities when changing the order of integration. As an illustration, consider the
diagram in Fig. 3. Its contribution is proportional to

d4k
(2π)4


d4q1
(2π)4


d4q2
(2π)4

∆t(q2 − q1 − k)∆t(q1 − q + k)
m − 2 − i0

γ α
D(11)αβ (k)

m − 1 − i0
γ β . (25)

The imaginary infinitesimals (−i0) specify contours of integration over q01 and q02, whose
independence allows interchanging the order of integration. In order to go over to integration with
respect to residual momenta v1, v2, we first change the integration variable q1 → v1 according to
q1 = q− k+ v1, and then change q2 → v2 using the relation q2 = q+ v1 + v2, in which v1 is treated
as a complex parameter. Eq. (25) thus takes the form

d4k
(2π)4


d4v1
(2π)4


v1

d4v2
(2π)4

∆t(v1)∆t(v2)

m − − 1 − 2 − i0
γ α

D(11)αβ (k)

m − + − 1 − i0
γ β ,

where the subscript v1 indicates that the position of integration contour over v2, specified by the left
pole factor in the integrand, depends also on v1 which runs the contour specified by the other pole
factor. Interchanging the order of integration with respect to v1 and v2 now is not legitimate, as it
leads to ambiguity in integrating the pole 1/[m2

− (q + v1 + v2)
2
] with respect to q01. But the last

formula and its generalizations turn out to be useful even when they do not admit changing the order
of integration.

We will have more to say on this issue in Sections 4.1 and 4.2.

4. Infrared thermalization

We now proceed to the calculation of the infrared-singular contribution to the effective
electromagnetic current. The estimates (7) and (8) show that there are two types of contributions
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Fig. 3. A one-loop diagram contributing to the effective current.

growing with time: a linear (leading) that exists only at finite temperatures, and a logarithmic. To
find the latter requires direct summation of the diagrams to all orders of perturbation theory, to be
done in the present section, whereas the former can be found also in a simpler way to be described in
Section 5.

Upon transition to the momentum space, Eq. (5) with F = Jµ takes the form

Jeffµ (x, t) =


σ ,σ ′


d3q
(2π)3

d3p
(2π)3

ϱσσ ′(t; q, q + p)
ūσ ′(q + p)γµuσ (q)

2εq+p

2εq

e−ipx, (26)

where εq =

m2 + q2, and ϱ(t; q, q′) is the electron density matrix in the momentum space

representation; by definition,

ϱσσ ′(t; q, q′) = ⟨e|ϱ(t)|e′
⟩, (27)

where q, σ are the electron momentum and spin in the state |e⟩, and q′, σ ′ same for |e′
⟩. This matrix

is normalized on unity,
σ


d3q
(2π)3

ϱσσ (q, q) = 1. (28)

Finally, the bispinor amplitudes uσ (q) are also normalized on unity, ūσuσ = 1, and satisfy

( − m)uσ (q) = 0.

The effective electromagnetic field can be found from Eq. (2). Note that in the Coulomb gauge the
scalar potential reads simply

Aeff
0 (x, t) = e


σ ,σ ′


d3q
(2π)3

d3p
(2π)3

ϱσσ ′(t; q, q + p)
ūσ ′(q + p)γ0uσ (q)

2εq+p

2εq

e−ipx

p2
. (29)

Using this expression and taking into account the gauge condition ∂iAi = 0, it is not difficult to verify
that the effective electromagnetic field satisfies Gauss law in the infinite space.

The contributions we are interested in come from integration over small virtual and residual
momenta. The results of [19] imply that these contributions diverge in the limit t0 → −∞, or
equivalently t → ∞, as ln(mt) in the vacuum case, and as Tt at finite temperature. Typical infrared-
singular diagram is shown in Fig. 4. Its internal structure is further specified by Fig. 5, where k, κ
denote virtual momenta, and v, u the residual momenta; henceforth, we set t0 = 0, without
restricting generality. The factor exp−i(


i v

0
i +


j u

0
j )t is brought in by the current operator in the

interaction picture, whereas factors (1− exp iv0i t), (1− exp iu0
j t) come from the vertex functions∆t .

It is easily verified that the product of all these factors is invariant under the following replacement

e−i


i v
0
i +


j u
0
j


t
→ 1, ∆t(v) → ∆t(v) = i

e−iv0t − 1
v0

(2π)3δ(3)(v), (30)

a fact that will be used below.
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Fig. 4. General infrared-divergent contribution to the effective current. q and q + p are the electron 4-momenta.

4.1. Approximations

Since we are interested in the low-energy properties of the effective current, and since we have
assumed nonrelativistic conditions for the electron, in what follows we shall systematically neglect
radiative corrections to the electron and photon self-energy as well as to their interaction, but only
if they represent finite relative corrections to the effective field, that is, if they give rise to factors
[1+O(|q|/m)] or [1+O(|p|/m)] in the leading term. Also,we shall use the condition T ≪ munderlying
our model to omit terms proportional to T/m, unless such term is leading. In this approximation, the
momentum space density matrices at the instants t and t0 are related by

ϱσσ ′(t; q, q′) = ϱσσ ′(t0; q, q′)R(t; q, q′)eip
0t , (31)

where p0 = εq+p − εq, and the scalar factor R(t; q, q′) incorporates radiative corrections (R = 1
in the tree approximation). Indeed, the γ -matrix structure of a N-loop infrared-divergent diagram
contributing to Jeffµ is (see Fig. 5)


σ ,σ ′

ϱσσ ′(t0; q, q′)ūσ ′(q′)γ β1( ′
− 1 − 1 + m) · · · γ βf


′
−


j

[ j + j] + m


γµ

× ( − 1 + 1 + m)γ α1 · · ·


−


i

[ i − i] + m


γ αsuσ (q),

where s+ f = 2N . At zero temperature, the Feynman integrals diverge logarithmically, so that , ,
etc. in this expression give rise to infrared-finite terms. For T ≠ 0, the divergence is linear, and the
corresponding subleading contribution diverges logarithmically. On dimensional grounds, its relative
order is O(T/m), so that this contribution can be omitted. Thus, the above expression can be replaced
by 

σ ,σ ′

ϱσσ ′(t0; q, q′)ūσ ′(q′)γ β1( ′
+ m) · · · γ βf ( ′

+ m)γµ( + m)γ α1 · · · ( + m)γ αsuσ (q)

=


σ ,σ ′

ϱσσ ′(t0; q, q′)2q′β1 · · · 2q′βf 2qα1 · · · 2qαs ūσ ′(q′)γµuσ (q),

fromwhich Eq. (31) follows. This relation will be derived in a more direct way in Section 5. The above
reasoning also implies a similar simplification in denominators of the electron propagators

1
m2 − (q −


ki +


vi)2 ± i0

→
1

2q


ki −

vi

± i0

, etc.

These simplifications of the vertex factors and propagators are quite similar to those underlying
classic treatments of the infrared catastrophe in the scattering theory [2–4]. We might go further and
adopt the Bloch–Nordsieck model assumption that the electron propagators can be taken in the form
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Fig. 5. Detailed structure of diagrams contributing to the effective current. The horizontal photon lines are supposed to be
arbitrarily paired.

D(11)(q) = (m − uµqµ)−1 etc., which is often used in the modern analyses even in cases T > m
(see, e.g., [28]). Although with certain qualifications regarding the choice of the vector uµ on the
incoming and outgoing electron lines, this replacement can be justified in the present case too, we
prefer not to use it, and to prove factorization of the infrared contributions following the lines of
Refs. [2–4]. It should be emphasized in this connection that the effects we are interested in cannot
be described within the strict eikonal approximation in which quantum fluctuations of the electron
wavefunction, caused by the radiative effects, are completely neglected. These fluctuations are just
what was qualitatively described in Section 2.2 as the electron jiggling.

