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Abstract—For minimization problems with equality and inequality constraints, first- and
second-order necessary conditions for a local extremum are presented. These conditions ap-
ply when the constraints do not satisfy the traditional regularity assumptions. The approach
is based on the concept of 2-regularity; it unites and generalizes the authors’ previous studies
based on this concept.
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1. INTRODUCTION

Let X and Y be Banach spaces. We consider a mathematical programming problem

f(x) → min, x ∈ D, (1.1)

where
D =

{
x ∈ X | F (x) = 0, g(x) ≤ 0

}
, (1.2)

f : X → R is a smooth function, and F : X → Y and g : X → R
m are smooth mappings.

The literature on the first- and second-order conditions for local extrema in problem (1.1), (1.2)
is very extensive (see, e.g., [1, Ch. 1; 2, Sections 3.2, 3.4; 3, Ch. 2, Section 5.2.2] and the refer-
ences therein). However, in the vast majority of cases (except for certain special cases, which are
discussed in what follows), the extremum conditions given there apply only when the Mangasarian–
Fromovitz constraint qualification (MFCQ) holds at a point x∗ ∈ D under consideration, that is,
when im F ′(x∗) = Y and there exists a ξ̄ ∈ X such that

F ′(x∗)ξ̄ = 0 and 〈g′i(x∗), ξ̄〉 < 0 ∀ i ∈ I(x∗), (1.3)

where I(x∗) = {i = 1, . . . ,m | gi(x∗) = 0} is the set of indices of inequality constraints that are
active at the point x∗.

Throughout the paper, we assume that the subspace im F ′(x∗) is closed. The traditional studies
of problem (1.1), (1.2) are based on the Lagrange principle and use the Lagrangian

L(x, λ0, λ, µ) = λ0f(x) + 〈λ, F (x)〉 + 〈µ, g(x)〉 (1.4)

of this problem; here x ∈ X, λ0 ∈ R, λ ∈ Y ∗, and µ ∈ R
m. The classical first-order necessary

extremum condition is as follows: If a point x∗ is a local solution to problem (1.1), (1.2), then there
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exist multipliers λ0 ∈ R, λ ∈ Y ∗, and µ ∈ R
m such that they do not vanish simultaneously and

∂L0

∂x
(x∗, λ0, λ, µ) = 0, λ0 ≥ 0, µ ≥ 0, 〈µ, g(x∗)〉 = 0. (1.5)

If the MFCQ holds at the point x∗, then the above necessary condition can be satisfied only for
λ0 > 0 and is therefore equivalent to the existence of multipliers λ ∈ Y ∗ and µ ∈ R

m such that

∂L

∂x
(x∗, 1, λ, µ) = 0, µ ≥ 0, and 〈µ, g(x∗)〉 = 0. (1.6)

If the MFCQ is violated at x∗, then the necessary condition (1.5) holds automatically for λ0 = 0
and some λ ∈ Y ∗ and µ ∈ R

m that do not vanish simultaneously; in this form, this condition is
merely equivalent to the violation of the MFCQ at the point x∗ and, accordingly, does not express
anything else. Therefore, the construction of more delicate necessary extremum conditions that
would be meaningful even when the MFCQ is violated is of great interest.

In [4, 5], the following generalized Lagrangian for problem (1.1), (1.2) was introduced:

L2(x, h, λ0, λ
1, λ2, µ1, µ2) = λ0f(x) + 〈λ1, F (x)〉 + 〈µ1, g(x)〉 + 〈λ2, F ′(x)h〉 + 〈µ2, g′(x)h〉, (1.7)

where x, h ∈ X, λ0 ∈ R, λ1, λ2 ∈ Y ∗, and µ1, µ2 ∈ R
m (here λ0, λ1, λ2, µ1, and µ2 play the role of

Lagrange multipliers). Applying this function to the problem with equality constraints (i.e., with
m = 0), E.R. Avakov obtained first- and second-order necessary conditions for a local extremum that
remain meaningful in the irregular case; in [6], with the help of the same function, A.V. Arutyunov
found second-order sufficient conditions closely related to these necessary conditions. In (1.7), h is
a parameter that varies in a certain set determined by the first and second derivatives of F at the
point x∗. All these constructions are based on the notion of 2-regularity; a generalization of this
notion plays a central role in this paper as well.

The results of [4, 5] were developed in [7], where they were extended to problems of variational
calculus, and in [8], where optimal control problems were considered. In [9], these results were
extended to the case of weaker smoothness conditions, and in [10], to the case of nonclosed im F ′(x∗).
Similar ideas were used in [11, 12] for problems with inequality constraints. However, problems with
both equality and inequality constraints in the case where the MFCQ is violated have not been
studied so far. In the present paper, we fill this gap.

