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Abstract. For a mathematical program with complementarity constraints (MPCC), we propose
an active-set Newton method, which has the property of local quadratic convergence under the MPCC
linear independence constraint qualification (MPCC-LICQ) and the standard second-order sufficient
condition (SOSC) for optimality. Under MPCC-LICQ, this SOSC is equivalent to the piecewise
SOSC on branches of MPCC, which is weaker than the special MPCC-SOSC often employed in
the literature. The piecewise SOSC is also more natural than MPCC-SOSC because, unlike the
latter, it has an appropriate second-order necessary condition as its counterpart. In particular,
our assumptions for local quadratic convergence are weaker than those required by standard SQP
when applied to MPCC and are equivalent to assumptions required by piecewise SQP for MPCC.
Moreover, each iteration of our method consists of solving a linear system of equations instead of a
quadratic program. Some globalization issues of the local scheme are also discussed, and illustrative
examples and numerical experiments are presented.
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1. Introduction. We consider a mathematical program with complementarity
constraints (MPCC)

min f(x) s.t. G(x) ≥ 0, H(x) ≥ 0, 〈G(x), H(x)〉 ≤ 0,(1.1)

where f : Rn → R is a smooth function and G, H : Rn → Rm are smooth mappings
(twice differentiable and possessing Lipschitzian second derivatives in a neighborhood
of the solution of interest). We note that “usual” equality and inequality constraints
can be added to our problem setting without any substantial difficulties. We shall
consider the case when the problem has only complementarity constraints for the
sake of simplicity. Note also that the last constraint in (1.1) could be written as
an equality, which is more standard in the complementarity literature. However, it
is known that in the context of MPCC, there are good numerical reasons to use
the inequality formulation for this constraint. Also, this makes the associated set of
Lagrange multipliers smaller, which has both numerical and theoretical advantages.
MPCC is perhaps one of the most important instances of a mathematical program
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with equilibrium constraints, which has recently attracted considerable attention in
the optimization literature; see [15, 16].

In order to explain the contribution of this work, some preliminaries from MPCC
theory will be needed. To this end, let

L(x, λ) = f(x) − 〈λG, G(x)〉 − 〈λH , H(x)〉 + λ0〈G(x), H(x)〉

be the standard Lagrangian of problem (1.1), where x ∈ Rn and λ = (λG, λH , λ0) ∈
Rm × Rm × R. As for any other mathematical program (MP), stationary points of
(1.1) and the associated Lagrange multipliers are characterized by the Karush–Kuhn–
Tucker (KKT) optimality system:

∂L

∂x
(x, λ) = 0, λ0 ≥ 0, 〈G(x), H(x)〉 ≤ 0,

λG ≥ 0, G(x) ≥ 0, 〈λG, G(x)〉 = 0, λH ≥ 0, H(x) ≥ 0, 〈λH , H(x)〉 = 0.

(1.2)

In the above, we omit the condition λ0〈G(x), H(x)〉 = 0, because it is redundant
(it follows from 〈G(x), H(x)〉 = 0, which is implied by feasibility of x in (1.1)). For
x̄ ∈ Rn, let Λ(x̄) stand for the set of Lagrange multipliers associated with x̄, that is,
the set of λ = λ̄ = (λ̄G, λ̄H , λ̄0) ∈ Rm × Rm × R satisfying (1.2) for x = x̄. As is
well known and can be easily checked, MPCC constraints violate the Mangasarian–
Fromovitz constraint qualification and, even more so, the linear independence con-
straint qualification (LICQ), at every feasible point. Therefore, in general, x̄ being a
local solution of (1.1) does not guarantee that the set of Lagrange multipliers Λ(x̄)
is nonempty. Nevertheless, Λ(x̄) happens to be nonempty in many cases of interest,
and this became one of the common settings in MPCC literature.

Define further the so-called MPCC-Lagrangian of problem (1.1):

L(x, μ) = f(x) − 〈μG, G(x)〉 − 〈μH , H(x)〉,

where x ∈ Rn and μ = (μG, μH) ∈ Rm ×Rm. To a feasible point x̄ we associate the
index sets

IG = IG(x̄) = {i = 1, . . . ,m | Gi(x̄) = 0}, IH = IH(x̄) = {i = 1, . . . ,m | Hi(x̄) = 0},
I0 = IG ∩ IH .

(1.3)
A feasible point x̄ of (1.1) is said to be a strongly stationary point of this problem if
there exists an MPCC-multiplier μ̄ = (μ̄G, μ̄H) ∈ Rm × Rm satisfying

∂L
∂x

(x̄, μ̄) = 0, (μ̄G)IH\IG = 0, (μ̄H)IG\IH = 0, (μ̄G)I0 ≥ 0, (μ̄H)I0 ≥ 0,(1.4)

where yI stands for the subvector of the vector y, with components yi, i ∈ I. Without
nonnegativity conditions in (1.4), x̄ is called a weakly stationary point of (1.1).

We say that MPCC linear independence constraint qualification (MPCC-LICQ)
holds at x̄ if the gradients

G′
i(x̄), i ∈ IG, H ′

i(x̄), i ∈ IH are linearly independent.(1.5)

It was shown in [18, Theorem 2] that if MPCC-LICQ holds at a local solution x̄ of
(1.1), then this point is strongly stationary, and the associated MPCC-multiplier μ̄ is
unique.
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The following proposition summarizes some results obtained in [7, Proposition 4.1]
and [9, Proposition 1], which will be used in what follows. Its proof can be obtained
by a direct computation. Let

ν̄ = max

{
0, max

i∈IG\IH

(
− (μ̄G)i
Hi(x̄)

)
, max
i∈IH\IG

(
− (μ̄H)i
Gi(x̄)

)}
.(1.6)

Proposition 1.1. A feasible point x̄ of problem (1.1) is a stationary point of
this problem if and only if it is a strongly stationary point of this problem. Moreover,
if λ̄ = (λ̄G, λ̄H , λ̄0) is a Lagrange multiplier associated with x̄, then μ̄ = (μ̄G, μ̄H)
defined by

(μ̄G)i =
(
λ̄G

)
i
− λ̄0Hi(x̄), i ∈ IG \ IH , (μ̄G)i =

(
λ̄G

)
i
, i ∈ IH ,(1.7)

(μ̄H)i =
(
λ̄H

)
i
− λ̄0Gi(x̄), i ∈ IH \ IG, (μ̄H)i =

(
λ̄H

)
i
, i ∈ IG,(1.8)

is an MPCC-multiplier associated with x̄. Conversely, if μ̄ = (μ̄G, μ̄H) is an MPCC-
multiplier associated with x̄, then any λ̄ = (λ̄G, λ̄H , λ̄0) satisfying (1.7)–(1.8) and

λ̄0 ≥ ν̄,(1.9)

with ν̄ defined in (1.6), is a Lagrange multiplier associated with x̄.
Furthermore, for any ξ ∈ Rn and any λ̄ = (λ̄G, λ̄H , λ̄0) ∈ Rm × Rm × R and

μ̄ = (μ̄G, μ̄H) ∈ Rm × Rm satisfying (1.7)–(1.8), it holds that

∂2L

∂x2

(
x̄, λ̄

)
[ξ, ξ] =

∂2L
∂x2

(x̄, μ̄)[ξ, ξ] + 2λ̄0

m∑
i=1

〈G′
i(x̄), ξ〉〈H ′

i(x̄), ξ〉.(1.10)

In particular, if μ̄ is the unique MPCC-multiplier associated with x̄ (e.g., un-
der MPCC-LICQ (1.5)), then Λ(x̄) is the ray defined by (1.7)–(1.9), with its origin
corresponding to λ̄0 = ν̄.

It can be easily checked that the standard critical cone of problem (1.1) at x̄ is
given by

C(x̄) =

{
ξ ∈ Rn

∣∣∣∣∣
G′

IG\IH (x̄)ξ = 0, H ′
IH\IG(x̄)ξ = 0, G′

I0
(x̄)ξ ≥ 0, H ′

I0
(x̄)ξ ≥ 0,

〈f ′(x̄), ξ〉 ≤ 0

}
.

(1.11)
We say that MPCC–second-order sufficient condition (MPCC-SOSC) holds at a
strongly stationary point x̄ of problem (1.1), with the associated MPCC-multiplier μ̄,
if

∂2L
∂x2

(x̄, μ̄)[ξ, ξ] > 0 ∀ ξ ∈ C(x̄) \ {0}.(1.12)

Note that, for every ξ ∈ C(x̄), we obtain from (1.11) that (1.10) takes the form

∂2L

∂x2

(
x̄, λ̄

)
[ξ, ξ] =

∂2L
∂x2

(x̄, μ̄)[ξ, ξ] + 2λ̄0

∑
i∈I0

〈G′
i(x̄), ξ〉〈H ′

i(x̄), ξ〉,(1.13)

where the last term in the right-hand side is nonnegative. Thus, according to Propo-
sition 1.1, MPCC-SOSC implies the usual SOSC

∂2L

∂x2

(
x̄, λ̄

)
[ξ, ξ] > 0 ∀ ξ ∈ C(x̄) \ {0}(1.14)
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for any λ̄ satisfying (1.7)–(1.9). In particular, under MPCC-LICQ (1.5), MPCC-
SOSC (1.12) (with the unique MPCC-multiplier μ̄) implies SOSC (1.14), with any λ̄
in the ray Λ(x̄), including the origin of this ray.

It is important to point out that MPCC-SOSC is a rather strong condition. In
particular, it cannot be linked to any second-order necessary condition for (1.1). By
this we mean that a solution of (1.1) that satisfies MPCC-LICQ (1.5) (and thus is
strongly stationary) does not have to satisfy the condition obtained from (1.12) by
replacing the strict inequality by nonstrict. In our developments, we shall be making
use of a SOSC weaker than (1.12), which also happens to be much more natural,
because it is related to an appropriate second-order necessary condition for (1.1), as
explained below.

For each partition (I1, I2) of I0 (i.e., a pair of index sets such that I1 ∪ I2 = I0,
I1 ∩ I2 = ∅), define the branch (or piece) MP at x̄ by

min f(x)
s.t. G(IG\IH)∪I1(x) = 0, H(IH\IG)∪I2(x) = 0, GI2(x) ≥ 0, HI1(x) ≥ 0.