Next,wenote that graphswith a 1-vertex appearing to the left of a 2-vertex canbe omitted, because
they involve the function D(12)(q) ∼ θ(−q0), and therefore do not contribute at small loop momenta.
In particular, all vertices on the incoming electron line (the right slope of the diagram in Fig. 5) must
be type-1. Less trivial is the fact that all vertices on the outgoing electron line (the left slope of the
diagram in Fig. 5) are to be of type-2 to give rise to a nonvanishing contribution. To see this, imagine
for a moment that the rightmost vertex on the outgoing electron line is of type-1. Then following the
recipe formulated in Section 3.2, we first perform integration over uf , and find that du0

f

2π i
e−iu0f t − 1

u0
f

1

2q


j
κj +


j≠f

uj + uf


− i0

= 0,

because the contour of integration can be closed in the lower half-plane of complex u0
f (recall that

t > 0). Therefore, the rightmost vertex on the left slope must be type-2, which proves the assertion,
for as was shown before, vertices to the left of a 2-vertex must be type-2.

4.2. Factorization of infrared contributions

To separate contributions singular in the limit t → ∞, we use the condition T ≪ m to
introduce a momentum threshold Λ such that T ≪ Λ ≪ m, which identifies the photons with
0 < |k| < Λ as ‘‘soft’’. Aswas alreadymentioned in Section 3.1, ourmodel requires no special infrared
regularization, because restriction to a finite time interval renders all Feynman integrals convergent
at small momenta. As to the ultraviolet divergences, they are supposed to be regularized using some
conventionalmeans, say, the Pauli–Villars technique. If, as usual, the correspondingmasses are chosen
larger than the electronmass; then the ultraviolet divergences can be isolated and subtractedwithout
affecting infrared properties of the theory, and we will assume that this has been done. Using the
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momentum threshold, the perturbation series for the function R(t; q, q + p) can be written as

R(t; q, q + p) = IΛ(p, q)
∞

N=0

(e2)N IN(p, q,Λ), (32)

where the factor IΛ(p, q) is the contributions of photons with momenta |k| > Λ, and IN(p, q,Λ)
are the infrared-singular parts of diagrams of the type shown in Fig. 4. Introducing abridged notation
Qrs(k) = qµr qνsD

(rs)
µν (k), where q1 = q, q2 = q+ p, and r, s take on values 1, 2, the functions IN take the

form

IN(p, q,Λ) =
1
iN

N
r=0

N−r
l=0

 Λ m
i=1

d4ki
(2π)4

Q21(ki)
Fm
1r(k1 · · · km)Fm

2l (k1 · · · km)
r!2r l!2lm!

, (33)

whereN is the number of virtual photon lines, ofwhich r (l) reside on the incoming (outgoing) electron
line,while the remainingm ≡ N−r−l connect the two electron lines; the symbol

 Λ indicates that all
loop integrals are cut off at |k| = Λ; finally, the functions Fm

2l and Fm
1r incorporate electron propagators

and vertex factors. They include sums over all permutations of vertices residing on the outgoing and
incoming electron line, respectively, the factor r!2r l!2l accounting for the redundant permutations.
To put them in a form admitting factorization of multi-loop diagrams, we proceed as explained in
Section 3.2 and go over to integration with respect to residual momenta. To be specific, consider the
lowest order diagram shown in Fig. 6. Writing

2π iδ(m2
− q2) =

1
m2 − q2 − i0

−
1

m2 − q2 + i0

for the factor brought in by D(21), we see that the first term does not contribute (cf. discussion at the
end of Section 4.1), whereas the second term gives

F 0
21 =

 Λ d4k
(2π)4

Q22(k)

k

d4u1

(2π)4
∆t(u1)

(k + u1)q2 + i0


u1

d4u2

(2π)4
∆t(u2)

(u1 + u2)q2 + i0
+ (u1 ↔ u2),

where (u1 ↔ u2) denotes the first term with u1, u2 interchanged. We observe that the contours of
integration with respect to u0

1, u
0
2 can be chosen so as to meet the pole prescriptions in both terms

simultaneously. Namely, the u0
1-contour must go above the poles ±kq2/q02, −u0

2, and not intersect
the u0

2-contour going above the poles ±kq2/q02, −u0
1, as shown in Fig. 7. Taking into account that the

function Q22(k) is even, and introducing new variablesw1 = u1 + k, w2 = u2 − k yields

F 0
21 =

 Λ d4k
(2π)4


d4u1

(2π)4


d4u2

(2π)4
Q22(k)

∆t(u1)∆t(u2)

(u1 + u2)q2 + i0

×


1

(k + u1)q2 + i0
+

1
(−k + u2)q2 + i0


=

 Λ d4k
(2π)4


d4w1

(2π)4


d4w2

(2π)4
Q22(k)

∆t(w1 − k)
w1q2 + i0

∆t(w2 + k)
w2q2 + i0

.

This consideration is readily extended to all l,m. The factor Fm
2l can bewritten in general as (w1+· · ·+

wk ≡ Wk)

Fm
2l (k1, . . . , km) =


d4w1

(2π)4
· · ·

d4w2l+m

(2π)4

 Λ l
i=1

d4km+i

(2π)4
Q22(km+i)

×∆t(w2i−1 − km+i)∆t(km+i + w2i)∆t(w2l+1 − k1) · · ·∆t(w2l+m − km)

×


perm


1

W1q2 + i0
1

W2q2 + i0
· · ·

1
W2l+mq2 + i0


,
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Fig. 6. The one-loop diagram determining the function F 0
21 .

Fig. 7. Pole structure and contours of integration in the complex u0-plane in the integral representing F 0
21 .

where the sum is over all permutations of indices 1, 2, . . . , 2l + m. That this sum appears under the
sign of integral is precisely because the imaginary infinitesimals in all its terms are of the same sign.
Therefore, this sum can be factorized using the well-known formula

perm


1

W1q + i0
1

W2q + i0
· · ·

1
Wmq + i0


=

1
w1q + i0

· · ·
1

wmq + i0
, (34)

which is easily proved by induction for all integers m. As in the S-matrix case, applicability of this
formula is crucial for the proof of factorization of infrared contributions. It is worth mentioning in
this connection that when the infrared problem is treated on an infinite time interval, the existence
of this or a similar formula depends on the choice of infrared regularization. For instance, as discussed
in Ref. [19], no relation replacing Eq. (34) can be written if the finite pole shift is used to regularize the
on-shell electron propagators, which precludes the factorization.

In a similar way, we find

Fm
1r(k1, . . . , km) =


d4w1

(2π)4
· · ·

d4w2r+m

(2π)4

×

 Λ r
i=1

d4km+i

(2π)4
Q11(km+i)∆t(km+i − w2i−1)∆t(−km+i − w2i)

×∆t(k1 − w2r+1) · · ·∆t(km − w2r+m)

×


perm


1

W1q1 − i0
1

W2q1 − i0
· · ·

1
W2r+mq1 − i0


,

where the sum is over all permutations of indices 1, 2, . . . , 2r +m, and factorization is accomplished
using the complex conjugate of Eq. (34). We thus obtain

Fm
2l (k1, . . . , km) =

 Λ d4k
(2π)4


d4w1

(2π)4
d4w2

(2π)4
Q22(k)

∆t(w1 − k)∆t(w2 + k)
(w1q2 + i0)(w2q2 + i0)

l
×

m
i=1


d4w2n+i

(2π)4
∆t(w2l+i − ki)
w2l+iq2 + i0

,
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Fm
1r(k1, . . . , km) =

 Λ d4k
(2π)4


d4w1

(2π)4
d4w2

(2π)4
Q11(k)

∆t(−w1 + k)∆t(−w2 − k)
(w1q1 − i0)(w2q1 − i0)

r
×

m
i=1


d4w2n+i

(2π)4
∆t(ki − w2r+i)

w2r+iq1 − i0
.

Finally, substitution into Eq. (33) gives

IN(p, q,Λ) =

N
r=0

N−r
l=0

g r
11

r! 2r

g l
22

l! 2l

gm
21

m!
=

gN

N! 2N
, g ≡ g11 + g22 + 2g21,

where

grs = −iηrηs

 Λ d4k
(2π)4


d4w1

(2π)4
d4w2

(2π)4
Qrs(k)

∆t(w1 − k)∆t(w2 + k)
(w1qr + i0)(w2qs + i0)

,

η1 = 1, η2 = −1.

