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Abstract. The hydrothermodynamics of the flow over a mountain range under the 

Novorossiysk bora is investigated. A nonlinear, stationary, two-dimensional, analytical model 

is used. Vertical unlimitedness of the atmosphere is taken into account by representing it in the 

form of three layers with different hydrostatic stability. The properties of the unperturbed 

inсindent flotation are taken into account throughout the real range of its changes. The 

characteristics of the air flow at the leeward slope of the streamlined relief are studied. A 

hypothesis is made that the intensity of bora can be estimated from the speed at the leeward 

slope of the mountains. 

1.  Introduction 

The Novorossiysk bora is one of the most striking manifestations of downslope winds. It occurs on the 

lee side of the mountain ranges Caucasus and Markhotsky, on the coast of the Black Sea, which are 

aligned mainly in the north-west to south-east direction. Bora is observed mainly during the cold 

season between the Russian cities of Anapa and Tuapse, but the highest wind speeds (10-min average 

speed up to 35–40m s−1) usually occur in the Novorossiysk and Gelendzhik region. Such intense 

windstorms pose a great threat to the population in the area and can be catastrophic to vessels moored 

in the Novorossiysk harbour. 

Similar models have been created and improved for almost a hundred years, but the problem 

remains unresolved to the full extent. In the early years, analytical models were created and used, in 

which the equations describing the flow laws were solved by standard mathematical means. In this 

case, all laws were not fully taken into account, so that only the real properties of the process could be 

modeled approximately [1-5]. In the works [3, 6 - 11], this phenomenon was studied on the basis of 

the application of a nonlinear, stationary, two-dimensional, open, mesoscale, analytical model. In the 

model: air was considered as an ideal fluid, the processes were assumed to be adiabatic, the 

nonlinearity of the advective terms in equations was fully taken into account, the shape of the relief 

was accurately taken into account. The model took into account approximately the influence of the 

upper atmosphere on perturbations in the troposphere, namely by representing a flowing stream in the 

form of three layers having the same velocity but different stability. Comparison of calculations with 

the results of a number of measurements has shown that the model describes qualitatively the 

characteristics of atmospheric perturbations over mountains at altitudes outside the boundary layer. It 

was shown how important in modeling to take into account the actual shape of the mountains and their 

extent. In [12], recently on the basis of this model, a detailed research of the flow of one more case of 
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real mountains, namely, the mountains characterizing the relief in the region of the city of 

Novorossiysk, was carried out. 

This study was carried out not for one or two states of a flowing current, as is usually done, but for 

a very wide range of such states. Some of the results obtained in this connection will be used in this 

study of bora characteristics. 

In [13-18] the bora in Novorossiysk was investigated to solve the problem of predicting this 

dangerous phenomenon by using a numerical mesoscale non-hydrostatic model WRF-ARW. This 

model includes accounting for many more physical phenomenon factors than analytical models, 

however, as usual, this is done through the use of parametrization methods. The quality of the results 

obtained is checked by comparing them with the data of individual measurements at the ground. This 

is clearly not enough. For the present estimation of the quality of a numerical model, it is necessary to 

evaluate the reliability of the methods of parametrization of complex physical processes used for the 

phenomenon under study. To obtain such an estimate, it is necessary to compare the results of the 

calculation with measurements at sufficiently many points at the ground, and even more importantly 

with measurements at many altitude levels. There are almost no such measurements. The following 

became even clearer. 1. Bora should be considered as a process of development in time. 2. At the first 

steps, the initial, culminating and final stages of its development should be identified. 3. The shape of 

streamlined mountains generates the presence of a two-dimensional component in the spatial 

variations of the perturbations. 4. In all cases, the greatest increase in wind should be expected at the 

leeward slope of the streamlined mountains. 

2.  Theoretical model 

Simulation of the flow past the mountains was carried out, as in [3.8-10], within the framework of a 

stationary, two-dimensional, nonlinear, non-hydrostatic approximation based on the solution of the 

Helmholtz equation for perturbations of the stream function   . The magnitude of the coefficient of 

the equation is inversely proportional to the Lyra scale 
c  [3, 19]: 

N

U
c  2 ,  

 

1

2

T

g
N a  

 ,      (1) 

where U , N  - the speed and frequency of the Brent-Väisälä in the flowing stream in front of the 

mountains,   and 
a  - the vertical and dry-adiabatic temperature gradients, 

1T  - the characteristic 

temperature of the layer, g  - the acceleration of gravity (in foreign publications, the Scorer parameter 

is used instead of the Lyra scale). The possibility of reducing the nonlinear problem to the solution of 

a linear equation was determined by the fact that a particular variant of the properties of the flowing 

flow was considered, namely, when it was assumed that the velocity and the gradient do not depend on 

the altitude in it:  : 

constU  ,  const .      (2) 