(1.15)

There is a finite number of such branch MPs, x̄ is feasible for each of them, and in
a neighborhood of x̄ the feasible set of (1.1) is a union of feasible sets of all branch
MPs. It is not difficult to see that the union of the critical cones of all branch MPs
at x̄ is given by

C2(x̄) =

{
ξ ∈ Rn

∣∣∣∣ 〈f ′(x̄), ξ〉 ≤ 0, G′
IG\IH (x̄)ξ = 0, H ′

IH\IG(x̄)ξ = 0,

G′
I0

(x̄)ξ ≥ 0, H ′
I0

(x̄)ξ ≥ 0, 〈G′
i(x̄), ξ〉〈H ′

i(x̄), ξ〉 = 0, i ∈ I0

}
,

(1.16)
where the subscript “2” indicates that, unlike C(x̄), this set takes into account the
second-order information about the last constraint in (1.1). By direct comparison of
(1.11) and (1.16), we have that

C2(x̄) ⊂ C(x̄).(1.17)

We say that piecewise SOSC holds at a strongly stationary point x̄ of problem
(1.1), with an associated MPCC-multiplier μ̄, if

∂2L
∂x2

(x̄, μ̄)[ξ, ξ] > 0 ∀ ξ ∈ C2(x̄) \ {0}.(1.18)

From (1.4), it evidently follows that if μ̄ = (μ̄G, μ̄H) is an MPCC-multiplier
associated with x̄, then the pair ((μ̄G)IG , (μ̄H)IH ) is a Lagrange multiplier associated
with x̄ for the branch MP (1.15). It follows that piecewise SOSC (1.18) implies SOSC
for each branch at x̄. This, in turn, guarantees that x̄ is a strict local solution of (1.1).
Thus, piecewise SOSC is indeed sufficient for optimality, even though it is evidently
weaker than MPCC-SOSC (see (1.17)).

It is important to emphasize that under MPCC-LICQ (1.5), the condition ob-
tained from (1.18) by replacing the strict inequality by nonstrict is necessary for
optimality [18, Theorem 7]. In this sense, piecewise SOSC (1.18) is a more natural as-
sumption than MPCC-SOSC (1.12), as the latter has no relation to any second-order
necessary optimality condition.

Suppose that MPCC-LICQ (1.5) and piecewise SOSC (1.18) (with the unique
MPCC-multiplier μ̄) hold at a strongly stationary point x̄ of problem (1.1). From
(1.13) and [9, Proposition 2], it follows that in this case either SOSC (1.14) holds



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEWTON METHOD FOR MPCC 1007

with all λ̄ in the ray Λ(x̄), or possibly there exists ν̂ ≥ ν̄ such that SOSC (1.14) does
not hold for all λ̄ corresponding to λ̄0 ∈ [ν̄, ν̂], and holds for all λ̄ corresponding to
λ̄0 > ν̂. Conversely, if SOSC (1.14) holds for some λ̄ ∈ Λ(x̄), from (1.13) and (1.16),
taking also into account (1.17), it is easy to see that piecewise SOSC (1.18) holds
as well. Thus, under MPCC-LICQ, SOSC (with some multiplier) is equivalent to
piecewise SOSC.

Despite the inevitable violation of standard constraint qualifications, there exists
some numerical evidence of good performance of sequential quadratic programming
(SQP) algorithms for MPCCs (see [6]). Moreover, [7] gives some theoretical justifi-
cation for local superlinear convergence of the SQP algorithm for MPCC under a set
of assumptions that includes MPCC-LICQ and MPCC-SOSC, among other things.
However, it is very easy to provide examples satisfying all natural in MPCC context
requirements (say, MPCC-LICQ and piecewise SOSC), and such that SQP does not
possess superlinear convergence; see, e.g., the example in [7, section 7.3], discussed
also in detail in [11, section 6]. This means that the existing evidence supporting the
use of standard optimization algorithms (say, SQP) for MPCC cannot be regarded as
completely satisfactory, and it still makes sense to develop special algorithms which
take into account special structure of MPCC, and which are guaranteed to achieve
quadratic convergence under more natural assumptions.

Let us recall now the main idea of the piecewise SQP algorithm, suggested orig-
inally in [17] for MPs with linear complementarity constraints and then extended in
[15] to the nonlinear case. An iteration of piecewise SQP is organized as follows:
identify any branch MP valid at the solution x̄ that is being approximated, and per-
form a step of standard SQP for this branch. In order to identify a valid branch
MP, it suffices to (over)estimate the sets IG \ IH and IH \ IG (see (1.15)). Locally,
this comes for free, with no significant computational cost and with no assumptions
needed. However, in order to justify the overall superlinear convergence of piecewise
SQP, one needs to guarantee superlinear convergence of SQP for each branch, and
dual convergence to the same multiplier for all branches. This results in the following
set of assumptions: MPCC-LICQ (1.5) and piecewise SOSC (1.18) at the solution x̄.

In this paper, we suggest a local algorithm based on the following idea (to some
extent motivated by the development in [13]). Instead of an arbitrary valid branch,
we identify the index sets IG and IH and perform the Newton–Lagrange steps for the
following purely equality-constrained tightened MP:

min f(x) s.t. GIG(x) = 0, HIH (x) = 0.(1.19)

Note that this problem is not a branch MP, in general, but its feasible set is contained
in the feasible sets of all branch MPs.

For quadratic convergence of the Newton–Lagrange method for (1.19), we need
to assume MPCC-LICQ (1.5) and SOSC for this problem, the latter being evidently
guaranteed by piecewise SOSC (1.18). Local identification of IG and IH uses the
procedure suggested in [4] and the error bound following from [8, Lemma 2] and [5,
Theorem 2] (see (2.6)). The identification technique based on this combination of tools
(first used for problems without any regularity assumptions on constraints in [10]) still
costs nothing computationally. The error bound requires some λ̄ ∈ Λ(x̄) satisfying
SOSC (1.14). According to our discussion above, the existence of such λ̄ can again be
guaranteed under MPCC-LICQ (1.5) and piecewise SOSC (1.18). Hence, we obtain
local quadratic convergence of our algorithm under the same set of assumptions as
for piecewise SQP: MPCC-LICQ (1.5) and piecewise SOSC (1.18) at x̄. At the same
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time, our local algorithm enjoys the advantage of being quadratic program (QP)-free:
it requires solving only one linear system per iteration. Of course, within a local
framework, this may not always be a big advantage. Note, however, that globalized
Algorithm 3.2 in section 3.1 is QP-free globally.

2. Local algorithms. As is well known, the KKT system (1.2) can be written
in the form

Φ(x, λ) = 0,

where Φ : Rn × (Rm × Rm × R) → Rn × Rm × Rm × R,

Φ(x, λ) =

(
∂L

∂x
(x, λ), ρ(λG, G(x)), ρ(λH , H(x)), ρ(λ0, −〈G(x), H(x)〉)

)
,

and ρ : R × R → R is a complementarity function (that is, a function such that
ρ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0) applied componentwise. In what follows,
we shall make use of two complementarity functions, namely, the natural residual
ρ(a, b) = min{a, b} and the Fischer–Burmeister function ρ(a, b) =

√
a2 + b2 − a −

b. The corresponding version of Φ will be denoted by ΦNR and ΦFB , respectively.
As is well known, both these mappings are semismooth (and in particular, locally
Lipschitz). Moreover, according to [19], these two complementarity functions are
equivalent in terms of their growth rates. This means that, throughout the paper,
ΦNR can actually be replaced by ΦFB without any changes in the analysis or results.

Algorithm 2.1. Preliminary step. Fix θ ∈ (0, 1). Choose x0 ∈ Rn, λ0 =
(λ0

G, λ
0
H , λ0

0) ∈ Rm × Rm × R.
Identification step. Compute the index sets

IG = IG
(
x0, λ0

)
=

{
i = 1, . . . ,m | Gi

(
x0

)
≤ ‖ΦNR

(
x0, λ0

)
‖θ
}
,(2.1)

IH = IH
(
x0, λ0

)
=

{
i = 1, . . . ,m | Hi

(
x0

)
≤ ‖ΦNR

(
x0, λ0

)
‖θ
}
.(2.2)

Main step. Generate the sequence {(xk, μk)}, with μk = (μk
G, μ

k
H) ∈ Rm×Rm,

as follows.
• Generate the sequence {(xk, (μk

G)IG , (μk
H)IH )} by the Newton–Lagrange method for

tightened MP (1.19) (that is, the Newton method applied to the Lagrange optimality
system of this problem) starting from (x0, (μ0

G)IG , (μ0
H)IH ), with (μ0

G)IG and (μ0
H)IH

defined by(
μ0
G

)
i
=

(
λ0
G

)
i
− λ0

0Hi

(
x0

)
, i ∈ IG \ IH ,

(
μ0
G

)
i
=

(
λ0
G

)
i
, i ∈ IG ∩ IH ,(2.3) (

μ0
H

)
i
=

(
λ0
H

)
i
− λ0

0Gi

(
x0

)
, i ∈ IH \ IG,

(
μ0
H

)
i
=

(
λ0
H

)
i
, i ∈ IG ∩ IH .(2.4)

• Set (
μk
G

)
IH\IG = 0,

(
μk
H

)
IG\IH = 0 ∀ k = 0, 1, . . . .(2.5)

Theorem 2.1. Let x̄ be a local solution of MPCC (1.1), and assume that MPCC-
LICQ (1.5) holds at x̄. Furthermore, let μ̄ be the (unique) MPCC-multiplier associated
with x̄, and suppose that (x0, λ0) is close enough to (x̄, λ̄), with some λ̄ ∈ Λ(x̄)
satisfying SOSC (1.14).

Then Algorithm 2.1 correctly generates the sequence {(xk, μk)}, which converges
quadratically to (x̄, μ̄).
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Proof. According to [8, Lemma 2] and [5, Theorem 2], SOSC (1.14) implies the
existence of c > 0 such that the error bound

dist((x, λ), {x̄} × Λ(x̄)) ≤ c‖ΦNR(x, λ)‖(2.6)

holds for all (x, λ) ∈ Rn×(Rm×Rm×R) close enough to (x̄, λ̄). Since (x0, λ0) is close
enough to (x̄, λ̄), from [4, Theorem 2.2] it follows that the index sets IG = IG(x0, λ0)
and IH = IH(x0, λ0), computed according to (2.1) and (2.2), coincide with IG = IG(x̄)
and IH = IH(x̄), respectively, defined in (1.3).

Furthermore, the point x̄ is a local solution of tightened MP (1.19), and MPCC-
LICQ (1.5) means that LICQ holds at x̄ for the constraints of (1.19). In particular, x̄ is
a stationary point of (1.19), and from (1.4) it evidently follows that ((μ̄G)IG , (μ̄H)IH )
is the unique Lagrange multiplier associated with this stationary point.

Stationarity of x̄ in (1.19) evidently implies that

〈f ′(x̄), ξ〉 = 0 ∀ ξ ∈ kerG′
IG(x̄) ∩ kerH ′

IH (x̄),

where kerA stands for the kernel (null space) of a linear operator A. Hence, by (1.11),

kerG′
IG(x̄) ∩ kerH ′

IH (x̄) ⊂ C(x̄).