Thus,

R(t; q, q + p) = IΛ(p, q) exp
e2g
2
. (35)

Using the formula
d4w
(2π)4

∆t(w − k)
wq + i0

=


dw0

2π i
e−i(w0−k0)t − 1
w0 − k0

1
w0q0 − kq + i0

=
eitkq/q

0
− 1

kq
,

we find

grs = iηrηs

 Λ d4k
(2π)4

Qrs(k)
(kqr)(kqs)


eitkqr /q

0
r − 1

 
e−itkqs/q0s − 1


.

Inserting explicit expressions (20) for the photon propagator, it can be put in the form

g21 = −

 Λ d4k
(2π)3

[θ(k0)+ n(k)] δ(k2)
dµν(k)q

µ

2 q
ν
1

(kq2)(kq1)

×


1 + eit


kq2/q02−kq1/q01


− eitkq2/q

0
2 − e−itkq1/q01


,

grr =

 Λ d4k
(2π)3


−

1
2π i

ηr

k2 + iηr0
+ n(k)δ(k2)


dµν(k)q

µ
r qνr

(kqr)(kqr)


2 − eitkqr /q

0
r − e−itkqr /q0r


.

Each of these expressions consists of a vacuum and a temperature part: grs = g0
rs + gT

rs, where g0
rs is

the limit of grs for T → 0 and t fixed. The contribution to g21 growing with time turns out to be real
because the integrand is on the photon mass-shell. On the contrary, off-shell photons do contribute
to the vacuum part of grr , producing an imaginary term unbounded at t → +∞. To see this, we close
the contour of k0-integration in the lower (upper) half-plane in that part of the expression which is
proportional to e−itkqr /q0r (eitkqr /q

0
r or 2), and find

Im g0
rr = iηr t

 Λ d3k
(2π)3

m2

(kqr)
2 − (q0r )2k2

,

whereas the real parts of the large-time asymptotics of grs can be combined in a single expression

Re grs = ηrηs

 Λ d4k
(2π)3

[θ(k0)+ n(k)] δ(k2)
dµν(k)q

µ
r qνs

(kqr)(kqs)

×


1 + eit(kqr /q

0
r −kqs/q0s ) − e−itηr kqr /q0r − e−itηskqs/q0s


, t → ∞.
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The combination g = g11 + g22 + 2g21 in various limiting cases reads (assuming q ≪ m, p ≪ m)

Re g0
=


0, mt ≪ 1,

−
1

3π2

p2

m2
lnΛt, mt ≫ 1, |p|t ≪ 1,

−
1

3π2

p2
+ q2

+ pq
m2

lnΛt, |p|t ≫ 1,

(36)

Re gT
=


0, Tt ≪ 1,
1

3π2

p2

m2
ln Tt −

1
3π

p2

m2
Tt, Tt ≫ 1, T |p|t/m ≪ 1,

1
3π2

p2
+ q2

+ pq
m2

ln Tt −
1
3π

p2

m2
Tt, T |p|t/m ≫ 1,

(37)

Im g = i
Λt
3π2


q2

m2
−
(q + p)2

m2


. (38)

Substitution of Eq. (38) in Eq. (31) brings the electron density matrix to the form

ϱσσ ′(t; q, q + p) = ϱσσ ′(t0; q, q + p)IΛ

× exp

i


1
2m

−
e2Λ

6π2m2

 
(q + p)2 − q2 t +

Re g
2


.

It follows that the imaginary contribution to g merely renormalizes the electron mass m → m −

e2Λ/3π2
+ o(e2). Hence, the function R takes the form

R(t; q, q + p) = IΛ(q, p) exp
Re g
2

where Re g is given by Eqs. (36), (37). Dependence onΛmust cancel in the product of IΛ(p, q)with the
factor contributed by the term proportional to lnΛt in Eq. (36). SinceΛ ≪ m, within the logarithmic
accuracy this amounts to replacing lnΛt → lnmt . Conditions T ≪ m and Tt ≫ 1 then imply that
the logarithmic term is negligible in comparison with the term proportional to (Tt). Thus, we arrive
at the following expression for the large-time asymptotic of the function R(t; q, q + p)

R(t; q, q + p) = exp


−
e2

6π
p2

m2
Tt

, Tt ≫ 1. (39)

We see that despite infrared contributions to R(t; q, q + p) with p ≠ 0 grow with time at every
order of perturbation theory, their sum is actually bounded, tending to zero in the limit t → ∞. On
the other hand, R(t; q, q) is independent of t , being finite at every order. This means that the infrared
effects do not change the probability distribution of the electronmomentum,whereas the off-diagonal
components of the electron density matrix vanish in the limit t → ∞ (see Eq. (31)). The vanishing
of the infrared-divergent contribution at p = 0 is actually a consequence of Eqs. (26), (31), and of
the total charge conservation. In view of Eq. (6), it can also be considered as a special case of the
Bloch–Nordsieck theorem.

The asymptotic expression for the effective electromagnetic current reads

Jeffµ (x, t) =


d3q
(2π)3


d3p
(2π)3

eip0t−ipx exp

−Θp2t


Jµ(q, p), (40)

where

Θ =
2αT
3m2

, (41)

α = e2/4π is the fine structure constant, and

Jµ(q, p) =


σ ,σ ′

ϱσσ ′(t0; q, q + p)
ūσ ′(q + p)γµuσ (q)

2εq+p

2εq

.
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5. Alternative derivation of Eq. (39)

The exponential time dependence of the main result expressed by Eq. (39) suggests that it can
be derived from consideration of the density matrix evolution in infinitesimal form. We give this
derivation below in order to emphasize the role of the approximations made, and to demonstrate
a very important fact that the infrared properties of currents can be determined without having to
sum the perturbation series explicitly.

Let us first establish a general relation between the matrices ϱ(t) and ϱ0 in the momentum
representation. It follows from Eq. (4) that

ϱ(t; q, q′) =


φ,φ0

w(φ0)⟨e|⟨φ|U(t)|φ0⟩ϱ0⟨φ0|UĎ(t)|φ⟩|e′
⟩

=


φ,φ0,e0,e′0

w(φ0)⟨φ|⟨e|U(t)|e0⟩|φ0⟩⟨e0|ϱ0|e′

0⟩⟨φ0|⟨e′

0|U
Ď(t)|e′

⟩|φ⟩, (42)

where U(t) ≡ U(t, 0), and

⟨e0|ϱ0|e′

0⟩ = ϱ(0; q0, q′

0).

For simplicity, the electron is assumed henceforth unpolarized, ϱσσ ′ ∼ δσσ ′ , and the spin indices
are omitted. By virtue of momentum conservation, the evolution operator has nonvanishing matrix
elements only between states satisfying

q′

0 = q′
+ Q , q0 = q + Q

where Q denotes the difference of total momenta of photons in states |φ⟩ and |φ0⟩. It follows that

q′

0 − q0 = q′
− q ≡ p.

Hence, the two matrices are related by

ϱ(t; q, q + p) =


d3k
(2π)3

K(t; q, p, k)ϱ(0; q + k, q + p + k). (43)

The kernel K(t; q, p, k) can be computed using the general formulas given in Sections 2 and 3.1, for
which purpose it is useful to rewrite definition (27) as

ϱ(t; q, q′) =


d3x


d3x′


2εq′


2εqeiq

′x′−iqx
⟨ψ̄(t, x′)u(q′)ū(q)ψ(t, x)⟩. (44)

To determine the large-time behavior of ϱ(t), one may proceed as in Section 4.2, prove factorization
of the infrared contributions, and then sum the perturbation series. However, the leading term of the
large-time asymptotic can be foundmore directly. As was shown in Section 4.2, this term is produced
by the interaction of the electron with equilibrium photons. To extract this term, we note that the
property of being in equilibrium implies that the effect of such photons is homogeneous in time, but
with one important qualification. The photon cloud surrounding the electron can be said to be in
equilibrium at a given temperature T only when considered on time intervals ≫ 1/T . This is because
at lesser times (.1/T ), the quantum indeterminacy in the photon energy becomes of order of the
photonmean energy, and in the presence of such large fluctuations it is evidently impossible to speak
about time homogeneity. Thus, we introduce a time τ0 satisfying