This way of accurately accounting for the nonlinearity of the equations of motion is very close to 

that used in Long's model [4]. The stream function in the incoming flow was determined as a linear 

dependence on the height Uz0 , and the total current function by means of adding perturbations 

to the written value  . The perturbations of temperature were determined with    in full accordance 

with the assumption of adiabatic vertical displacements of air particles according to the formula:  

 a
T

U

   
   .     (3) 

The horizontal and vertical velocity components were determined by the derivatives of the current 

function, respectively, in the vertical and horizontal directions. The lower layer in the model 

represented the troposphere, the middle layer - the lower part of the stratosphere, and the upper layer - 

the rest of the atmosphere. The velocity of the flow was assumed to be the same in all layers, and the 
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temperature gradients were different. Two-dimensional characteristics of the relief of the mountains in 

the Novorossiysk area were studied in detail in [12]. It was shown that the main properties of the 

perturbations can be investigated by modeling the flow around the average section of the relief, and 

the entire wide range of states of the inflowing stream is reduced to the next range of values of the 

Lyra scale in the troposphere and layer by layer setting the values of the temperature gradient from the 

bottom up (j = 1, 2, 3 ): 

c =3, 4, 5, 6, 6.66, 7, 7.5, 7.8, 9.5, 10, 12.2 km,  
j =6, 0, 3 degr/km.   (4) 

It was assumed that in the troposphere N  is approximately equal to 3104   1/s, from which it 

follows that U  is determined by the relation сc /1102 3   , i.e. in m/s the speed is twice the value 

c  in km. Hence it is easy to see that setting values 
c  in (4) is equivalent to setting values U  in the 

range from 6 до 24.4 m/s. Further, for brevity, the values 
c ,  , U  will be given respectively in km, 

deg / km, m/s. The heights of the interfaces in the model were set equal to 10 and 18 km. Steps of the 

computational grid in calculating the field of trajectories were 50 m in coordinate x  and 250 m - in z .  

3.  Results 

3.1.  Field of trajectories.  

In [12], many variants of flow around the mountains were analyzed, including - for 4 different reliefs 

using the parameter range (4). The first and the main was the relief obtained by averaging the heights 

according to the method, tested in [3, 7-11] (we will call it the average). Averaging was carried out for 

10 specific vertical sections of the terrain, perpendicular to the middle direction of the mountains. The 

second was a relief characterizing the profile of the mountains for one of these particular sections, the 

most seriously different from the average. Two more reliefs were created artificially in order to study 

the general physical laws of flow around real mountains. When they were created, the requirements 

were met. 1. They had one, and not two main ridge. 2. The leeward slope was steep, roughly 

coinciding with the steepness of the middle relief. 3. The cross-sectional area with an accuracy of at 

least 7.6% coincided with the cross-sectional area of the middle relief. In the third relief, the maximum 

height was set equal to the height of the average relief, i.e. 541 m, and in the fourth relief - equal to 

350 m. The above reliefs will be denoted as sr, ch, iskV and iskN, respectively. 

In the literature (see, for example, [3, 5, 20-22]), it is customary to characterize the variants of flow 

around the values of the Froude number F  the dimensionless mountain height 
bL , equal to the 

reciprocal value F . In this as a scale the maximum height of the mountain 
mh  is used, so: 

m

c

m hNh

U
F


2

1

 , 

c

mm

b

h

U

Nh

F
L



21
 .    (5) 

From this it follows that the studies were carried out for the following parameter ranges: 

59.387.0  F ,  28.014.1  bL .    (6) 

The process of flow is most graphically illustrated by the trajectories of the motion of air particles. 

Fig. 1 shows one of the results of [12], namely the trajectory of motion over the middle relief at 

4c . Trajectories are identified with the values of their heights in the inflowing current 
0z  (in km). 

The motion of particles is directed from left to right. The figure shows trajectories with 00 z , 35.0 , 

5.0  and further higher with values increasing with an interval of 0.25 km. The terrestrial trajectory, as 

is easy to see, has two ridges almost equal in height. Over the mountains, the disturbances are so large 

that the trajectories with 
0z , variations in the range from 2 to 2.75 have a rotary character (according 

to [4]) in the altitude region 1.5 - 3.5 km (i.e, the amplitude of the vertical vibrations is about 1 km). It 

is not difficult to see that the trajectory with 5.30 z  to some extent follows the shape of the relief. In 
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this there are two regularities: the periodicity of changes along the vertical and the influence of the 

scale of the shape of the relief. In the leeward region, the perturbations have the form of periodic 

waves. 