We use the following notation. Given a normed linear space U , we denote by U∗ its dual and
by Bε(ū) = {u ∈ U | ‖u − ū‖ ≤ ε} the ball of radius ε > 0 centered at ū ∈ U . For a set S ⊂ U ,
we denote its interior by intS, its closure by cl S, its linear hull (i.e., the minimal linear subspace
containing S) by lin S, its affine hull (i.e., the minimal affine set containing S) by aff S, its conical hull
(the minimal cone containing S) by cone S, and its annihilator by S⊥ = {l ∈ U∗ | 〈l, u〉 = 0 ∀u ∈ S}.
The distance from a point ū ∈ U to a set S is denoted by dist(ū, S) = infu∈S ‖u− ū‖. If V is another
normed linear space, then L(U, V ) is the space of continuous linear operators from U to V . Given
a linear operator A : U → V , denote by im A its range (the set of values) and by ker A its kernel
(the set of zeros).

2. AUXILIARY RESULTS

Below we need the following lemma, which is a consequence of Theorems 17 and 18 from [13].
Lemma 1. Suppose that U and V are Banach spaces, P ⊂ U is a closed convex set, Φ: U → V

is a mapping continuous in a neighborhood of a point ū ∈ P, and v̄ = Φ(ū). Suppose also that there
exist numbers a > 0, ε1 > 0, and ε2 > 0 such that

dist
(
u,Φ−1(v) ∩ P

)
≤ a‖Φ(u) − v‖ ∀u ∈ Bε1(ū) ∩ P, ∀ v ∈ Bε2(v̄).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 256 2007
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Then, there exist numbers c = c(a) > 0, δ1 = δ1(a, ε1, ε2) > 0, and δ2 = δ2(a) > 0 such that,
for any mapping ϕ : U → V satisfying the Lipschitz condition with constant l < 1/a on Bδ1(ū) and
the condition ‖v̄ + ϕ(ū)‖ ≤ δ2, there exists a u ∈ P for which

Φ(u) + ϕ(u) = 0 and ‖u − ū‖ ≤ c‖v̄ + ϕ(ū)‖.

Lemma 2. Suppose that U and V are Banach spaces, A ∈ L(U, V ), the subspace im A is
closed, B ∈ L(U, Rs), l ∈ U∗, a ∈ R, v ∈ V , and w ∈ R

s. Suppose also that

S =
{
u ∈ U | Au + v = 0, Bu + w ≤ 0

}
�= ∅. (2.1)

Then, the condition
〈l, u〉 + a ≥ 0 ∀u ∈ S (2.2)

is equivalent to the existence of λ ∈ V ∗ and µ ∈ R
s such that

l + A∗λ + B∗µ = 0, µ ≥ 0, and a + 〈λ, v〉 + 〈µ,w〉 ≥ 0. (2.3)

Proof. For finite-dimensional U and V , the implication (2.2) ⇒ (2.3) was proved in [14, Ch. 3,
Theorem 12.3]. The proof can be easily extended to the infinite-dimensional case. The idea is to
reduce the inhomogeneous case to the homogeneous one. Namely, we set

S̃ =
{
(u, τ) ∈ U × R+ | Au + τv = 0, Bu + τw ≤ 0} �= ∅

and claim that
〈l, u〉 + aτ ≥ 0 ∀ (u, τ) ∈ S̃. (2.4)

Indeed, for τ > 0, this assertion follows immediately from (2.2). On the other hand, if there exists
a ũ ∈ U for which

〈l, ũ〉 < 0, Aũ = 0, and Bũ ≤ 0,

then, for any u ∈ S, we have u + tũ ∈ S for all t ≥ 0, and 〈l, u + tũ〉 + a < 0 for any sufficiently
large t ≥ 0, which contradicts (2.2). This proves (2.4). Now, the required assertion follows easily
from (2.4) and the dual cone lemma [2, Section 3.3.4].

The implication (2.3) ⇒ (2.2) is verified directly. This completes the proof of the lemma.
Recall that a cone K ⊂ V is said to be finitely generated if it is the conical hull of finitely many

points in V .
Lemma 3. Suppose that V is a Banach space, W ⊂ V is a closed linear subspace, and K ⊂ V

is a finitely generated cone.
Then, the cone W + K is closed.
Proof. Let K = cone{v̄1, . . . , v̄s}, where v̄1, . . . , v̄s are given points. We prove the lemma by

induction on s.
Let s = 1. If v̄1 ∈ W , then the set W + K = W is closed. Suppose that v̄1 /∈ W . Then the

second separation theorem for convex sets (see, e.g., [15, p. 210]) implies the existence of a linear
continuous functional ν ∈ W⊥ such that 〈ν, v̄1〉 �= 0. Consider an arbitrary sequence {vk} ⊂ W +K
converging to some v̄ ∈ V . For any k, the point vk can be represented as vk = wk + θkv̄

1, where
wk ∈ W and θk ≥ 0. Therefore,

θk〈ν, v̄1〉 = 〈ν, vk〉 → 〈ν, v̄〉 as k → ∞;

this and the inequality 〈ν, v̄1〉 �= 0 imply that the sequence {θk} is bounded. Passing to a subse-
quence if necessary, we achieve the convergence of {θk} to some θ̄. The equality wk = vk −θkv̄

1 and
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the convergence of {vk} to v̄ imply {wk} → w̄ = v̄ − θ̄v̄1; since W is closed, it follows that w̄ ∈ W .
Hence, v̄ = w̄ + θ̄v̄1 ∈ W + K, as required.