From Proposition 1.1 (see (1.10)) and SOSC (1.14), it now follows that

∂2L
∂x2

(x̄, μ̄)[ξ, ξ] =
∂2L

∂x2

(
x̄, λ̄

)
[ξ, ξ] > 0 ∀ ξ ∈

(
kerG′

IG(x̄) ∩ kerH ′
IH (x̄)

)
\ {0},

and according to the equalities (μ̄G)IH\IG = 0 and (μ̄H)IG\IH = 0 in (1.4), the latter
means that SOSC holds at x̄ for tightened MP (1.19) (with the unique associated
multiplier ((μ̄G)IG , (μ̄H)IH ).

Finally, since (x0, λ0) is close enough to (x̄, λ̄), the pair ((μ0
G)IG , (μ0

H)IH ) de-
fined by (2.3)–(2.4) will be close enough to ((μ̄G)IG , (μ̄H)IH ) (recall that, accord-
ing to Proposition 1.1, the latter satisfies (1.7)–(1.8)). From the standard conver-
gence result for the Newton–Lagrange method, it now follows that the sequence
{(xk, (μk

G)IG , (μk
H)IH )} is correctly defined and converges quadratically to the point

(x̄, (μ̄G)IG , (μ̄H)IH ). At the same time, according to (1.4) and (2.5), it holds that(
μk
G

)
IH\IG = (μ̄G)IH\IG = 0,

(
μk
H

)
IG\IH = (μ̄H)IG\IH = 0 ∀ k = 0, 1, . . . .

This completes the proof.
Let us discuss briefly the assumptions of Theorem 2.1. These assumptions are, in

a sense, “minimal.” In particular, none of them can be removed, as illustrated next.
MPCC-LICQ (1.5) is needed for nondegeneracy of constraints of tightened MP

(1.19), which is clearly necessary for the approach to be valid; otherwise, the linearized
constraints of tightened MP can be inconsistent arbitrarily close to a solution. To this
end, consider, e.g., n = 2, m = 1, f(x) = x2

2/2, G(x) = x1+x2
1/2, and H(x) = x1+x2

1.
Then x̄ = 0 is a strongly stationary point of (1.1) satisfying SOSC (1.14) but violating
MPCC-LICQ (1.5). It is easily seen that linearization of tightened MP (1.19) at any
x ∈ R2 with x1 �= 0 is inconsistent.

The role of SOSC (1.14) is twofold. First, it is used for identification of the
index sets IG and IH . To see that without SOSC identification can be incorrect,
consider n = 2, m = 1, f(x) = x1, G(x) = x1, and H(x) = x2. Then x̄ = 0 is
a solution of (1.1) satisfying MPCC-LICQ (1.5) but violating SOSC (1.14) (one can
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even add, e.g., |x2|3 to the objective function in order to make this solution strict).
Take λ0 = (1, 0, 0) ∈ Λ(x̄), and let x0

1 ≥ 0, x0
2 ≥ 0. Then ‖ΦNR(x0, λ0)‖ = x0

1, and
for any fixed θ ∈ (0, 1), by taking x0

2 = (x0
1)

θ/2, we obtain a point x0 = (x0
1, x

0
2) which

can be arbitrarily close to x̄, while (2.2) will always (incorrectly) identify IH as empty
at such point.

Finally, even if the identification is correct, SOSC (1.14) is still needed as it
guarantees SOSC for tightened MP (1.19). Let, e.g., n = 2, m = 1, f(x) = x1 + |x2|3,
G(x) = x1, and H(x) ≡ 1. Then x̄ = 0 is a solution satisfying MPCC-LICQ (1.5)
but violating SOSC (1.14). Moreover, tightened MP is also violating SOSC. It can
be checked directly that the convergence rate of the Newton–Lagrange method for
tightened MP (1.19) is only linear.

Note that the presented algorithm appears more suitable for globalization than,
say, piecewise SQP. This is because Algorithm 2.1 uses as a dual starting point
an approximation of Lagrange multiplier rather than an approximation of MPCC-
multiplier. The proximity to points satisfying KKT system (1.2) (and hence, to La-
grange multipliers) can be controlled via some globally defined merit functions (like
the norm of ΦNR or ΦFB). By contrast, the definition (1.4) of MPCC-multipliers
involves the index sets IG and IH depending on a specific x̄, and it seems difficult to
suggest a reasonable globally defined merit function characterizing MPCC-multipliers.

Furthermore, having in mind globalization of convergence, it can be useful to
consider a modified algorithm, with Identification step being performed not only
once (at the beginning of the process) but before each iteration of Main step. Iden-
tification is a very cheap procedure and, therefore, this modification will not increase
computational costs significantly. However, in this case we will need to generate not
only the sequence {(xk, μk)} but also an appropriate sequence {λk} ⊂ Rm×Rm×R,
and redefine IG and IH accordingly:

IG = IG
(
xk, λk

)
=

{
i = 1, . . . ,m | Gi

(
xk

)
≤ ‖ΦNR

(
xk, λk

)
‖θ
}
,(2.7)

IH = IH
(
xk, λk

)
=

{
i = 1, . . . ,m | Hi

(
xk

)
≤ ‖ΦNR

(
xk, λk

)
‖θ
}

(2.8)

for each k = 0, 1, . . . . Clearly, for all the conclusions of Theorem 2.1 to remain valid
for this modified algorithm, it suffices to show that {λk} stays close to λ̄, which
can be achieved by keeping it close to λ0. In particular, one can just take λk = λ0

∀ k = 1, 2, . . . . Another option, which seems more suitable for globalization purposes
(and which is more in the spirit of SQP methods), is realized in the following method.

Algorithm 2.2. Preliminary step. Fix θ ∈ (0, 1). Set k = 0 and choose
x0 ∈ Rn and λ0 = (λ0

G, λ
0
H , λ0

0) ∈ Rm × Rm × R.
Identification step. Define the index sets IG and IH according to (2.7) and

(2.8). If k = 0, define (μ0
G)IG and (μ0

H)IH according to (2.3)–(2.4).
Main step. Compute (xk+1, μk+1) as follows.

• The triple (xk+1, (μk+1
G )IG , (μk+1

H )IH ) is generated by the step of Newton–Lagrange
method for tightened MP (1.19) from the point (xk, (μk

G)IG , (μk
H)IH ).

• Set (μk+1
G )IH\IG = 0, (μk+1

H )IG\IH = 0.
Set

νk+1 = max

{
0, max

i∈IG\IH

(
−

(
μk+1
G

)
i

Hi(xk+1)

)
, max
i∈IH\IG

(
−

(
μk+1
H

)
i

Gi(xk+1)

)}
,(2.9)

and define λk+1 = (λk+1
G , λk+1

H , λk+1
0 ) as follows:

λk+1
0 = max

{
νk+1, λ

k
0

}
,(2.10)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEWTON METHOD FOR MPCC 1011

(
λk+1
G

)
i
=

(
μk+1
G

)
i
+ λk+1

0 Hi

(
xk+1

)
, i ∈ IG \ IH ,

(
λk+1
G

)
i
=

(
μk+1
G

)
i
, i ∈ IH ,(2.11) (

λk+1
H

)
i
=

(
μk+1
H

)
i
+ λk+1

0 Gi

(
xk+1

)
, i ∈ IH \ IG,

(
λk+1
H

)
i
=

(
μk+1
H

)
i
, i ∈ IG.(2.12)

Adjust k by 1 and go to Identification step.
For purposes of convergence analysis, we need to introduce some auxiliary dual

estimates. Suppose that, for some k = 0, 1, . . . , Algorithm 2.2 correctly defined xk,
λk, and μk. Define λ̂k = (λ̂k

G, λ̂
k
H , λ̂k

0) ∈ Rm × Rm × R as follows:

λ̂k
0 = λk

0 ,(2.13) (
λ̂k
G

)
i
= (μ̄G)i + λk

0Hi(x̄), i ∈ IG \ IH ,
(
λ̂k
G

)
i
= (μ̄G)i, i ∈ IH ,(2.14) (

λ̂k
H

)
i
= (μ̄H)i + λk

0Gi(x̄), i ∈ IH \ IG,
(
λ̂k
H

)
i
= (μ̄H)i, i ∈ IG.(2.15)

According to (1.7)–(1.8) and (2.13)–(2.15), it holds that

‖λ̂k − λ̄‖ ≤
(

1 + max

{
max

i∈IG\IH
Hi(x̄), max

i∈IH\IG
Gi(x̄)

})
|λk

0 − λ̄0|,(2.16)

and hence, λ̂k is close to λ̄ provided (xk, λk) is close enough to (x̄, λ̄).
From Theorem 2.1, we obtain that if (xk, λk) is close enough to (x̄, λ̄), then the

points xk+1 and μk+1 will be correctly defined by Algorithm 2.2, and

∥∥xk+1 − x̄
∥∥ = O

(∥∥(xk − x̄, μk − μ̄
)∥∥2

)
= O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
,(2.17)

∥∥μk+1 − μ̄
∥∥ = O

(∥∥(xk − x̄, μk − μ̄
)∥∥2

)
= O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
.(2.18)

Furthermore, according to (1.6)–(1.8), (2.9), (2.11)–(2.15), (2.17), and (2.18), we
obtain the estimates

|νk+1−ν̄| = O
(∥∥xk+1 − x̄

∥∥)+O
(∥∥μk+1 − μ̄

∥∥) = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
,(2.19) ∥∥∥λk+1 − λ̂k

∥∥∥ = O
(∥∥xk+1 − x̄

∥∥) + O
(∥∥μk+1 − μ̄

∥∥) + O
(∣∣λk+1

0 − λk
0

∣∣)
= O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
+ O

(∣∣λk+1
0 − λk

0

∣∣) ,(2.20) ∥∥λk+1 − λ̄
∥∥ = O

(∥∥xk+1 − x̄
∥∥) + O

(∥∥μk+1 − μ̄
∥∥) + O

(∣∣λk+1
0 − λ̄0

∣∣)
= O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
+ O

(∣∣λk+1
0 − λ̄0

∣∣) .(2.21)

Let us consider separately the two cases

λ̄0 > ν̄ or λ̄0 = ν̄(2.22)

(see (1.9)).
Lemma 2.2. Let x̄ be a local solution of MPCC (1.1), and assume that MPCC-

LICQ (1.5) holds at x̄. Furthermore, suppose that, for some k = 0, 1, . . . , Algo-
rithm 2.2 generated points xk, λk, and μk such that (xk, λk) is close enough to (x̄, λ̄),
with some λ̄ ∈ Λ(x̄) satisfying SOSC (1.14).
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Then the points xk+1, λk+1, and μk+1 will be correctly generated by Algorithm 2.2,
and if the first relation in (2.22) holds, with ν̄ defined according to (1.6), then

λk+1
0 = λk

0 ,(2.23) ∥∥∥λk+1 − λ̂k
∥∥∥ = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
.(2.24)

Proof. By the first relation in (2.22), we obtain that if (xk, λk) is close enough to
(x̄, λ̄), then

λk
0 > λ̄0 −

(
λ̄0 − ν̄

)
/2 =

(
ν̄ + λ̄0

)
/2, νk+1 < ν̄ +

(
λ̄0 − ν̄

)
/2 =

(
ν̄ + λ̄0

)
/2,

with inequality in the last relation being implied by (2.16) and (2.19). Thus λk
0 > νk+1,

and by (2.10), we obtain (2.23). Estimate (2.24) follows from (2.20) and (2.23).
Lemma 2.3. Under the assumptions of Lemma 2.2, if the second relation in (2.22)

holds, with ν̄ defined according to (1.6), then the following estimates are valid.
If λk+1

0 = νk+1, then

∥∥λk+1 − λ̄
∥∥ = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
,(2.25) ∥∥∥λ̂k+1 − λ̄

∥∥∥ = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
.(2.26)

If λk+1
0 = λk

0 , then (2.24) holds.
Proof. If λk+1

0 = νk+1, then by (2.16), (2.19), (2.21), and the second relation in
(2.22), we obtain the estimates

∥∥λk+1 − λ̄
∥∥ = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
+ O

(∣∣λk+1
0 − λ̄0

∣∣)
= O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
+ O (|νk+1 − ν̄|) = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
,∥∥∥λ̂k+1 − λ̄

∥∥∥ = O
(∣∣λk+1

0 − λ̄0

∣∣) = O (|νk+1 − ν̄|) = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
.