 

Figure 1. Trajectory of motion over the middle relief at 4c , 6 , 8U , that corresponds to the 

values 18.1F , 85.0bL . 

 

At low altitudes of 1 to 1.5 km, their amplitudes are about 250 m, they decrease rapidly, remaining 

significant in the surface layer - the trajectories with 35.00 z  the amplitudes above the sea make up 

at least 50 m at distances up to 20 km. 

3.2.  Perturbations at the leeward slope of the mountains 

Earlier it was shown that in the zone of perturbations always appear the regions of sharp condensation 

of the motion trajectories that are jet streams. In the upper and lower parts of the jets, the convergence 

of the trajectories has different signs. This means that the velocities in the jet at some average altitude 

are always maximal. It is established in the same way that the highest velocities are observed at the 

leeward slope of mountains and their values can be used as a measure of the intensity of disturbances. 

In Fig. 1 three such jets can be seen.  

The first is located at the leeward slope of the mountains in the region of lowering the air particles 

down, the second is above the mountains at an altitude of about 2.5 km in the region of the upward lift, 

the third is even higher and close in characteristics to the first jet. When investigating bora, we will be 

interested only in the first stream. In addition to the trajectories at the leeward slope, the velocity and 

temperature perturbations fields were calculated, with the steps of the calculation grid decreasing – 

with x  up to 25, with z  up to -10 m. The calculations were carried out for all the reliefs and for all 

the parameters (4, 6). It was found that the disturbance patterns in all variants are qualitatively close; 

this made it possible to illustrate what was said by one Fig. 2. Here are the isolines of the temperature 

perturbations at the leeward slope for one of the variants, namely for 5c . Simultaneously, these 

isolines qualitatively characterize the motion trajectories. For example, an isoline for a temperature 

perturbation of 2.5 degrees reproduces well the trajectory with 9.00 z . The figure shows that the jet 

along the slope is almost uniform and has a thickness of less than 800 m. At a sufficient distance from 

the slope of the motion of air particles acquire a wave character.  
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3.3.  Energy of bora 

In [3, 6-11] it was shown that the model used in this paper characterizes quite well the perturbations at 

altitudes of more than 2 km. However, it is clear that it cannot claim the high reliability of describing 

the characteristics of disturbances in the surface layer behind the mountains, since it does not take into 

account the viscosity and, especially, the turbulent viscosity of the medium. At the same time, the 

results of previous and present calculations show that in all cases a jet stream with high velocities is 

predicted at the leeward slope of the mountains. This allows us to believe that in nature the turbulence 

in the stream at the slope is suppressed and concentrated only in its very thin layer near the earth. 

Hence, we can hope that our model describes the perturbation properties in this part of space quite 

well. On this basis, we will further assume that the intensity of bora in the city and in the bay can be 

estimated from the value of the energy of the flow in this zone.  

 

Figure 2. Temperature perturbations at the leeward slope at 5c , 6 , 10U . The relief is 

blackened. The isolines are digitized in 0.5-degree increments. 

 

The velocity field at the slope was studied in detail for the mean relief at all 
c . First of all, the 

changes in the values of the velocity modulus  xzV ,  depending on x at the level 300z  m were 

calculated (it can be considered characteristic). The corresponding curves shown in Fig. 3 show that 

the nature of the changes  xzV ,  is the same with the distance from the mountain. At first, the velocity 

decreases monotonically (by about 1 to 2.5 m/s in the range of deletions up to 200 m). Then, its values 

begin to change wavy with amplitudes of about 1.5 m/s and a period of order 
c . For simplicity, the 

energy of the jet at the leeward slope was decided to be estimated from the average value  xzV ,  in a 

layer 200 m thick. This value should obviously characterize the properties of the jet at a specific 

altitude. If the averaging is carried out at the maximum speed level, the resulting value will 

characterize the maximum jet velocity for a particular value 
c . The resulting quantity will be denoted 

as 
bV , and called the characteristic velocity of the jet. It will give an idea of the energy flow at the 

slope, and also with this the intensity of all perturbations. The ones shown in Fig. 1, 2 data, draw 

attention to the fact that air particles as they descend along the slope from the uppermost layers of the 

jet do not reach the ground clearly and, therefore, form a transitional layer between the free 

atmosphere and the surface layer that we are interested in. Particles of air from the lowest layers of the 

jet, obviously, directly participate in the formation of this layer and its turbulents. It becomes clear that 
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the energy of turbulent gusts in it is directly proportional to the kinetic energy of the jet, and, 

therefore, to the value 
bV . 