Tτ0 ≫ 1, (45)

and restrict consideration to time intervals δt & τ0. This condition justifies omission of the logarithmic
contributions due to vacuum photon–electron interaction, making thereby the photon impact on the
electron evolution homogeneous in time. This implies that the electron density matrices at arbitrary
instants t and t + δt are related by the same kernel as in Eq. (43), viz.,

ϱ(t + δt; q, q + p) =


d3k
(2π)3

K(δt; q, p, k)ϱ(t; q + k, q + p + k), (46)
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where K is independent of t . Whether or not this equation can be reduced to a differential equation
depends on the structure of the kernel K(δt; q, p, k). The point is that in general, one cannot
differentiate it with respect to δt at δt = 0, because this would violate condition (45). To put it
differently, if both sides of this equation are expanded in powers of δt , the question is whether the
terms O(δt2) can be neglected in comparison with the linear term. That this is legitimate in the case
under consideration is suggested by the results of the preceding section, and is confirmed by the
subsequent computation. Thus, we expand K(δt; q, p, k) up to the first order in δt , and obtain

∂ϱ(t; q, q + p)
∂t

=


d3k
(2π)3

K(q, p, k)ϱ(t; q + k, q + p + k), (47)

where

K(q, p, k) ≡
∂

∂t
K(t; q, p, k)


t=0
. (48)

In view of the smallness of the coupling constant, e2 ≪ 1, the function K(q, p, k) can be found in the
second order approximation. Indeed, if we use Eq. (44) to relate ϱ(t + δt) and ϱ(t), where δt ∼ τ0,
then the loop expansion of the integral kernel K(δt; q, p, k) is a power series in e2Tτ0, since each
loop divergences linearly, with the dominant contribution coming from the integration over photon
momenta k ∼ 1/τ0. Therefore, contributions of higher order in e are negligible, provided that τ0
satisfies

e2Tτ0 ≪ 1. (49)
It is because of the smallness of the coupling constant that this condition is consistent with Eq. (45).
In zeroth order in the coupling (free electron evolution), ϱ(t; q, q + p) ∼ eip

0t , implying that

K(q, p, k)|e=0 = ip0(2π)3δ(3)(k).
Diagrams representing the second-order term in K(q, p, k) are shown in Fig. 8. Using the definition
(48), this term can be written as

K(q, p, k)|e2 = −2
e2

τ0


dk0

2π
n(k)δ(k2)

dµν(k)q
µ

2 q
ν
1

(kq2)(kq1)

×


eiτ0kq2/q

0
2 − 1

 
e−iτ0kq1/q01 − 1


+

e2

τ0
δ(3)(k)


d4k′

2π
n(k′)δ(k′2)


r=1,2

dµν(k′)qµr qνr
(k′qr)(k′qr)

×


eiτ0k

′qr /q0r − 1
 

e−iτ0k′qr /q0r − 1

.

The leading large-time contribution in this integral comes from k ∼ 1/τ0, and counting the powers
of k in Eq. (47) readily shows that this contribution is independent of τ0, as expected. It is to
be emphasized in this connection that the four-dimensionality of spacetime is essential to reach
this conclusion. In a three-dimensional spacetime, for instance, the leading term in the function
K(δt; q, p, k) is quadratic in δt , and transition from Eqs. (46) to (47) is not legitimate.We note, finally,
that under condition (45), k ∼ 1/τ0 ≪ T can be neglected in the arguments of ϱ in Eq. (47), so that
in effect, K(q, p, k) ∼ δ(3)(k). A computation similar to that performed at the end of Section 4.2 then
gives, after the mass renormalization,

K(q, p, k)|e2 = −Θp2(2π)3δ(3)(k).
Substituting this into Eq. (47), we find

∂

∂t
ϱ(t; q, q + p) =


ip0 −Θp2 ϱ(t; q, q + p),

and therefore,

ϱ(t; q, q + p) = exp

−Θp2t


eip0tϱ(0; q, q + p), (50)

in agreement with Eq. (39).
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a b c

Fig. 8. Diagrams representing the second-order contribution to the integral kernel K(q, p, k) in Eq. (47).

6. Physical manifestations of the infrared singularity

In this section, we discuss some physical applications of the main result expressed by Eq. (50).

6.1. Irreversible spreading of Gaussian wavepacket

To illustrate the role of the irreversible charge spreading, consider an unpolarized electron
prepared at t0 = 0 in a pure state described in the momentum space by a Gaussian wavefunction

φ0(q) =

4π l2

3/4
exp{−l2q2/2}, l = const.

Thiswavefunction represents the electron spatially localized in a region of characteristic size lnear the
origin. The corresponding density matrix is ϱ0(q, q′) = φ̃0(q′)φ0(q). Substitution of this expression
in Eq. (40) and evaluation of the Gaussian integrals yields the following expression for the electron
density at arbitrary instant t

Jeff0 (x, t) =
1

π3/2l3t
exp


−

x2

l2t


, lt =


l2 +

t2

m2l2
+ 4Θt

1/2

. (51)

This result shows that in addition to the usual quantum spreading described by the term t2/m2l2 in
lt , there is a spreading due to interaction of the electron with the heat-bath photons. It is easy to
see that in the setting considered, the latter effect is dominated by the usual quantum-mechanical
spreading. Indeed, for a given t , the minimum of the sum (l2 + t2/m2l2) is 2t/m, which is very large
compared to 4Θτ ∼ αTt/m2, since T ≪ m, α ≪ 1. But it is not difficult to give an example where the
relation between the two effects is opposite. Namely, let the electron be prepared at t0 = 0 in a pure
state which is supposed to describe this electron localized at a later instant t = τ in a region of the
size l near a point x0. Then an appropriate momentum-space amplitude in nonrelativistic quantum
mechanics would be

φ(q) = φ0(q)e−iqx0+iεqτ ,

where φ0(q) is real; the factor eiq0τ realizes the free electron evolution backward in time from t = τ
to t = 0. Taking φ0 as before, the effective electron density at t = τ now is

Jeff0 (x, τ ) =

exp

−

(x−x0)2

(l2+4Θτ)


π3/2


l2 + 4Θτ

3/2 ,
which demonstrates that the actual size of the wave packet at t = τ is lτ = (l2 +4Θτ)1/2. This simple
example shows that the minimal uncertainty in the position of an electron evolving freely for a time
τ is ∼

√
Θτ . Incidentally, this fact justifies the term ‘‘irreversible spreading’’. It also implies that in

the conventional approach based on the notion of infinitely remote past, the uncertainty is formally
infinite, and the effective charge density (hence, the effective field) is zero at any given spatial point:

lim
τ→∞

Jeff0 (x, τ ) = 0. (52)
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The value of the minimal uncertainty is actually independent of the initial electron state, and can be
obtained by using Eq. (40) to write the electron position variance as

⟨x2⟩ =


d3xJeff0 (x, t)x

2
= −


d3q
(2π)3

∂2

∂p2


J0(q, p)eip0t


p=0

+ 6Θt.

The first term on the right represents the usual quantum-mechanical spreading, whereas the second—
the minimum of ⟨x2⟩ imposed by the infrared radiative effects.

The linearity of the particle position variance with respect to the travel time is characteristic of
diffusive processes, which suggests that the irreversible spreading of the electron wavepacket can be
viewed as a kind of Brownian motion of the electron. However, this analogy cannot be taken literally,
because the irreversible spreading is not driven by the electron–photon collisions. This is evident from
the fact that it does not lead to relaxation of the electron momentum—as is seen from Eq. (50), the
momentum probability distribution, ϱ(t; q, q), is unaffected by the infrared singularity. Furthermore,
the irreversibility of this effect shows itself also as an increase of quantum [29] entropy of the electron
state, S = −Treϱ ln ϱ. Namely, it was shown in [19] that S grows asymptotically as

S =
3
2
ln(Θt∆2

q), t ≫ (∆2
qΘ)

−1, (53)

where∆2
q is the electron momentum variance. An exact expression for the entropy in the special case

of a Gaussian wavepacket is obtained in Appendix B. This growth of entropy is directly related to
the fact that the infrared singularity damps the off-diagonal elements of the electron density matrix.
But in contrast to the ordinary statistics, this thermalization takes place both at T ≠ 0 and T = 0,
though in vacuum7 the process is much slower (time dependence of the effective electron current
is exponential at finite temperature, whereas in vacuum it is a power law). These circumstances
emphasize the specifically quantum nature of the irreversible spreading, which has no proper analog
in nonrelativistic physics.