This proves (2.25) and (2.26).
If λk+1

0 = λk
0 , then estimate (2.24) follows immediately from (2.20).

We are now in position to prove convergence of Algorithm 2.2.
Theorem 2.4. Under the assumptions of Theorem 2.1, Algorithm 2.2 correctly

generates the sequence {(xk, λk, μk)} such that {(xk, μk)} converges quadratically to
(x̄, μ̄). Moreover, if the first relation in (2.22) holds, then the sequence {(xk, λk)}
converges quadratically to (x̄, λ̂0), with λ̂0 defined according to (2.13)–(2.15), and

λ̂0 ∈ Λ(x̄).
Proof. If the first relation in (2.22) holds, then employing (2.13)–(2.15), (2.16),

(2.17), and Lemma 2.2 (see (2.23) and (2.24)), it can be shown (by standard argument)
that if (x0, λ0) is close enough to (x̄, λ̄), then each further step of Algorithm 2.2
will produce a pair (xk+1, λk+1), with λk+1

0 = λk
0 = λ0

0, and this new pair will

be close to (x̄, λ̂k) = (x̄, λ̂0), which in turn is close to (x̄, λ̄). Then by the same
argument as in the proof of Theorem 2.1, for any k, the index sets IG(xk, λk) and
IH(xk, λk) computed according to (2.7) and (2.8) will coincide with IG = IG(x̄) and
IH = IH(x̄) defined in (1.3), respectively. This means that Algorithm 2.2 generates
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exactly the same trajectory {(xk, μk)} as Algorithm 2.1, and quadratic convergence
follows now from Theorem 2.1. Furthermore, quadratic convergence of {(xk, λk)}
to (x̄, λ̂0) follows from (2.17), (2.24), and the above-established equality λ̂k = λ̂0

∀ k. Finally, λ̂0 ∈ Λ(x̄) according to (2.13)–(2.15), the first relation in (2.22), and
Proposition 1.1.

We proceed with the case when the second relation in (2.22) holds. Again we
need to show that if (x0, λ0) is close enough to (x̄, λ̄), then {(xk, λk)} stays close to
(x̄, λ̄). Then the needed assertion will follow the same way as for the previous case.

From (2.16)–(2.17) and (2.24)–(2.26), it follows that, for any q ∈ (0, 1/2], there
exists ε > 0 such that for all (xk, λk) satisfying ‖xk − x̄‖ < ε and ‖λk − λ̄‖ < ε the
following estimates are valid.

If λk+1
0 = νk+1, then

∥∥(xk+1 − x̄, λk+1 − λ̄
)∥∥ ≤ q

∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥ ,(2.27) ∥∥∥(xk+1 − x̄, λ̂k+1 − λ̄

)∥∥∥ ≤ q
∥∥∥(xk − x̄, λk − λ̂k

)∥∥∥ .(2.28)

If λk+1
0 = λk

0 , then∥∥∥(xk+1 − x̄, λk+1 − λ̂k
)∥∥∥ ≤ q

∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥ .(2.29)

Let (x0, λ0) be close enough to (x̄, λ̄), so that∥∥∥(x0 − x̄, λ0 − λ̂0
)∥∥∥ < δ,

∥∥∥(x0 − x̄, λ̂0 − λ̄
)∥∥∥ < δ,(2.30)

where δ > 0 satisfies the inequality

(q + 1)δ ≤ ε(2.31)

(see (2.16)). We now prove by induction that ∀ k = 1, 2, . . . , it holds that∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥ < δ,(2.32) ∥∥∥(xk − x̄, λ̂k − λ̄
)∥∥∥ < δ,(2.33) ∥∥(xk − x̄, λk − λ̄
)∥∥ < ε.(2.34)

Let k = 1. If λ1
0 = ν1, then by (2.27), (2.30), and (2.31), we obtain

∥∥(x1 − x̄, λ1 − λ̄
)∥∥ ≤ q

∥∥∥(x0 − x̄, λ0 − λ̂0
)∥∥∥ < qδ < ε,(2.35)

i.e., (2.34) holds for k = 1. Furthermore, by (2.28), (2.30), and by the inequality
q < 1, ∥∥∥(x1 − x̄, λ̂1 − λ̄

)∥∥∥ ≤ q
∥∥∥(x0 − x̄, λ0 − λ̂0

)∥∥∥ < qδ < δ,(2.36)

i.e., (2.33) holds for k = 1. Finally, by (2.35), (2.36), and by the inequality q ≤ 1/2,∥∥∥(x1 − x̄, λ1 − λ̂1
)∥∥∥ ≤

∥∥(x1 − x̄, λ1 − λ̄
)∥∥ +

∥∥∥λ̂1 − λ̄
∥∥∥ < 2qδ ≤ δ,

i.e., (2.32) holds for k = 1.
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On the other hand, if λ1
0 = λ0

0, then by (2.13)–(2.15) λ̂1 = λ̂0, and by (2.29),
(2.30), ∥∥∥(x1 − x̄, λ1 − λ̂0

)∥∥∥ ≤ q
∥∥∥(x0 − x̄, λ0 − λ̂0

)∥∥∥ < qδ,

and hence, by the inequality q < 1, we have that∥∥∥(x1 − x̄, λ1 − λ̂1
)∥∥∥ =

∥∥∥(x1 − x̄, λ1 − λ̂0
)∥∥∥ < qδ < δ,(2.37)

i.e., (2.32) holds for k = 1. Furthermore, by (2.30), we have that∥∥∥(x1 − x̄, λ̂1 − λ̄
)∥∥∥ =

∥∥∥(x1 − x̄, λ̂0 − λ̄
)∥∥∥ < δ,

i.e., (2.33) holds for k = 1. Finally, by (2.31), (2.33) for k = 1, and (2.37), we obtain∥∥(x1 − x̄, λ1 − λ̄
)∥∥ ≤

∥∥∥(x1 − x̄, λ1 − λ̂1
)∥∥∥ +

∥∥∥λ̂1 − λ̄
∥∥∥ < qδ + δ ≤ ε,

i.e., (2.34) holds for k = 1.
Now suppose that the hypothesis is valid for k = s. If λs+1

0 = νs+1, then by
(2.27), (2.30), and (2.31), we obtain that∥∥(xs+1 − x̄, λs+1 − λ̄

)∥∥ ≤ q
∥∥∥(xs − x̄, λs − λ̂s

)∥∥∥ < qδ < ε,(2.38)

i.e., (2.34) holds for k = s + 1. Furthermore, by (2.28), (2.30), and by the inequality
q < 1, ∥∥∥(xs+1 − x̄, λ̂s+1 − λ̄

)∥∥∥ ≤ q
∥∥∥(xs − x̄, λs − λ̂s

)∥∥∥ < qδ < δ,(2.39)

i.e., (2.33) holds for k = s+1. Finally, by (2.38), (2.39), and by the inequality q ≤ 1/2,∥∥∥(xs+1 − x̄, λs+1 − λ̂s+1
)∥∥∥ ≤

∥∥(xs+1 − x̄, λs+1 − λ̄
)∥∥ +

∥∥∥λ̂s+1 − λ̄
∥∥∥ < 2qδ ≤ δ,

i.e., (2.32) holds for k = s + 1.

On the other hand, if λs+1
0 = λs

0, then by (2.13)–(2.15) λ̂s+1 = λ̂s, and by (2.29),
(2.30), we have that∥∥∥(xs+1 − x̄, λs+1 − λ̂s

)∥∥∥ ≤ q
∥∥∥(xs − x̄, λs − λ̂s

)∥∥∥ < qδ,

and hence, by the inequality q < 1,∥∥∥(xs+1 − x̄, λs+1 − λ̂s+1
)∥∥∥ =

∥∥∥(xs+1 − x̄, λs+1 − λ̂s
)∥∥∥ < qδ < δ,(2.40)

i.e., (2.32) holds for k = s + 1. Furthermore, by (2.30), we obtain∥∥∥(xs+1 − x̄, λ̂s+1 − λ̄
)∥∥∥ =

∥∥∥(xs+1 − x̄, λ̂s − λ̄
)∥∥∥ < δ,

i.e., (2.33) holds for k = s+ 1. Finally, by (2.31), (2.33) for k = s+ 1, and (2.40), we
derive that∥∥(xs+1 − x̄, λs+1 − λ̄

)∥∥ ≤
∥∥∥(xs+1 − x̄, λs+1 − λ̂s+1

)∥∥∥ +
∥∥∥λ̂s+1 − λ̄

∥∥∥ < qδ + δ ≤ ε,

i.e., (2.34) holds for k = s + 1. This completes the proof by induction.
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3. Globalization issues. In this section, we discuss some possible ways of glob-
alizing the local scheme presented above. The first approach is based on a generic
outer phase steering the iterates toward stationary points. This globalization uses
a test of linear decrease for the KKT residual to decide when active-set steps are
successful. We also give a specific implementation of this approach along the lines of
hybrid semismooth Newton methods for mixed complementarity problems, for which
both global convergence and superlinear rate of convergence can be formally proved
under reasonable assumptions. The second approach below is based on SQP. It is
therefore quite close in spirit to existing algorithms, and can be easily incorporated
into them. However, this method may converge to weakly (i.e., not only strongly) sta-
tionary points. We do not provide a formal convergence analysis for this method. The
reason is that such analysis would primarily concern the study of global convergence
properties of standard linesearch SQP algorithms for MPCCs, which is a general issue
not related specifically to local algorithms suggested above.