Calculations of the value 
bV  were carried out for all variants. In this case, the averaging  xzV ,  

along the horizontal coordinate was carried out each time at two altitude levels at which they had the 

maximum values. According to the two values obtained in this way, the mean value 
bV  and range of 

variation dV  were determined. It was found that the value dV  did not exceed 0.17 m/s. The results 

are illustrated in Fig. 4, 5. For the average relief, the curves with asterisks are represented by smoothed 

data. 

V
 (

m
/s

)

x  (km)  

Figure 3. Modifications of the flow velocity module as you move away from the slope. The numbers 

in the curves give the meanings 
c . 

 

Fig. 4 shows the changes in the values UVb / . They allow us to note the following. 1) For all 
c  

the value UVb /  is greater than 1. Consequently, the wind near the ground with borа is always 

stronger than the wind in front of the mountains. 2) On average, there is a decrease UVb /  with 

increasing 
c , i.e. the previously formulated law of smoothing is fulfilled. 3) In some parts of the 

range 
c , the smoothing law is not monotonous. This is particularly noticeable in the vicinity of the 

values 5c , 5.7 , 5.9 . For very large 
c  values UVb /  approach unity. 

4) The curve for a particular relief does not qualitatively differ from the curve for the average relief; it 

differs quantitatively only in that it does not reproduce an increase UVb /  in the region of the point 

6c . Hence, the results for the middle relief are quite suitable for studying the intensity of bora. 5) 

The reliability of the revealed dependencies is confirmed by smallness dV . 

Figure 5 shows how the absolute values 
bV  change with increasing 

c  (and velocity U ). It is easy 

to see that the changes take the form of appreciable oscillations with respect to the law of linear 

increasing in the mean. These changes 
bV  require detailed analysis. In [3, 6, 7, 10, 11] it was shown 

that the intensity of disturbances is determined by the joint influence of three factors - the perturbing 

effect of the relief, the intrinsic wave properties of the layers and the dynamics of interaction between 

them. 
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Figure 4. Dependence UVb /  on 
c  for various reliefs. 

 

The influence of the relief depends on the spectral composition of the disturbances, which in turn 

depends on 
c , the shape and height of the relief. Consider the behavior of the curves sr and ch in 

Fig. 5, and then - iskV and iskN. These pairs of curves refer to two fundamentally different in form 

reliefs - the first to the variant of two ridges and a trough between them, the second to a variant of a 

sufficiently smooth relief with one ridge. 

It should also be noted that in three of these reliefs, the maximum heights are practically the same 

and exceed the height of the iskN relief by 190 m. Pair-wise comparison of the curves shows that they 

have the same qualitative dependence on 
c . Simultaneously, one should note the discrepancy 

between the oscillations in the amplitudes. It is noteworthy that in the first pair the differences are least 

noticeable. All this makes it possible to assume that the oscillations are related to a considerable extent 

with changes in the spectral composition of the perturbations upon changing
c . 

Comparing the curves for the reliefs iskV and iskN, we see that at 3.6c   the curve for the higher 

of them lies lower everywhere. This is probably due to the fact that, the law of smoothing out 

perturbations begins to overcome the flow effect earlier for a lower relief than for a high one, and this 

leads to a decrease in the amplitudes of the individual wave components of the perturbation spectrum 

over the iskV relief. 

Comparison of the curves sr and iskV makes it possible to reveal in some way the role of the 

presence of a trough between the two main ridges. The figure shows that the relief sr practically at all 

c  perturbs the atmosphere stronger. When comparing the results for these reliefs at 5c , it was 

noted in [12] that the maximum range of vertical displacements in the rotor region in the second case 

decreased by 38%. The data in Fig. 5 show that in the region 7.6c  the signs of the difference in 

velocities remain the same, but the magnitude of the discrepancy is almost 7 times smaller (of the 

order of 5%). This indicates that the presence of a trough in the relief has a much greater effect on 

perturbations in the middle troposphere than on the leeward slope. 
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Figure 5. Dependence 
bV on 

c  for various reliefs. 

 

It is difficult to judge the influence of the wave properties of layers on oscillations. It is known (see 

[3, 6, 7]) that these properties in the model depend on 
c , the thickness of the layers and on the 

processes of their dynamic interaction. In [12], the role of the dynamic interaction of the layers was 

partially revealed when the results of calculating trajectories at 5c  were compared for three 

variants of specifying a gradient in the troposphere: = 5, 6, and 7. The analysis showed that in the 

transition from variant 6  to case 5 , the reflection coefficient of wave energy on the 

tropopause decreased significantly. This effect was observed by increasing the amplitudes of waves in 

the stratosphere. Now it has been tested for changes in value 
bV . Corresponding calculations showed 

that in these variants the values 
bV  in comparison with the value of 18.8, which is seen in Fig. 5, 

increased by 4 in the case 7  and decreased by 2.8 - in the case 5 . Consequently, the 

characteristic velocity at the slope reacts to changes in the energy exchange between the layers more 

clearly than the field of trajectories.  