How the usual relaxation of the electron momentum due to its collisions with the heat-bath
photons is described in the present formalism will be shown in Section 7.

Conditions considered in the last example can be experimentally realized using a magnetic lens to
focus an electron beam, but it is more advantageous to detect the effect of infrared thermalization as
a decoherence of the electron waves in the classic two-slit experiment considered in the next section.

6.2. Electron diffraction

Consider the electron diffraction in the two-slit experiment shown schematically in Fig. 9. The
wavefunction of diffracted electrons is a superposition of two outgoing cylindric waves, which at
sufficiently large distance from the slits has the form

ψ =
A

√
2


eikr1
√
r1

+
eikr2
√
r2


,

where r1 (r2) is the distance between the first (second) slit and the point of observation, A is a bispinor
amplitude independent of the spatial coordinates x, z (z being directed along the incident beam), and
k = |k| is the incident electron momentum. Let 2d denote the slit spacing, and L ≫ d the distance
between a slit and the screen atwhichwe observe the interference pattern. In a vicinity of the detector
(x, z ≪ L, assuming that the origin of the coordinate system is at the screen), the wavefunction can
be written as

ψ(x, z) =
ψ0
√
2
eikz


ei~(x+d)2/4d

+ ei~(x−d)2/4d

, ψ0 =

A
L
eikL, ~ =

2kd
L
.

7 It is to be emphasized that the described irreversibility is the property solely of the electron subsystem, rather than the
total system electron + electromagnetic field, whose evolution is, of course, unitary. The electron density matrix exhibits an
irreversible behavior because information about phase correlations between electron states with different momenta is lost as
a result of tracing over photon degrees of freedom.
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Fig. 9. Schematics of the two-slit experiment. The incident plane electron wave propagates upward; the slits are symbolized
by small circles producing secondary electron waves.

Then in the absence of the photon bath, the electron density is given by

J0(x) = ψ
Ď
0ψ0 [1 + cos(~x)] .

To determine how this expression changes in the presence of thermal photons, we have to Fourier-
expand the wavefunction

ψ(x, z) =


2π id
~
ψ0eikz


+∞

−∞

dq
2π

e−idq2/~ eiq(x+d)
+ eiq(x−d) .

The corresponding expression for the electron density reads

J0(x) =
8πd
~
ψ

Ď
0ψ0


+∞

−∞

dqdq′

(2π)2
exp i


d(q′2

− q2)/~ − (q′
− q)x


cos(q′d) cos(qd).

Now, inclusion of the infrared effect of thermal photons gives for the electron density, according to
Eqs. (26), (50),

Jeff0 (x) =
8πd
~
ψ

Ď
0ψ0


+∞

−∞

dqdq′

(2π)2
exp


−Θτ(q′

− q)2 + id(q′2
− q2)/~ − i(q′

− q)x


× cos(q′d) cos(qd),

where Θ is defined in Eq. (41), and τ = mL/k is the electron travel time between the slits and the
detector. Integrating back over q, q′, we find

Jeff0 (x) = ψ
Ď
0ψ0


1 + exp


−

2αTL
3mk

~2

cos(~x)


.

The exponential factor in this formula describes the decoherence caused by the infrared electron
thermalization. To determine conditions under which this effect is appreciable, we note that ~ ∼ 1/r ,
where r is the fringe spacing in the interference pattern. The interference is destroyed when the
expression in the exponent becomes of order unity, or

TL
√
ε r2

∼ 1020 K/cm eV1/2, (54)

where T is to be expressed in kelvins, and the electron energy ε in electronvolts.



2938 K.A. Kazakov, V.V. Nikitin / Annals of Physics 327 (2012) 2914–2945

a b c d

Fig. 10. Diagrams describing the effect of electron–photon scattering on the electron evolution. Open circles symbolize ψ-
operators in the expression (44) for the electron density matrix.

It follows that the effect of infrared thermalization on the electrondiffraction is normally negligible.
For instance, in the classic experiment by Davisson and Germer [30], electrons with energies ∼50 eV
were scattered by a crystal of nickel at room temperature. Amaximum in their azimuthal distribution
was detected at the scattering angle 50°; with the distance from the target to electron collector∼1 cm,
this corresponds to r ∼ 1 cm. Substituting this in Eq. (54) one finds that the infrared thermalization
would be noticeable in this setting only at temperatures T ∼ 1020 K.

However, current technologies allow experimenting at much smaller scales than those of Ref. [30].
Resolution of themodern electron detectors employingmagnetic lenses is a few angstrom. Therefore,
for electron energy ∼10 eV and L ∼ 1 m, the effect is detectable already at T ∼ 100 K.

7. Relaxation of the electron momentum

To clarify the role played by the infrared thermalization, and to better expose its distinction
from the usual thermalization, we shall now show how interaction of the electron with non-infrared
photons realizes relaxation in the system, i.e., how the electron momentum distribution tends to the
equilibrium distribution. To this end, we have to consider evolution of the diagonal elements of the
electrondensitymatrix,ϱ(t; q, q), which is described in the lowest order by diagrams shown in Fig. 10.
As in Section 5, the leading contribution we are interested in turns out to be linear in time, so that
∂ϱ(t; q, q)/∂t can be written as a functional of ϱ(t; q, q) at the same instant, as in Eq. (47), with an
integral kernel given exactly by diagrams in Fig. 10. A slight change of notation in this figure is to
be noted, namely, the electron momentum q is now off the mass shell, as it is associated with the ψ-
operators in Eq. (44), symbolized byopen circles in Fig. 10. On the contrary, themomentum (q−k1+k2)
is on the mass shell, as it is associated with the external lines representing the initial density matrix.
To express this fact, we write q = {q0(k1, k2), q} , where q0(k1, k2) = εq−k1+k2 + k01 − k02. As we
shall see, the leading contribution comes from integration over finite k1, k2, such that momentum q
is near the mass-shell. The two conditions (q − k1 + k2)2 = m2 and q2 = m2 are clearly consistent,
since the equation εq−k1+k2 = εq − k01 + k02 has a continuum of non-trivial solutions with respect
to k1 ≠ k2 satisfying k21 = k22 = 0. The latter requirement follows from the fact that all vertices on
the outgoing (incoming) electron line are of type 2 (1), by the same reason as in Section 4.1. It is to
be noted also that k01 and k02 are of the same sign, as the opposite would allow for a double-photon
emission by a free electron (formally, the relations εq−k1+k2 = εq − k01 + k02, q

2
= m2, k21 = k22 = 0

are inconsistent for k01k
0
2 < 0). Hence, no singularity of the type considered presently arise at zero

temperature, as the vacuum contribution is proportional to θ(k01)θ(−k02). Evidently, contributions
given by the disconnected diagrams in Fig. 10(c), (d) do not change electron momentum, so that
Eq. (47) can be written as

∂ϱ(t, q)
∂t

=


d3k
(2π)3

C(q, k)ϱ(t, q + k)+ D(q)ϱ(t, q), (55)

where ϱ(t, q) ≡ ϱ(t; q, q), C(q, k) is the connected part of the integral kernel, represented by
diagrams in Fig. 10(a), (b), and D(q) is the disconnected part. The latter need not be calculated
explicitly, since there is a simple relation between the two parts, following from the normalization
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condition (28). Namely, in order for this condition be satisfied by all solutions of Eq. (55), it is necessary
that

D(q) = −


d3k
(2π)3

C(q + k,−k),

and therefore,

∂ϱ(t, q)
∂t

=


d3k
(2π)3

[C(q, k)ϱ(t, q + k)− C(q + k,−k)ϱ(t, q)] . (56)

This is nothing but the usual kinetic equation for an electron in the photon bath, with C(q, k) playing
the role of the probability of transition (per unit time) in which the electron goes from a state with
momentum (q + k) over to a state with momentum q. To determine this function, we have to
evaluate diagrams in Fig. 10(a), (b). It is easy to see that the momenta q − k1, q + k2 are off the
mass shell whenever q − k1 + k2 is on, and the light-like vectors k1, k2 are nonzero. Therefore, the
residual momenta can be neglected in the internal electron propagators when extracting the leading
contribution:

− 1 + 1 + m
m2 − (q − k1 + v1)

2
+ i0

→
− 1 + m

m2 − (q − k1)2
, etc.