3.1. Hybrid globalization. We next show how our local algorithm can be em-
bedded into any globally convergent scheme. By this we mean that having chosen and
fixed some outer-phase global strategy which is guaranteed to produce primal-dual
iterates converging to stationary (in some sense) points of MPCC (1.1), the role of
our local method is to force quadratic convergence rate under natural assumptions
stated above. The key to this construction is the proof that close to a solution with
stated properties, the Newton–Lagrange step for (1.19) provides quadratic (hence,
also arbitrarily fast linear) decrease for the Fischer–Burmeister residual ΦFB of the
KKT system (1.2) for MPCC (1.1).

Algorithm 3.1. Preliminary step. Fix θ, q ∈ (0, 1). Set k = 0, and choose
x0 ∈ Rn and λ0 = (λ0

G, λ
0
H , λ0

0) ∈ Rm × Rm × R.
Identification step. Define the index sets IG and IH according to (2.7) and

(2.8). If k = 0, or if IG or IH does not coincide with its counterpart computed at the
previous iteration, or if IG ∪ IH �= {1, . . . ,m}, go to Outer-phase step.

Active-set step. If the current point (xk, λk) was generated by Outer-phase

step, set k̃ = k, store (xk̃, λk̃), and define (μk
G)IG and (μk

H)IH by(
μk
G

)
i
=

(
λk
G

)
i
− λk

0Hi

(
xk

)
, i ∈ IG \ IH ,(3.1)

(
μk
H

)
i
=

(
λk
H

)
i
− λk

0Gi

(
xk

)
, i ∈ IH \ IG,(3.2)

(
μk
G

)
i
=

(
λk
G

)
i
,
(
μk
H

)
i
=

(
λk
H

)
i
, i ∈ IG ∩ IH .(3.3)

Compute (xk+1, μk+1) as follows.
• The triple (xk+1, (μk+1

G )IG , (μk+1
H )IH ) is generated by the step of Newton–Lagrange

method for tightened MP (1.19) from the point (xk, (μk
G)IG , (μk

H)IH ).
• (μk+1

G )IH\IG = 0, (μk+1
H )IG\IH = 0.

If there exists i ∈ IG \ IH such that Hi(x
k+1) = 0, or there exists i ∈ IH \

IG such that Gi(x
k+1) = 0, go to Outer-phase step. Otherwise, define λk+1 =

(λk+1
G , λk+1

H , λk+1
0 ) according to (2.9)–(2.12). If the point (xk+1, λk+1) is well defined

and satisfies the condition∥∥ΦFB

(
xk+1, λk+1

)∥∥ ≤ q
∥∥ΦFB

(
xk, λk

)∥∥ ,(3.4)

adjust k by 1, and go to Identification step.
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Outer-phase step. If the current point (xk, λk) was generated by Active-set

step, set k = k̃ and (xk, λk) = (xk̃, λk̃).
Compute (xk+1, λk+1) according to the outer-phase strategy. Adjust k by 1, and

go to Identification step.
Global convergence properties of Algorithm 3.1 are quite transparent. By (3.4),

we immediately obtain the following result.
Theorem 3.1. Let {(xk, λk)} be a trajectory generated by Algorithm 3.1, and

suppose that all the iterates in this trajectory with k large enough are generated by
Active-set step of the algorithm. Then

ΦFB

(
xk, λk

)
→ 0 as k → ∞.(3.5)

In particular, the primal part of any accumulation point of {(xk, λk)} is strongly
stationary for (1.1), while the dual part is an associated Lagrange multiplier.

Except for the case considered in Theorem 3.1, the only other possibility is that all
the iterates are generated by the outer-phase strategy (because unsuccessful active-set
iterates are eventually discarded). In this case, the method inherits global convergence
of the outer strategy. Possible choices of outer strategies will be discussed below.

To prove quadratic convergence of Algorithm 3.1, some work is required. We start
with the following dual estimate.

Lemma 3.2. Let x̄ be a strongly stationary point of MPCC (1.1), and assume
that MPCC-LICQ (1.5) holds at x̄. Let λ̄ ∈ Λ(x̄).

Then there exists c > 0 such that, for each (xk, λk) close enough to (x̄, λ̄), it
holds that ∥∥λk − λ̂k

∥∥ ≤ cdist
(
λk, Λ(x̄)

)
,(3.6)

where λ̂k is defined according to (2.13)–(2.15).
Proof. We argue by contradiction. If λk ∈ Λ(x̄), then by Proposition 1.1 and by

(2.13)–(2.15), we have that λk = λ̂k, and (3.6) holds with any c ≥ 0. Suppose that
there exists a sequence {(xk, λk)} convergent to (x̄, λ̄) such that λk �∈ Λ(x̄) ∀ k, and∥∥λk − λ̂k

∥∥/dist
(
λk, Λ(x̄)

)
→ ∞ as k → ∞.(3.7)

Let λ̄k be the orthogonal projection of λk onto Λ(x̄). Then (3.7) is equivalent to∥∥λk − λ̄k
∥∥ /∥∥λk − λ̂k

∥∥ → 0 as k → ∞.(3.8)

For each k, we have that(
λk − λ̂k

)
/
∥∥λk − λ̂k

∥∥ =
(
λk − λ̄k

)
/
∥∥λk − λ̂k

∥∥ +
(
λ̄k − λ̂k

)
/
∥∥λk − λ̂k

∥∥.
Observe that in this equality the left-hand side has unit norm and belongs to the
“vertical” hyperplane λ0 = 0; the first term in the right-hand side tends to 0 as
k → ∞, by (3.8); while the second term in the right-hand side belongs to the straight
line containing the ray Λ(x̄) (see Proposition 1.1 and (2.13)–(2.15)), which does not
belong to the “vertical” hyperplane. The contradiction is now evident.

Theorem 3.3. Let {(xk, λk)} be a trajectory generated by Algorithm 3.1, and
suppose that this trajectory has an accumulation point (x̄, λ̄), with x̄ being a strongly
stationary point of problem (1.1) and λ̄ being an associated Lagrange multiplier, sat-
isfying MPCC-LICQ (1.5) and SOSC (1.14).
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Then the entire trajectory {(xk, λk)} converges to (x̄, λ̄), and the rate of conver-
gence is quadratic.

Proof. Let (xk, λk) be close to (x̄, λ̄). Furthermore, let (xk+1, λk+1) be computed
by the Active-set step of Algorithm 3.1 (this point is correctly defined, according
to Theorem 2.4).

We next construct λ̄k+1 ∈ Λ(x̄) satisfying the estimate

∥∥λk+1 − λ̄k+1
∥∥ = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
.(3.9)

This is done separately for the two possible cases in (2.22).

If the first relation in (2.22) holds, we define λ̄k+1 = λ̂k. In this case, by Proposi-

tion 1.1, by (2.13)–(2.15), and by the proximity of λk
0 to λ̄0, we have that λ̂k ∈ Λ(x̄).

The estimate (3.9) now follows from (2.24). Let the second relation in (2.22) hold. If
λk+1

0 = νk+1, then set λ̄k+1 = λ̄. In this case, estimate (3.9) follows from (2.25). If
λk+1

0 = λk
0 , then λk

0 > νk+1, and we define λ̄k+1 as follows.

If λk
0 ≥ ν̄, then set λ̄k+1 = λ̂k. In this case, λ̂k ∈ Λ(x̄) according to Proposition 1.1

and (2.13)–(2.15), and estimate (3.9) follows from (2.24).
If λk

0 < ν̄, then νk+1 < λk
0 < ν̄, and by (2.16), (2.19), and the second relation in

(2.22), we have that

∥∥λ̂k − λ̄
∥∥ = O

(∣∣λk
0 − λ̄0

∣∣) = O(|νk+1 − ν̄|) = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
.(3.10)

Set λ̄k+1 = λ̄. Then estimate (3.9) follows from (2.24), (3.10), and from the inequality∥∥λk+1 − λ̄k+1
∥∥ ≤

∥∥λk+1 − λ̂k
∥∥ +

∥∥λ̂k − λ̄
∥∥.

Set ϕFB(x, λ) = ‖ΦFB(x, λ)‖2, x ∈ Rn, λ ∈ R × Rm × Rm. As is well known,
the function ϕFB is smooth, and since (x̄, λ̄k+1) is a global unconstrained minimizer
of this function, we obtain the equalities

ϕFB

(
x̄, λ̄k+1

)
= 0, ϕ′

FB

(
x̄, λ̄k+1

)
= 0.(3.11)

Recall that, under our assumptions, the error bound (2.6) holds for all (x, λ) close
enough to (x̄, λ̄). Then, by (2.17), (3.9), (3.11), and by Lemma 3.2, we obtain that∥∥ΦFB

(
xk+1, λk+1

)
‖2 = ϕFB

(
xk+1, λk+1

)
= ϕFB

(
xk+1, λk+1

)
− ϕFB

(
x̄, λ̄k+1

)
=

〈
ϕ′
FB

(
x̄, λ̄k+1

)
,
(
xk+1 − x̄, λk+1 − λ̄k+1

)〉
+ O

(∥∥ (xk+1 − x̄, λk+1 − λ̄k+1
) ∥∥2

)
= O

(∥∥ (xk+1 − x̄, λk+1 − λ̄k+1
) ∥∥2

)
= O

(∥∥(xk − x̄, λk − λ̂k
)∥∥4

)
= O

((
‖xk − x̄‖ + dist

(
λk, Λ (x̄)

))4)
= O

(∥∥ΦNR(xk, λk)
∥∥4

)
= O

(∥∥ΦFB(xk, λk)
∥∥4

)
,

where the last relation follows from the equivalence of ‖ΦNR(·)‖ and ‖ΦFB(·)‖ in
terms of their growth rates [19].

Evidently, the above relation implies (3.4) for any fixed q ∈ (0, 1), if (xk, λk) is
close enough to (x̄, λ̄). This implies that the Active-set step will be accepted, and
Algorithm 3.1 will be further working identically to the (local) Algorithm 2.2. The
result now follows from Theorem 2.4.
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One possible choice of the outer-phase algorithm is the elastic mode SQP method
discussed in section 3.2 below. Another possibility is to use the merit function ϕFB

in order to organize the outer phase as well, by means of globalizing the semismooth
Newton method applied to the equation ΦFB(x, λ) = 0. The resulting algorithm is
in the spirit of the method for complementarity problems in [14], and its extension
to globalization of an active-set method for mixed complementarity problems in [3,
section 3]. One advantage of such a scheme is that one can guarantee the overall
monotonicity of the sequence {‖ΦFB(xk, λk)‖}, and thus no backup safeguards are
needed when entering the active-set phase (i.e., global convergence can be proved
without such safeguards). That is why we present this scheme as a separate algorithm.