In the model, the reflection coefficient at the interfaces for a particular value 
c  is determined only 

by the break in the temperature gradients. The dependence of this coefficient on 
c  was not 

determined, but it can be assumed that it is not so great. In this case, it can be expected that when the 

values of the layer-by-layer values   in (4) change to the values 
bV  presented in Fig. 5 they will 

basically only shift vertically. This means that in the first approximation the characteristics of the 

energy of the bora are elucidated. 

In the literature (see, for example, [5]), the phenomenon of collapse of waves over mountains is 

widely discussed. In this case, it is assumed that it is primarily realized in the form of destruction of 

the rotor circulations. Specifically, the appearance of rotors is considered as a sign of inapplicability of 

the theoretical model used in the calculations. The model applicability boundary is estimated from the 

values F  and 
bL  introduced in (5). In nonlinear, open, non-hydrostatic models [20-22], devoted to 

flow around a mountain-semicircle, the radius of the mountain was used as the quality mh , and the 

value 
bL  was considered as the main parameter of the problem. In [21, 22] the results were analyzed 
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for 
bL  = 1, 2, 3 and 

bL  = 0.5, 1, 1.27, 1.5, respectively. It was found that for large values 
bL  above 

the mountain wave perturbations acquire a rotary character and this occurs when the value 
bL  lies in 

the range between the values 1 and 2 according to [21] or 1 and 1.27 - according to [22]. In [21], in 

addition, it was shown that two regions always appear in the rotor zone, differing sharply in 

hydrostatic stability. In one of them, the temperature gradient decreases substantially in comparison 

with  , and in the other, it increases to such an extent that it can even exceed 
a . With the growing 

bL  the intensity of the rotor increases, particles appear that move towards the incoming flow, and 

finally a closed vortex appears in the flow [21]. Both these regions are continually approaching, and 

the contrast in the magnitude of hydrostatic stability between them increases so much that the 

inevitability of the transition of the flow from the laminar regime to the turbulent regime becomes 

evident. From this it was concluded that the model can be used for sufficiently small values 
b , or 

large values F , namely, approximately at 
bL  <1.2 (or F  > 0.83). If we carry out a similar estimate 

for the considered case of flow around concrete real mountains, then according to [12] we use the 

values 5c  and 54.0mh . Then we get that the model by this estimate is obviously can be used at 

bL <0.68 (or F >1.47). The detected change in the critical value 
bL  cannot be associated only with 

mh , it is obviously connected with the entire energy of the interaction of the incoming flow with the 

relief irregularities, including the presence of upper layers of the flow. It is even more important to pay 

attention to the following. In [4] Long expressed the opinion that the rotary current can not be realized 

in nature at all. However, his experiments on the flow around the unevenness of the lower boundary in 

the channel showed the opposite. In one experiment, a rotor was observed in the flow above the 

unevenness, in which the particles moved towards the incoming flow, and there was no doubt about 

the stability of its existence. This established the fact that the flow of a stratified fluid can be 

noticeably more stable than that of a homogeneous fluid.  

4.  Conclusions 

It was confirmed that the characteristic flow velocity at the leeward slope of the mountains is the most 

important quantitative characteristic of atmospheric perturbations during flow. It is shown that it 

depends essentially on the Lyra scale. Two variants of borа should be considered. The main (more 

frequent) can be considered the option when the values of the Lyra scale are less than 8 km (the flow 

velocity is less than 16 m / s). In this case, as the Lyra scale increases, the values of the characteristic 

velocity change nonlinearly, but in a rather narrow range of values of 17-24 m/s. The second variant of 

bora should be considered more rare and, therefore, less interesting. Changes in air temperature during 

borа depend little on the flow effect and are determined practically by how much the temperature of 

the incoming air mass differs from the temperature of the displaced mass. The speed of gusts in the 

bora is determined by the energy of the air flow at the leeward slope of the mountains and the 

subsequent processes of turbulence of the atmosphere in the surface layer. These processes were not 

modeled, but it can be assumed that in the case of bora, the force of these gusts always exceeds the 

characteristic velocity - by two or more times. 

The work was carried out within the framework of the task No. 5.9533.2017 / BC for the project 

"The study of the geoecology of the Northwest Caucasus environment and specially protected natural 

areas". 
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