Next, integration with respect to k01, k
0
2 yields four terms: each diagram contributes two terms—one

with k01 = +|k1|, k02 = +|k2|, and the other with k01 = −|k1|, k02 = −|k2|. Changing k1,2 → −k1,2 in
the latter case, the connected contribution to the variation of the density matrix takes the form

δCϱ(t, q) =


d3k1

(2π)3


d3k2

(2π)3

×

 [du]δt [dv]δt (2/π)ε2qw(q, k1, k2)n(k1)[1 + n(k2)]ϱ(t, q + k)

[m2 − (q + v1 + v2)
2
− i0][m2 − (q − u1 − u2)

2
+ i0]

, (57)

where

w(q, k1, k2) =
πe4dµα(k1)dνβ(k2)
2εq2εq+k2|k1|2|k2|

× tr

( + + m)


γ β

− 1 + m
m2 − (q − k1)2

γ α + γ α
+ 2 + m

m2 − (q + k2)2
γ β


× ( + m)

γ µ

− 1 + m
m2 − (q − k1)2

γ ν + γ ν
+ 2 + m

m2 − (q + k2)2
γ µ

, (58)

[du]t ≡
d4u1

(2π)4
d4u2

(2π)4
∆t(u1)∆t(u2), k01 = |k1|, k02 = |k2|, k = k2 − k1.

It is understood that q = q(k1, k2) in these formulas, the arguments of q being suppressed for brevity.
To extract the leading large-time contribution, we rewrite Eq. (57) as

δCϱ(t, q) =


d3k1

(2π)3


d3k2

(2π)3


+∞

−∞

dξz


[du]δt [dv]δt δ(k1z − k∗

1z)

×
(2/π)ε2qw(q, k1 + ξ, k2)n(k1)[1 + n(k2)]ϱ(t, q + k)

[m2 − (q(k1 + ξ, k2)+ v1 + v2)
2
− i0][m2 − (q(k1 + ξ, k2)− u1 − u2)

2
+ i0]

, (59)

where ξ = (0, ξ), ξ = (0, 0, ξz), and k∗

1z is the root of q2 (k1, k2) = m2 with respect to k1z . Indeed,
a shift ξz → ξz − k1z followed by integration over k1z removes the δ-function δ(k1z − k∗

1z), bringing
us back to Eq. (57). The leading term comes from integration near ξ = 0. Therefore, when extracting
this term, one can set ξ = 0 in the numerator of the integrand in Eq. (59). The function w(q, k1, k2)
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given by Eq. (58) [in which q(k1, k2) is now on the mass shell] is then nothing but the probability of
the scattering

electron(q)+ photon(k2) → electron(q + k)+ photon(k1),

where ‘‘electron(q)’’ denotes the unpolarized electron with momentum q, and ‘‘photon(k)’’ a photon
with momentum k in any of the two polarization states over which summation is done for the initial
as well as final photons. In the non-relativistic approximation,

w(q, k1, k2) =
πe4

2m2|k1||k2|


1 +

(k1k2)
2

k2
1k

2
2


.

In the denominator, we expand q(k1 + ξ, k2)with respect to ξ to the first order

m2
− (q(k1 + ξ, k2)+ v1 + v2)

2
→ −2q0(k1, k2)


v01 + v02 + ξz

∂q0(k1, k2)
∂k1z


.

Introducing a new integration variable ζ = ξz∂q0(k1, k2)/∂k1z , and using

δ(k1z − k∗

1z) =

∂q0(k1, k2)∂k1z

 δ q0(k1, k2)− εq


thus gives

δCϱ(t, q) = I(δt)


d3k1

(2π)3


d3k2

(2π)3
w(q, k1, k2)n(k1)[1 + n(k2)]

× ϱ(t, q + k)δ

q0(k1, k2)− εq


, (60)

where

I(t) = −
1
2π


+∞

−∞

dζ


[du]t [dv]t
(v0 + ζ + i0)(u0 − ζ + i0)

.

Integrations are done with the help of the formulas
[dv]t

v0 + ζ + i0
=


dv01
2π i


dv02
2π i

e−iv01 t − 1
v01

e−iv02 t − 1
v02

1
v01 + v02 + ζ + i0

=
1 − eiζ t

ζ
,

+∞

−∞

dζ
1 − eiζ t

ζ

1 − e−iζ t

ζ
= 2π t.

The result is I(t) = t . Substituting this into Eq. (60), and dividing by δt , we find the connected
contribution to the derivative ∂ϱ/∂t . Comparison with Eq. (56) now gives (we use q0(k1, k2) =

εq−k1+k2 + |k1| − |k2|, and change notation k1 → p, so that k2 = p + k)

C(q, k) =


d3p
(2π)3

w(q, p, k + p)δ

εq+k + |p| − |p + k| − εq


n(p) [1 + n(p + k)] .

Thus, Eq. (56) becomes

∂ϱ(t, q)
∂t

=


d3k
(2π)3


d3p
(2π)3

δ

εq+k + |p| − |p + k| − εq


w(q, p, k + p)

× {n(p) [1 + n(p + k)] ϱ(t, q + k)− n(p + k) [1 + n(p)] ϱ(t, q)} . (61)

The right-hand side of this equation is the standard form of the collision integral as representing
the difference of ‘‘gains’’ and ‘‘losses’’ of the electron due to its collisions with photons. Substituting
Eq. (20) for the photon distribution, one finds that the equilibrium electron momentum distribution
ϱ(q) ∼ exp(−βεq). It is to be noted that no quasi-classic condition on the electron state has been
imposed in the above derivation. In fact, the existence of irreversible spreading implies that the large-
time evolution of the electron cannot be considered quasi-classically.
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8. Discussion and conclusions

As was explained in the introduction, the reason that makes the effective field formalism
indispensable in quantum field theory is the principal incompleteness of the S-matrix regarding
description of the field measurements. A general conclusion of our investigation is that the presence
of infrared divergences in the field expectation values is not a sign of restricted validity of the
effective field formalism, but rather an indication on inadequacy of the standard approach based on
the assumption that the problem admits an infinite temporal extension. Specifically, we have shown
that restricting consideration to a finite time intervalmakes the effective field infrared-finite, and that
the presence of infrared divergences in the standard approach means that the radiative corrections
to the classical field grow unboundedly with time at every order of perturbation theory. However,
Eq. (39) shows that the sum of these contributions is bounded.

The physical meaning of infrared singularity in the effective electromagnetic field is the existence
of irreversible spreading of electric charges. The simple example given in Section 6.1 demonstrates this
irreversibility—the electron coordinate variance cannot be made less than ∼ αTt/m2, if the electron
travels for a time t in a photon bath at temperature T . The effect takes place also in vacuum, though it
is much weaker in that case. This conclusion was formulated in Ref. [19] as a natural interpretation of
the results obtained using the momentum-cutoff regularization in the standard approach, based on
infinite temporal extension. Now that essentially the same results have been obtained directly from
the fundamental principles of quantum field theory, without having to introduce an auxiliary infrared
regularization and to use an ad hoc definition of the effective density matrix through the effective
field, the existence of irreversible spreading is proved to be an unequivocal consequence of quantum
electrodynamics.

It should be emphasized that the irreversible spreading does not affect the scattering cross-sections
themselves. As long as the single electron evolution in a photon bath is considered, this follows
directly from Eq. (6) and the infrared finiteness of the diagonal elements of the electron density
matrix (cf. Section 4.2). But this result equally applies to any scattering process. The point is that
the scattering amplitudes can be constructed entirely in terms of momenta (and polarizations) of
free particles present in the initial and final states; the standard procedure is to formally replace
particle wavepackets by infinitely wide homogeneous beams of identical particles, erasing thereby
any information about spatial profiles of actual particle states. In other words, it is diagonal elements
of themomentumdensitymatrices of particles that onlymatterwhen computing the scattering cross-
sections, and these are unaffected by the infrared singularity.