Algorithm 3.2. Preliminary step. Fix θ, q, ε, τ ∈ (0, 1), δ, γ > 0. Set
k = 0, and choose x0 ∈ Rn and λ0 = (λ0

G, λ
0
H , λ0

0) ∈ Rm × Rm × R.
Identification step. Define the index sets IG and IH according to (2.7) and

(2.8). If k = 0 or if IG or IH does not coincide with its counterpart computed at the
previous iteration or if IG ∪ IH �= {1, . . . ,m}, go to SNM−FB step.

Active-set step. If the current point (xk, λk) was generated by SNM−FB step,
define (μk

G)IG and (μk
H)IH by (3.1)–(3.3). Compute (xk+1, μk+1) as follows.

• The triple (xk+1, (μk+1
G )IG , (μk+1

H )IH ) is generated by the step of Newton–Lagrange
method for tightened MP (1.19) from the point (xk, (μk

G)IG , (μk
H)IH ).

• (μk+1
G )IH\IG = 0, (μk+1

H )IG\IH = 0.

If there exists i ∈ IG \ IH such that Hi(x
k+1) = 0 or there exists i ∈ IH \ IG such

that Gi(x
k+1) = 0, go to SNM−FB step. Otherwise, define λk+1 = (λk+1

G , λk+1
H , λk+1

0 )
according to (2.9)–(2.12). If the point (xk+1, λk+1) is well-defined and satisfies the
condition (3.4), adjust k by 1, and go to Identification step.

SNM−FB step. Compute Λk ∈ ∂BΦFB(xk, λk) and(
xk+1, λk+1

)
=

(
xk, λk

)
− Λ−1

k ΦFB

(
xk, λk

)
.

If this point is well-defined and (3.4) holds, and satisfies the condition, adjust k by 1,
and go to Identification step.

If xk+1 is well-defined but (3.4) does not hold, set dk = xk+1 − xk. If〈
ϕ′
FB

(
xk, λk

)
, dk

〉
≤ −γ‖dk‖δ,

go to Linesearch step.
Gradient step. Set dk = −ϕ′

FB(xk, λk).
Linesearch step. Compute the stepsize parameter αk according to the Armijo

rule: αk = τ s, where s is the smallest nonnegative integer satisfying

ϕFB

((
xk, λk

)
+ τ sdk

)
≤ ϕFB

(
xk, λk

)
+ ετ s

〈
ϕ′
FB

(
xk, λk

)
, dk

〉
.

Set (xk+1, λk+1) = (xk, λk)+αkd
k, adjust k by 1, and go to Identification step.

Theorem 3.4. Let {(xk, λk)} be a trajectory generated by Algorithm 3.2.
Then any accumulation point (x̄, λ̄) of {(xk, λk)} satisfies ϕ′

FB(x̄, λ̄) = 0.
Furthermore, if there exists an infinite subsequence of {(xk, λk)} such that all the

iterates in this subsequence are generated by Active-set step, then (3.5) holds. In
that case, the primal part of any accumulation point of {(xk, λk)} is strongly station-
ary in (1.1), while the dual part is an associated Lagrange multiplier.

Proof. If there exists an infinite subsequence of {(xk, λk)} such that all the iterates
in this subsequence are generated by Active-set step of the algorithm, then (3.5)
follows immediately from (3.4) and the fact that the values of ϕFB are nonincreasing
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along the trajectories of the algorithm. The only other possibility is that the “tail”
of the trajectory is generated by the outer-phase algorithm, in which case the result
can be obtained extending [14, Theorem 3.1] to the setting of mixed complementarity
problems.

Finally, to obtain the rate of convergence result, one should just repeat the proof
of Theorem 3.3, with Algorithm 3.1 replaced by Algorithm 3.2.

Theorem 3.5. Let {(xk, λk)} be a trajectory generated by Algorithm 3.2, and
suppose that this trajectory has an accumulation point (x̄, λ̄), with x̄ being a strongly
stationary point of problem (1.1) and λ̄ being an associated Lagrange multiplier, sat-
isfying MPCC-LICQ (1.5) and SOSC (1.14).

Then the entire trajectory {(xk, λk)} converges to (x̄, λ̄), and the rate of conver-
gence is quadratic.

We have thus developed a QP-free algorithm for MPCC, with justified global
convergence and quadratic rate of convergence under MPCC-LICQ and the usual
SOSC (1.14).

3.2. Globalization based on SQP with linesearch. Introducing slack vari-
ables, MPCC (1.1) can be equivalently written in the form

min
(x, y, z)

f(x) s.t. G(x) = y, H(x) = z, y ≥ 0, z ≥ 0, 〈y, z〉 ≤ 0.(3.12)

As is well known, this reformulated MPCC has the same properties (MPCC constraint
qualifications and SOSC) as (1.1), while being preferable for numerical solution by
SQP [6, 7].

We first discuss the outer (elastic mode SQP) phase of the algorithm stated below.
When SQP is applied to MPCC, under natural assumptions SQP subproblems can be
infeasible, even arbitrarily close to a solution. Thus some kind of constraints relaxation
(known as elastic mode; see, e.g., [1]) has to be used. Let uk = (xk, yk, zk) ∈
Rn ×Rm ×Rm be the current primal iterate, and let λk

0 ≥ 0 be the current estimate
of the Lagrange multiplier corresponding to the last constraint in (3.12). We suggest
partial relaxation of SQP constraints, which gives the following subproblems:

min (d, t)

〈
f ′ (xk

)
, ξ

〉
+ 1

2 〈Hkξ, ξ〉 + λk
0〈η, ζ〉 + ct

s.t. −te ≤ yk −G
(
xk

)
+ η −G′ (xk

)
ξ ≤ te,

−te ≤ zk −H
(
xk

)
+ ζ −H ′ (xk

)
ξ ≤ te,

yk + η ≥ 0, zk + ζ ≥ 0,
〈
yk, zk

〉
+
〈
zk, η

〉
+
〈
yk, ζ

〉
≤ 0,

(3.13)

where d = (ξ, η, ζ) ∈ Rn×Rm×Rm, t ∈ R, Hk is an n×n positive definite symmetric
matrix, c > 0 is the (penalty) parameter, and e ∈ Rm is the vector of ones.

If (dk, tk) is a solution of (3.13), then the next iterate is defined by uk+1 = uk +
αkd

k, where αk ∈ (0, 1] is the stepsize parameter. Choosing y0 ≥ 0 and z0 ≥ 0, by the
first two constraints in the last line of (3.13), it evidently holds that yk ≥ 0 and zk ≥ 0
for all k. The last three constraints in (3.13) are then always consistent (for example,
η = −yk and ζ = 0 satisfies this part of constraints), while the other constraints in
(3.13) are consistent due to the elastic mode. It follows that subproblems (3.13) are
always feasible. Furthermore, the objective function in (3.13) is bounded below on
the nonempty feasible set. Hence, by the Frank–Wolfe theorem [2, Theorem 2.8.1],
the subproblem (3.13) has a solution.

Taking into account that yk ≥ 0 and zk ≥ 0 for all k, the following penalty
function can be used in the linesearch procedure for choosing the stepsize parameter:
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for u = (x, y, z) ∈ Rn × Rm × Rm,

ϕc(u) = f(x) + cψ(u) + c〈y, z〉, ψ(u) = ‖(y, z) − (G(x), H(x))‖∞ .(3.14)

If (dk, tk) is a solution of SQP subproblem (3.13), then, by direct computation of
directional derivative and by standard argument, it can be seen that dk is a direction
of descent for ϕc, provided c is large enough. This justifies the linesearch procedure
along the direction obtained from (3.13).

Now let λk = (λk
G, λ

k
H , λk

0) be the current estimate of the Lagrange multipliers
corresponding to inequality constraints in (3.12). It can be easily seen that such λk is
a natural approximation of Lagrange multipliers of the original MPCC (1.1). Define
the index sets IG and IH according to (2.7) and (2.8), respectively. Once we have
reasons to believe that the index sets IG and IH give a correct identification, we shall
set the corresponding slacks to zero (ykIG = 0, zkIH = 0) and switch to the inner (active-
set) phase. We note that identification cannot be correct if IG ∪ IH �= {1, . . . ,m}.
Another sign of incorrect identification is when the sets IG and IH are not yet stable
(i.e., change from one iteration to the next). The inner phase consists in applying
SQP to the tightened MP

min
(x, y, z)

f(x) s.t. G(x) = y, H(x) = z, yIG = 0, zIH = 0,(3.15)

i.e., we find a solution dk of

min d

〈
f ′ (xk

)
, ξ

〉
+ 1

2 〈Hkξ, ξ〉
s.t. yk −G

(
xk

)
+ η −G′ (xk

)
ξ = 0, ykIG + ηIG = 0,

zk −H
(
xk

)
+ ζ −H ′ (xk

)
ξ = 0, zkIH + ζIH = 0,

(3.16)

and set uk+1 = uk + αkd
k, with some αk ∈ (0, 1]. Infeasibility of the active-set

subproblem (3.16) is again one of the signs of incorrect identification, in which case
we go back to the outer phase. We shall show below that if the subproblem (3.16)
is feasible, its solution provides a direction of descent for the same penalty function
(3.14) that is used in the outer phase. This justifies incorporating the active-set phase
into the global SQP framework.

Having in mind fast local convergence, the matrices Hk in (3.13) and (3.16) should
in some specific sense (i.e., not necessarily on the whole space) “approximate” the
Hessians with respect to x of the Lagrangians of (3.12) and (3.15), respectively, at
the limiting primal-dual solution. It can be easily checked that both these Hessians

coincide with ∂2L
∂x2 (x̄, μ̄), where x̄ is the primal limiting solution, while μ̄ = (μ̄G, μ̄H) is

the part of dual limiting solution, corresponding to the first two constraints in (3.12)
and (3.15). (For problem (3.12), μ̄ is an MPCC-multiplier associated with x̄, by
necessity. For problem (3.15), this is the case as well, if the index sets IG and IH are
correctly identified and provided x̄ is a strongly stationary point of MPCC (1.1) with

unique associated MPCC-multiplier.) In order to approximate ∂2L
∂x2 (x̄, μ̄), one might

need to compute an approximation μk = (μk
G, μ

k
H) of μ̄. Within the inner phase,

these estimates can be computed directly as Lagrange multipliers corresponding to
the first two constraints in (3.16). Within the outer phase, they can be derived from
λk by the equalities

μk
G = λk

G − λk
0H

(
xk

)
, μk

H = λk
H − λk

0G
(
xk

)
(3.17)

(note that these formulas do not use identification of active indices).
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We proceed to formally state the proposed algorithm.
Algorithm 3.3. Preliminary step. Fix θ, ε, τ ∈ (0, 1), and c > 0. Set

k = 0, and choose u0 = (x0, y0, z0) ∈ Rn × Rm
+ × Rm

+ and λ0 = (λ0
G, λ

0
H , λ0

0) ∈
R+ × Rm

+ × Rm
+ .