Next, some technical remarks are in order. The first concerns the role of the initial condition.
Our assumption that the electron is initially statistically independent of the photon field is the
simplest and computationally most convenient choice which is also perfectly suitable to study the
non-equilibrium electron evolution, as it allows one to see how the electron becomes entangled with
the electromagnetic field. It must be stressed, however, that the choice of the initial correlation in
the system is immaterial for calculating the large-time asymptotic of the effective field. Indeed, for
a given initial electron state (described by some density matrix), different correlations in the system
differ by a number of non-equilibrium photons present initially, and the effect of these photons dies
away with time in any given spatial point. More specifically, if at t0 the electron is localized near x0,
and the electromagnetic field is measured at a later instant t near the point x, the measurement is not
affected by the additional photons, if t − t0 ≫ |x − x0|. This is illustrated by an explicit calculation
in the Appendix A. Apart from this, insensitivity of the large-time asymptotic to the choice of initial
condition follows also from the fact that the infrared charge spreading irreversibly and unboundedly
grows with time. Indeed, a similar growth of the effect produced by a change in the initial condition
would mean that the system is instable, while it is clear in advance that there can be no instability in
the system under consideration.

Second, regarding the strength of the irreversible spreading, the role of four-dimensionality of
spacetime must be emphasized. That this factor is crucial is evident already from the relation of
this spreading to the infrared singularities of radiative corrections, but is particularly clear from
comparison with the usual electron–photon scattering responsible for the electron momentum
relaxation considered in Section 7. The latter is also described by the loop contributionswhich diverge
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Fig. 11. The tree contribution to the effective electromagnetic field of electron.

for t → ∞ (see Fig. 10), but by those only which are due to integration over finite photon momenta,
and which are therefore insensitive to the spacetime dimensionality. Furthermore, it is the four-
dimensionality of spacetime that eventually allows an infinitesimal treatment of the problem, given
in Section 5. We note in this connection that the results of Section 5 provide an effective tool for
investigating the infrared problem in non-Abelian gauge theories.

Comparison of the two stages of the electron evolution is also useful for interpreting the
infrared singularity as a thermalization of the electron state. This thermalization essentially differs
from that effected by scattering processes, in several respects. As is evident from the qualitative
considerations of Section 2.2, the infrared thermalization is caused by the electron interaction with
the electromagnetic field fluctuations, rather than by the electron–photon scattering. Though both
processes damp the off-diagonal elements of the matrix ϱ(t; q, q′), the infrared effect is more
complete, as it takes place for all q′

≠ q, whereas the usual thermalization implies only vanishing
of the matrix elements between states with different energy, that is, q′2

≠ q2. On the other hand,
the infrared thermalization does not change the diagonal elements of the electron density matrix.
This is directly related to the fact that it changes only the quantum (von Neumann) entropy, but
not the thermodynamic one. Thus, one can say that there is no energy associated with the infrared
thermalization. Another important difference is that the infrared thermalization is an O(α)-effect,
whereas the electron–photon collision effects areO(α2), which is reflected in the ratio of characteristic
times of the two stages (see Eq. (9)). The role of temperature in these processes is also quite revealing:
in contrast to the usual relaxation, the infrared thermalization takes place in vacuum as well as at
T ≠ 0. All these distinctions accentuate the peculiar nature of this phenomenon which has no proper
analogy in nonrelativistic physics. Although its possiblemanifestations are rather weak, the estimates
given in Section 6 show that they are detectable in principle by the modern instrumentation.
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Appendix A. Gauss law in the Lorentz gauge

We saw in Section 2.3 that the use of covariant techniques to compute the mean field is hindered
by the fact that on a finite time interval, the usual procedure of adiabatic switching of the interaction
is not applicable, which leads to appearance of a non-covariant term in the interaction Lagrangian (the
last term in Eq. (17)). In this appendix, we demonstrate on a simple example that this complication
is not a mere formality: omission of this term leads to violation of the Gauss law already in the tree
approximation. In this approximation, the mean electromagnetic field is represented by the diagrams
in Fig. 11, whose analytic expression is

Aeff
µ (t, x) = −e


d3p
(2π)3


d4v
(2π)4

Jα(p)ei(p0−v0)t−ipx∆t(v)gνα(p − v)

×

D(11)µν (p − v)− D(21)µν (p − v)


, (A.1)
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where p0 = εq+p − εq, and

Jα(p) =


d3q
(2π)3


σσ ′

ϱσσ ′(q, q + p)
ūσ ′(q + p)γ αuσ (q)

2εq+p

2εq

.

As was explained in Section 3.1, we may replace here dµν by ηµν , so that

D(11)µν (k)− D(21)µν (k) =


1

k2 + i0
+ 2π iθ(k0)δ(k2)


ηµν .

Substituting this into Eq. (A.1), performing the integration over v by closing the contour of v0-
integration in the lower half-plane (t > 0), and using the identity pµJµ(p) = 0 we obtain

Aeff
µ (t, x) = e


d3p
(2π)3

e−ipx

−Jµ(p)


eip0t

p2
−

1
2|p|


ei|p|t

p0 − |p|
−

e−i|p|t

p0 + |p|


+ J0(p)

p0ηµ − pµ
p2

ei|p|t − e−i|p|t

2|p|


. (A.2)

The term proportional to J0(p) is the contribution of the non-covariant term in Ll.
Setting t = 0 in Eq. (A.2) gives Aeff

µ (0, x) = 0, but the electric field at this instant is given by

Eeff(0, x) =
∂Aeff

µ (t, x)
∂t


t=0

= e


d3p
(2π)3

e−ipxJ0(p)
−ip
p2

= −∇


d3x̃

eJ0(0, x̃)
4π |x − x̃|

,

where

J0(0, x) =


d3p
(2π)3

e−ipxJ0(p),

that is, by the Coulomb law, as expected. This is in fact the exact expression for the effective electric
field at t = 0, since the electron at this instant is assumed to be statistically independent of the photon
field (higher order contributions to Eeff vanish for t = 0 together with the interaction vertices, cf.
Eq. (30)). Furthermore, differentiation of Eq. (A.2) shows that the Gauss law holds at every instant,

∂µAeff
µ (t, x) = 0, �Aeff

µ (t, x) = eJµ(t, x), where Jµ(t, x) =


d3p
(2π)3

eipxJµ(p).

It can be noted also that for t → ∞, Eq. (A.2) reproduces the more familiar Lorentz-covariant
expression

Aeff
µ (t, x) = −e


d3p
(2π)3

Jµ(p)
ei(p0t−px)

p2
, when t → ∞,

found in formulations admitting infinite temporal extent, e.g., in the theory of S-matrix potentials.
Inspection of the integrand in Eq. (A.2) wherein the field-producing electron is initially localized near
x0 shows that the practical meaning of the limit t → ∞ is that t must be large compared to |x − x0|.
Since any electromagnetic disturbance propagates with the speed of light, this is just the condition
that all effects related to the initial state of the system die away in the given point.

Suppose now that the non-covariant term is omitted (which is equivalent to replacing gνα → δνα in
Eq. (A.1)). Then the equation �Aeff

µ = eJµ still holds, but

∂µAeff
µ (t, x) = e


d3p
(2π)3

J0(p)
e−ipx sin |p|t

|p|
. (A.3)

It is not difficult to see that the latter equation is inconsistentwith theGauss law. For instance, consider
a heavy particle localized in a small vicinity of the origin, so that J ≈ 0, J0(t, x) ≈ δ(3)(x). Then
integration of Eq. (A.3) and �Aeff

µ = eJµ gives

Aeff(t, x) = 0, Aeff
0 (t, x) =

e
4πr

θ(t − r), (A.4)
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where r is the distance between the charge and the observation point. Thus, at any given distance r ,
the Gauss law holds only at times t > r . In general, this law is restored only asymptotically: it is seen
from Eq. (A.3) that because of the factor sin |p|t, ∂µAeff

µ exponentially tends to zero as t → ∞.
In the tree approximation, this difficulty with the charge conservation can be overcome by

imposing some special conditions on the photon state. However, omission of the non-invariant term
in Eq. (17) turns out to bemuchmore harmful in higher orders of perturbation theory, namely, it leads
to gauge-dependence of the effective current, which cannot be cured by modifying the photon state
vector.

Appendix B. Quantum entropy of a Gaussian wavepacket

Expression (53) gives the asymptotic of the quantum entropy of an arbitrary electron state for
t ≫ (∆2

qΘ)
−1. In the special case of a Gaussian wavepacket considered in Section 6.1, it is possible

to obtain an expression for S, whose validity is conditioned only by that of Eq. (50), that is Tt ≫ 1. It
follows from Eq. (50) that the electron density matrix incorporating infrared effects has the form

ϱ(t; q1, q2) = (8πλ)3/2 exp

−λ


q2
1 + q2

2


−Θt (q2 − q1)

2 .
Since ln ϱ is not expandable in powers of ϱ, we shall evaluate the entropy written as

S = lim
b→0

Sb, (B.1)

where Sb = −Tr [ϱ ln(ϱ + b)] will be found as the analytic continuation of the series

Sb = − ln b −

∞
n=1

(−1)n+1

nbn
Tr

ϱn+1 (B.2)

from its convergence domain. Evaluation of the Gaussian integrals gives

ϱn(t; q1, q2) = (8πλ)3n/2dn exp

−λn


q2
1 + q2

2


− θn (q2 − q1)

2 ,
Trϱn

=


λn

λn

3/2

dn, (B.3)

where the constants dn, θn, λn are defined by the following recurrent equations

dn+1 =
dn

[4π(θn + θ + λn + λ)]3/2
, (B.4)

θn+1 =
θnθ

θn + θ + λn + λ
, (B.5)

λn+1 = λn +
(λ+ λn)θn

θn + θ + λn + λ
, (B.6)

with the initial conditions θ1 = Θt ≡ θ, λ1 = λ, d1 = 1. Solution of Eqs. (B.4)–(B.6) can be written
as

dn =


1

(4πθ)n−1

sinhϕ
sinh nϕ

3/2
, θn = θ

sinhϕ
sinh nϕ

, λn = λ
tanh (nϕ/2)
tanh (ϕ/2)

,

where ϕ > 0 is defined by coshϕ = 1 + λ/θ . Substitution in Eq. (B.3) yields

Trϱn
=


2λ
θ

 3(n−1)
2 sinh3 (ϕ/2)

sinh3 (nϕ/2)
, (B.7)

so that the series (B.2) takes the form

Sb = − ln b − Φ


1
b


2λ
θ

3/2

,
ϕ

2


, (B.8)
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where

Φ(x, ϑ) =

∞
n=1

(−1)n+1

n
sinh3 ϑ

sinh3(n + 1)ϑ
xn. (B.9)

Eq. (B.8) can be analytically continued to b → 0 using the following identity

Φ(x, ϑ)− 3e−2ϑΦ(xe−2ϑ , ϑ)+ 3e−4ϑΦ(xe−4ϑ , ϑ)− e−6ϑΦ(xe−6ϑ , ϑ)

=

1 − e−2ϑ3 ln(1 + xe−3ϑ ),

which can be verified by expanding the logarithm into a Taylor series. With the help of this identity,
it can be proved that the analytic continuation ofΦ(x, ϑ) from the convergence domain of the series
(B.9), x < e3ϑ , to the region x ≥ e3ϑ satisfies

lim
x→∞

[Φ(x, ϑ)− ln x] = −
3ϑ

tanhϑ
.

Thus, taking the limit b → 0 in Eq. (B.8) we find

S =
3
2
ln
θ

2λ
+

3
2

ϕ

tanh (ϕ/2)
,

or,

S =
3
2
ln
Θt
2λ

+
3
2


2Θt + λ

λ
ln

1 +

λ

Θt
+

√
λ(2Θt + λ)

Θt


.

The first term of this expression corresponds to the general asymptotic result (53).

References

[1] F. Bloch, A. Nordsieck, Phys. Rev. 37 (1937) 54–59.
[2] D.R. Yennie, S.C. Frautschi, H. Suura, Ann. Phys. (NY) 13 (1961) 379–452.
[3] G. Grammer, D.R. Yennie, Phys. Rev. D8 (1973) 4332–4344.
[4] S. Weinberg, Phys. Rev. 140 (1965) B516–B524.
[5] T.D. Lee, M. Nauenberg, Phys. Rev. 133 (1964) B1549–B1562.
[6] T. Kinoshita, J. Math. Phys. 3 (1962) 650–677.
[7] G. Sterman, S. Weinberg, Phys. Rev. Lett. 39 (1977) 1416–1439.
[8] N. Bohr, L. Rosenfeld, Math. -Fys. Medd. 12 (1933) 3–65.
[9] L. Landau, R. Peierls, Zs. f. Phys. 69 (1931) 56–70.

[10] N. Bohr, L. Rosenfeld, Phys. Rev. 78 (1950) 794–798.
[11] B.S. DeWitt, in: L. Witten (Ed.), Gravitation: An Introduction to Current Research, Wiley, New-York, 1962, pp. 266–381.
[12] R. Serber, Phys. Rev. 48 (1935) 49–54.
[13] A.E. Uehling, Phys. Rev. 48 (1935) 55–63.
[14] E.P. Tryon, Phys. Rev. Lett. 32 (1975) 1139–1142.
[15] H.A. Weldon, Phys. Rev. D 44 (1991) 3955–3963; Phys. Rev. D 49 (1994) 1579–1584; Nuclear Phys. A566 (1994)

581c–584c.
[16] D. Indumathi, Ann. Phys. 263 (1998) 310–339. (1996) arXiv:hep-ph/9607206.
[17] V.V. Voronyuk, I.D. Mandzhavidze, A.N. Sisakian, Theor. Math. Phys. 149 (2006) 1617–1627.
[18] A. Muller, 2000. arXiv:hep-th/9912240.
[19] K.A. Kazakov, V.V. Nikitin, J. Phys. A: Math. Theor. 44 (2011) 315402–315430.
[20] J. Schwinger, J. Math. Phys. 2 (1961) 407–432.
[21] L.V. Keldysh, Sov. Phys. JETP 20 (1964) 1018.
[22] L.D. Faddeev, V.N. Popov, Phys. Lett. 25B (1967) 29–30;

L.D. Faddeev, Theor. Math. Phys. 1 (1969) 1–13.
[23] D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints, Springer, 1990.
[24] S. Weinberg, The Quantum Theory of Fields, Vol. 1, Cambridge Univ. Press, 1995.
[25] A.A. Slavnov, L.D. Faddeev, Gauge Fields, Introduction to Quantum Theory, Addison-Wesley, 1991, (Chapter 3).
[26] N.P. Landsman, Ch.G. van Weert, Phys. Rep. 145 (1987) 141–249.
[27] A.J. Niemi, G.W. Semenoff, Ann. Phys. 152 (1984) 105–129; Nuclear Phys. B230 (1984) 181–221.
[28] J.P. Blaizot, E. Iancu, Phys. Rev. D 56 (1997) 7877–7892; Phys. Rev. D 55 (1997) 973–996; Phys. Rev. Lett. 76 (1996)

3080–3083.
[29] J. von Neumann, Mathematical Foundations of QuantumMechanics, Princeton University Press, 1996.
[30] C. Davisson, L.H. Germer, Phys. Rev. 30 (1927) 705–740.

http://arxiv.org/hep-ph/9607206
http://arxiv.org/hep-th/9912240

	Large-time evolution of an electron in photon bath
	Introduction
	General formulation
	The model
	Stages of electron thermalization
	Gauge fixing on a finite time interval

	Perturbation theory
	Feynman rules
	Pole prescriptions in Feynman integrals

	Infrared thermalization
	Approximations
	Factorization of infrared contributions

	Alternative derivation of Eq. (39)
	Physical manifestations of the infrared singularity
	Irreversible spreading of Gaussian wavepacket
	Electron diffraction

	Relaxation of the electron momentum
	Discussion and conclusions
	Acknowledgments
	Gauss law in the Lorentz gauge
	Quantum entropy of a Gaussian wavepacket
	References