Identification step. Define the index sets IG and IH according to (2.7) and
(2.8). If k = 0 or if IG or IH does not coincide with its counterpart computed at the
previous iteration or if IG ∪ IH �= {1, . . . ,m}, go to Elastic mode SQP step.

Active-set step. If dk−1 was generated by Elastic mode SQP step, set k̃ = k,

store uk̃ and λk̃, redefine uk = (xk, yk, zk) by setting ykIG = 0, zkIH = 0, and define

μk = (μk
G, μ

k
H) by (3.1)–(3.3). and(

μk
G

)
i
= 0, i ∈ IH \ IG,

(
μk
H

)
i
= 0, i ∈ IG \ IH .(3.18)

Using μk, choose an n × n positive definite symmetric matrix Hk. If (3.16) is
infeasible, go to Elastic mode SQP step.

Compute dk = (ξk, ηk, ζk) as a solution of (3.16) and μk+1 = (μk+1
G , μk+1

H ) as
an associated Lagrange multiplier corresponding to the first two constraints in (3.16).
Set x̃k+1 = xk + ξk. If there exists i ∈ IG \ IH such that Hi(x̃

k+1) = 0 or there exists
i ∈ IH \ IG such that Gi(x̃

k+1) = 0, go to Elastic mode SQP step. Otherwise,
define λk+1 = (λk+1

G , λk+1
H , λk+1

0 ) according to (2.9)–(2.12), with xk+1 replaced by
x̃k+1, and go to Linesearch step.

Elastic mode SQP step. If dk−1 was generated by Active-set step, redefine
uk = (xk, yk, zk) by setting

yki = 0 ∀ i = 1, . . . ,m such that yki < 0,(3.19)

zki = 0 ∀ i = 1, . . . ,m such that zki < 0(3.20)

and if

ϕc

(
uk

)
> ϕc

(
uk̃

)
,(3.21)

then set k = k̃, uk = uk̃, and λk = λk̃.
Using μk = (μk

G, μ
k
H) computed according to (3.17), choose an n × n positive

definite symmetric matrix Hk.
Compute (dk, tk) as a solution of (3.13) and λk+1 = (λk+1

G , λk+1
H , λk+1

0 ) as an
associated Lagrange multiplier corresponding to inequality constraints in (3.13).

Linesearch step. Compute the stepsize parameter αk according to the Armijo
rule: αk = τ s, where s is the smallest nonnegative integer satisfying

ϕc

(
uk + τ sdk

)
≤ ϕc

(
uk

)
+ ετ sϕ′

c

(
uk; dk

)
.(3.22)

Set uk+1 = uk + αkd
k, adjust k by 1, and go to Identification step.

Observe that the active-set iterations always start with uk = (xk, yk, zk) sat-
isfying complementarity. Indeed, the SQP iterations in the elastic mode start with
yk ≥ 0, zk ≥ 0 and maintain nonnegativity. Furthermore, active-set iterations start
with (yk)IG = 0, (zk)IH = 0, where IG ∪ IH = {1, . . . ,m}. The only way complemen-
tarity can be violated during a sequence of active-set steps is when some component
of y or z becomes negative. Obviously, this can happen only for indices which are not
in IG in the case of y and not in IH in the case of z. Once a component becomes
negative, this index is immediately added to the corresponding set (see (2.7), (2.8)),
which makes the sets change. In such a case, we get out of the active-set phase,
restore nonnegativity (see (3.19), (3.20)), and if such a point breaks monotonicity
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of the sequence of the penalty function values (that is, if (3.21) happens), we go
back to the last iterate preceding the active-set phase (which was determined to be
premature).

We next show that when within Active-set step of Algorithm 3.3 the subprob-
lem (3.16) is feasible, the generated direction dk is of descent for the penalty function
(3.14) at uk, and hence the linesearch procedure along this direction is well-defined.

Lemma 3.6. Let dk = (ξk, ηk, ζk) and μk+1 = (μk+1
G , μk+1

H ) be computed within
Active-set step of Algorithm 3.3 from the primal-dual solution of (3.16).

Then

ϕ′
c

(
uk; dk

)
≤ −

〈
Hkξ

k, ξk
〉
−
(
c−

∥∥μk+1
∥∥

1

)
ψ
(
uk

)
.(3.23)

In particular, dk is a direction of descent for ϕc, provided either ξk �= 0 or c > ‖μk+1‖1

and ψ(uk) > 0.
Proof. First note that, as observed above, yk ≥ 0, zk ≥ 0, because otherwise the

index sets would have changed, and we would not be solving (3.16). Furthermore,
recall that we set

ykIG = 0, zkIH = 0(3.24)

when the algorithm enters the active-set phase. Moreover, these equalities are pre-
served within this phase, because the last line in (3.16) implies

ηkIG = 0, ζkIH = 0.(3.25)

We thus have that whenever zki > 0, it holds that i �∈ IH . Since the algorithm can
enter the active-set phase only with IG ∪ IH = {1, . . . ,m}, we have that i ∈ IG.
Therefore, yki = 0 by the first equality in (3.24), and hence ηki = 0 by the first
equality in (3.25). This shows that 〈zk, ηk〉 = 0. Analogously, 〈yk, ζk〉 = 0. It follows
that the directional derivative of the term in the definition (3.14) of ϕc that penalizes
complementarity violation is equal to zero.

By direct computation of the directional derivative and by standard argument,

ψ′ (uk; dk
)

= −ψ
(
uk

)
.(3.26)

Furthermore, by the Lagrange optimality conditions for (3.16), it holds that

f ′ (xk
)

+ Hkξ
k −

(
G′ (xk

))T
μk+1
G −

(
H ′ (xk

))T
μk+1
H = 0,(3.27)

(
μk+1
G

)
IH\IG = 0,

(
μk+1
H

)
IG\IH = 0.(3.28)

Taking again into account the structure of constraints in (3.16), from (3.24)–(3.28)
we obtain〈

f ′ (xk
)
, ξk

〉
= −

〈
Hkξ

k, ξk
〉

+
〈
μk+1
G , G′ (xk

)
ξk
〉

+
〈
μk+1
H , H ′ (xk

)
ξk
〉

= −
〈
Hkξ

k, ξk
〉

+
∑
i∈IG

(
μk+1
G

)
i

(
yki −Gi

(
xk

)
+ ηki

)
+

∑
i∈IH

(
μk+1
H

)
i

(
zki −Hi

(
xk

)
+ ζki

)
= −

〈
Hkξ

k, ξk
〉

+
∑
i∈IG

(
μk+1
G

)
i

(
yki −Gi

(
xk

))
+

∑
i∈IH

(
μk+1
H

)
i

(
zki −Hi

(
xk

))
≤ −

〈
Hkξ

k, ξk
〉

+
∥∥μk+1

∥∥
1
ψ
(
uk

)
,

where μk+1 = (μk+1
G , μk+1

H ). Combining the latter with (3.26), we obtain (3.23).
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If ξk = 0 and ψ(uk) = 0, we obtain from (3.14) and from the constraints of (3.16)
that dk = 0 and the point uk is feasible in (3.12). Furthermore, (3.27) and (3.28) show
that xk is a weakly stationary point of (1.1). Otherwise, the linesearch procedure is
well-defined and results in the decrease of the penalty function value with respect to
ϕc(u

k). Overall, the method generates iterates such that the sequence {ϕc(u
k)} is

nonincreasing, as in standard SQP framework.

4. Numerical examples. In this section, we illustrate behavior of the algo-
rithms discussed above by some numerical examples. In what follows, Linearization
is the linesearch SQP method with Hk being the identity matrix, applied to the orig-
inal problem formulation (without slacks), while SQP−slacks is the linesearch SQP

method with Hk = ∂2L
∂x2 (xk, μk) applied to the problem formulation with slacks. The

first simple choice of Hk is motivated by robustness (if Hk is not positive definite,
then the subproblems sometimes do not have a solution, while more sophisticated
choices of positive definite matrices require complex quasi-Newton implementations).
The second choice of Hk is motivated by its efficiency (when subproblems are solv-
able). SQP-type methods were all implemented in their basic form, without elastic
mode (which corresponds to setting t = 0), without any attempts to modify Hk with
respect to the two alternative choices above, and without any tools for avoiding the
Maratos effect. While without a doubt important for any professional implementa-
tion, all those details have no real bearing for illustrating our proposal for forcing fast
local convergence by the active-set phase. Linesearch parameters were chosen as fol-
lows: ε = 0.1 and τ = 0.5. We used the simplest update rule for penalty parameters:
c0 = ‖λ1‖∞ + 1, and then for each k = 1, 2, . . . , we set ck = ck−1 if ck−1 ≥ ‖λk+1‖∞,
and ck = ‖λk+1‖∞ + 1 otherwise. The other implemented methods are the following.
SNM−FB is Algorithm 3.2 without Active-set step and with parameters δ = 2.1,
γ = 10−9, ε = 10−4, and τ = 0.5. Linearization+AS and SQP−slacks+AS are the
modifications of algorithms Linearization and SQP−slacks, respectively, supplied
with the option of switching to Active-set step, implemented as specified in Al-
gorithm 3.1. Finally, SNM−FB+AS is precisely Algorithm 3.2. The identification test
parameter and the linear decrease parameter were chosen as follows: θ = 0.5, q = 0.9.
All computations were performed in Matlab environment, with the QP-subproblems
solved by the built-in Matlab QP-solver. We used the stopping criterion of the form∥∥ΦFB

(
xk, λk

) ∥∥ < 10−7.(4.1)

We start with reporting some local runs of the algorithms discussed above for
the following example, which is a modified version of ralph2 in MacMPEC [12]. A
separate consideration of this example is due to the fact that it is known to violate
MPCC-SOSC, and so we expect that our method may behave better than SQP. The
problem ralph2 is modified by introducing higher-order nonlinear terms, in order to
prevent the tendency for finite termination, which is quite common for SQP in the
cases of “simple” (affine) constraints.

Example 4.1. The problem

min x2
1 + x2

2 − 4x1x2 + x3
2 s.t. x1 + x2

2/2 ≥ 0, x2 − x2
1 ≥ 0,

(
x1 + x2

2/2
) (

x2 − x2
1

)
≤ 0,

has two local solutions x̄1 = (0, 0) and x̄2 = (1, 1), the latter being global, both
satisfying MPCC-LICQ (1.5). The first solution satisfies piecewise SOSC (1.18) but
violates MPCC-SOSC (1.12), while the second satisfies MPCC-SOSC (1.12).

We use the primal starting points close to x̄1 to facilitate convergence to this
solution. Selected results for λ0

G = 0.01, λ0
H = 0.02, λ0

0 = 5 are presented in Table 4.1.
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Table 4.1

Example 4.1, local runs.

Algorithm x0 = 10−3×
(10, 1) (7, 3) (5, 5) (3, 7) (1, 10)

SQP−slacks 11 10 10 10 4
SNM−FB 9 9 10 10 5

SQP−slacks+AS 3 3 3 3 3
SNM−FB+AS 4 3 3 3 3

For each run, we report the number of iterations before convergence was declared.
Bold-faced numbers mean that convergence was achieved by active-set steps.

These results evidently demonstrate that, in this case, the active-set phase is
useful. And this is precisely our message—we do not claim that it should always
result in faster convergence than that for some nonmodified method, but it is easy to
incorporate, is useful at least sometimes, and works as it is supposed to. To give some
more validation of our claim, in the rest of this section we present numerical results
for global convergence of our algorithms on some small test problems derived from
MacMPEC [12]. The set of test problems was obtained as follows. We select all the
problems in MacMPEC satisfying the following criteria: they have no more than 10
variables, and they do not have any inequality constraints apart from complementarity
constraints (to be consistent with the problem setting of the paper). This makes 37
problems. Furthermore, we ignore the simple bounds (again in order to be consistent
with the problem setting of the paper), which of course may sometimes affect the
solutions/stationary points of these problems. Finally, ralph1 suggests two different
objective functions, and we use both, labeling the corresponding problems ralph11

and ralph12. Thus, we end up with 38 problems.
We performed the runs of each algorithm from the same randomly generated start-

ing points. Primal starting points were generated in a cubic neighborhood around the
solution (a feasible point with the objective function value equal to the optimal value
reported in MacMPEC; these points were found in the course of our experiments), with
the edge of the cube equal to 20. Dual starting points for equality constraints were
generated the same way, but around 0, while for dual starting points corresponding
to the complementarity constraints multipliers there was the additional nonnegativity
restriction. In the process of collecting information, we disregard the runs when at
least one of the QP-employing algorithms fails because of a failure of the QP solver
(such failures must be avoided in professional implementations by using elastic mode
and modifications of the Hessian, or quasi-Newton updates with appropriate line-
search, etc.; in any case these failures are concerned with the outer phase, rather than
the use of the active-set step). Thus, we keep generating random starting points until
we have 100 that do not cause QP solver failures.

When reporting the results, we count the cases of failure (when convergence was
not achieved after 50 steps), the cases of convergence (to KKT points), and provide
some details about convergence. We are not concerned whether the obtained KKT
point is a local/global solution or not (this, once again, has to do mostly with behavior
of the outer phase).

Columns of Tables 4.2 and 4.3 contain average/summarized information on the
performance of each algorithm for 100 runs from random starting points. First row
of each cell contains average characteristics over successful runs: iteration count, last
active-set steps, overall count of active-set steps. Thus the average number of useless



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEWTON METHOD FOR MPCC 1025

Table 4.2

Results on MacMPEC problems.

Problem Algorithm

L
i
n
e
a
r
i
z
a
t
i
o
n

L
i
n
e
a
r
i
z
a
t
i
o
n
+
A
S

S
Q
P
−
s
l
a
c
k
s

S
Q
P
−
s
l
a
c
k
s
+
A
S

S
N
M
−
F
B

S
N
M
−
F
B
+
A
S

bard1 15.2 6.4/0.9/0.9 3.4 3.0/0.3/0.3 14.0 7.5/1.0/1.0
1 0/87 0 0/27 24 19/79

bard1m 14.2 11.8/0.2/0.3 1.3 1.6/0.03/0.2 15.4 8.9/0.8/1.2
17 5/18 1 0/3 49 43/45

dempe 5.5 22/5.7/6.6 8.1 8.4/0.6/3.2 22.9 21.9/6.5/7.2
41 1/72 0 0/36 66 56/44

desilva 13.2 10.6/3.0/6.0 7.0 7.8/3.4/5.0 16.2 11.4/5.0/6.6
0 0/99 0 5/67 41 24/77

ex9.2.1 2.0 2.0/0/0 2.5 2.5/0/0 9.6 8.4/0.9/1.0
4 4/0 8 8/0 26 26/72

ex9.1.4 5.9 5.8/0.02/0.02 2.0 2.0/0/0 30.5 30.2/0.4/0.4
0 0/2 0 0/0 58 59/18

ex9.2.1 4.4 4.4/0.07/0.07 1.7 1.7/0.01/0.06 13.3 10.6/0.5/0.9
20 19/6 4 4/1 36 34/35

ex9.2.4 20.3 10.8/0.4/0.4 2.6 2.6/0.02/0.02 13.1 10.7/0.3/0.3
0 0/43 0 0/2 17 17/22

ex9.2.5 13.9 5.8/0.3/0.6 3.1 3.1/0.1/0.3 19.4 16.6/1.0/1.0
0 0/32 0 0/12 26 17/79

ex9.2.7 4.2 4.3/0.06/0.06 1.8 1.7/0.06/0.07 13.2 10.7/0.6/0.9
14 13/5 3 3/6 36 36/38

ex9.2.8 14.4 14.4/0.4/0.4 2.5 2.5/0/0 10.8 7.3/1.0/1.0
0 0/37 0 0/0 66 55/45

ex9.2.9 8.9 8.7/0.6/0.6 2.5 2.5/0.03/0.03 11.9 7.5/1.0/1.0
4 4/59 0 0/3 28 23/77

flp2 17.6 10.2/0.7/1.8 2.3 2.4/0.01/0.5 11.3 12.1/1.0/1.6
11 0/69 0 0/1 26 20/78

gauvin 4.3 3.6/0.3/0.3 3.2 3.0/0.1/0.2 12.0 8.6/1.0/1.1
0 0/30 0 0/13 18 22/75

jr1 2.9 2.9/0.01/0.5 2.5 3.0/0.01/0.7 8.7 7.9/1.0/1.7
0 0/1 0 0/1 14 5/93

jr2 4.1 4.1/0.03/0.2 4.3 4.2/0.1/0.8 9.1 6.2/0.9/1.5
0 0/3 3 8/11 14 15/79

kth1 5.7 5.6/0.09/0.09 1.8 1.8/0.03/0.03 11.4 3.4/1.0/1.0
0 0/9 0 0/3 48 20/80

kth2 5.8 5.7/0.09/0.2 2.5 2.5/0.1/0.3 9.8 8.1/1.0/1.6
0 0/9 0 0/10 39 25/73

kth3 4.0 3.0/0.4/0.4 3.0 2.8/0.4/0.6 9 6.8/1.0/1.4
0 0/38 0 0/44 12 11/85

active-set steps (eventually disregarded by backup safeguards) for Linearization+AS

and SQP−slack+AS equals the difference between the third and the second number.
Second row of each cell contains the overall number of failures and those cases when
convergence was achieved by active-set steps. Note that what should be compared is
the behavior of a given outer-phase algorithm with and without using the AS step.
For Linearization and SNM−FB, in many cases using active-set step helps in terms
of either robustness, efficiency, or both. SQP−slacks is very efficient by itself, and
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Table 4.3

Results on MacMPEC problems.

Problem Algorithm
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S
N
M
−
F
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+
A
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nash1 7.1 8.6/0.3/0.7 2.4 2.3/0.06/0.4 9.8 11.3/1.0/1.7
27 12/29 0 1/5 32 32/67

outrata31 20.8 20.7/0.3/0.3 11.7 13.7/0.2/1.1 16.5 15.6/0.6/1.8
3 3/63 19 23/13 44 44/28

outrata32 35.3 30.3/0.9/1.8 10.7 14.0/0.3/0.9 17.3 16.7/0.4/1.9
26 14/43 30 34/18 37 33/29

outrata33 25 22.4/0.7/6.6 11.3 15.7/0.4/0.7 17.0 17.3/0.1/1.1
8 4/48 10 16/31 36 32/5

outrata34 39.7 23.1/1.6/1.6 11.0 18.2/0.6/0.7 14.2 14.2/0.6/0.6
12 9/91 38 42/35 29 29/42

ralph11 3.5 3.4/0.3/0.3 1 1/0/0 10 2.7/0.9/0.9
26 15/26 0 0/0 57 7/83

ralph12 6.6 6.3/0.5/0.5 1.4 14/0/0 2.1/1.0/1.0
39 21/37 0 0/0 100 17/83

ralph2 2.0 1.9/0.1/0.1 3.8 2.0/0.3/0.3 9.2 2.7/1.0/1.0
0 0/10 0 0/25 35 1/99

scholtes1 3.7 2.8/0.9/1.0 7.1 7.7/0.1/4.6 11.9 10.7/0.9/3.1
57 57/37 0 1/1 27 8/87

scholtes2 9.1/7.1/7.4 11.2 10.1/7.1/7.2 12.9 10.1/7.5/7.5
100 33/67 2 0/100 19 2/98

scholtes3 14.9 14.7/0.3/0.9 3.2 3.1/0.3/0.7 10.5 4.3/1.0/1.0
0 0/34 0 0/34 29 66/33

scholtes5 2.6 2.6/0/0.01 2.3 2.6/0/0 10.0 9.8/0/0.08
0 0/0 6 6/0 14 13/0

scale1 4 3.9/0.2/1.7 3.7 3.5/0.1/0.9 7.9 5.1/0.9/1.4
88 87/2 27 21/10 11 52/44

scale2 35.8 11.2/1.0/2.5 3.6 3.6/0.04/0.2 6.6 5.2/1.0/1.0
0 0/95 0 0/4 1 0/96

scale3 28.5 11.6/1.0/2.6 3.0 2.5/0.09/0.5 7.1 4.9/1.0/1.1
9 9/91 13 13/8 1 0/99

scale4 22.2 20.2/0.2/3.2 2.4 2.4/0/1.0 9.1 26.6/0.02/0.9
95 95/1 46 46/0 69 57/1

scale5 26.4 11.1/1.0/2.8 4.1 4.1/0/0.4 16.7 16.0/0.8/0.8
95 91/9 0 0/0 82 80/16

sl1 13.1 13.1/0/0.08 1.2 1.2/0/0 16.8 14.0/0.4/0.4
49 49/0 0 0/0 66 60/17

stackelberg1 17.2 2/1/1 2.2 2/1/1 6.0 2/1/1
4 0/100 0 0/100 0 0/100

in our implementation, active-set steps sometimes improve or harm it just slightly,
being overall comparable. Recall, however, Example 4.1, which puts in evidence that
active-set steps do outperform SQP in the case where MPCC-SOSC does not hold.
Also, it should be kept in mind that SQP−slacks (just as standard SQP) does not
possess fully justified superlinear convergence, unlike active-set steps. One can see
from Tables 4.2 and 4.3 that, apart from being intended for the cases of weaker SOSC,
active-set step usually does not harm at all, neither robustness nor efficiency. The



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEWTON METHOD FOR MPCC 1027

number of disregarded active-set steps remains very low. In many cases, active-set
step is used just once, on the last iteration, which means that the corresponding outer-
phase algorithm without active-set step could not possibly converge faster (usually it
converges slower, at least in the cases of Linearization and SNM−FB). In some cases,
the active-set strategy helps seriously.
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