Let us prove the required assertion for s = r, assuming that it is true for s = r − 1. First,
suppose that {−v̄1, . . . ,−v̄r} ⊂ W + K. Let us show that

W + K = W + lin K. (2.5)

The inclusion W + K ⊂ W + lin K is obvious. On the other hand, since ±v̄i ∈ W + K for all
i = 1, . . . , r and W + K is a convex cone, it follows that lin K = lin{v̄1, . . . , v̄r} ⊂ W + K, which
(together with the obvious inclusion W ⊂ W + K) implies W + lin K ⊂ W + K. This completes
the proof of (2.5). In turn, (2.5) implies that W + K is closed (because, as is known, the sum of a
closed linear subspace and a finite-dimensional one is closed).

Now, suppose that −v̄i /∈ W + K for at least one i = 1, . . . , r, say, for i = r. The cone
K̃ = W + cone{v̄1, . . . , v̄r−1} is closed by the induction hypothesis. Consider an arbitrary sequence
{vk} ⊂ W + K converging to some v̄ ∈ V . For any k, the point vk can be represented as vk =
wk + θkv̄

r, where wk ∈ K̃ and θk ≥ 0. If the sequence {θk} is bounded, then, passing to a subse-
quence if necessary, we achieve the convergence of {θk} to some θ̄. The equality wk = vk −θkv̄

r and
the convergence of {vk} to v̄ imply {wk} → w̄ = v̄ − θ̄v̄r, and the closedness of K̃ implies w̄ ∈ K̃.
Therefore, v̄ = w̄ + θ̄v̄r ∈ W + K, as required.

If {θk} → +∞ as k → ∞, then the equality vk = wk + θkv̄
r implies 1

θk
wk = vk

θk
− v̄r, and the

convergence of {vk} implies {wk/θk} → −v̄r. Moreover, all members of this sequence belong to the
closed cone K̃, and so −v̄r ∈ K̃ ⊂ W + K, which contradicts the assumption −v̄r /∈ W + K. This
completes the proof of the lemma.

Recall that the codimension of a linear subspace L in a linear space V is said to be at most r
if there exists a linear subspace M ⊂ V such that dim M = r and L + M = V . This property is
equivalent to the existence of (not necessarily continuous) linear functionals νi : V → R, i = 1, . . . , r,
such that L =

⋂r
i=1 ker νi.

Below we need the following proposition, which is proved, for example, in [16, Ch. 3, Section 5,
p. 203].

Proposition 1. Suppose that U and V are Banach spaces, Λ ∈ L(U, V ), and the codimension
of im Λ in V is finite.

Then im Λ is closed.
Lemma 4. Suppose that U and V are Banach spaces, A ∈ L(U, V ), the subspace im A is

closed, and B ∈ L(U, Rs).
Then the subspace M = {(v,w) ∈ V × R

s | ∃u ∈ X such that v = Au and w = Bu} is closed.
Proof. Since im A is closed, the subspace im A × R

s is closed in V × R
s and can be regarded

as a Banach space (with the induced norm). Consider the operator Λ ∈ L(U, im A×R
s) defined by

Λu = (Au,Bu). Obviously, the codimension of im Λ in im A×R
s is at most s. Therefore, according

to Proposition 1, the subspace M = im Λ is closed. This completes the proof of the lemma.
Lemma 5. Suppose that U and V are Banach spaces, A,Λ ∈ L(U, V ), the subspace Λ(ker A)

is closed, B ∈ L(U, Rs), v̄ ∈ V , and w̄ ∈ R
s. Suppose also that

S =
{
u ∈ U | Au + v̄ = 0, Bu + w̄ ≤ 0

}
�= ∅ (2.6)

and
cl(lin Λ(S)) = V. (2.7)

Then
int Λ(S) �= ∅. (2.8)
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Proof. Without loss of generality, we can assume that 0 ∈ Λ(S) (otherwise, we replace Λ(S) by
Λ(S)−v for an arbitrary fixed v ∈ Λ(S) everywhere in the proof; such a change affects neither (2.7)
nor (2.8)).

We set L = ker A ∩ ker B. Obviously, S + L = S, which implies L ⊂ lin S and

Λ(L) ⊂ lin Λ(S). (2.9)

Take any element ū ∈ U for which Aū + v̄ = 0. By virtue of (2.6), (2.7), and the closedness of
Λ(ker A), we have

V = cl(lin Λ(S)) ⊂ cl(lin Λ(ker A + ū)) ⊂ cl(Λ(ker A) + lin{Λū})

⊂ cl Λ(ker A) + cl(lin{Λū}) = Λ(ker A) + lin{Λū}. (2.10)

Obviously, the codimension of L in ker A is at most s; i.e., there exists a linear subspace M in ker A
such that dimM = s and L + M = ker A. It follows from (2.10) that

V = Λ(L + M) + lin{Λū} = Λ(L) + Λ(M) + lin{Λū}, (2.11)

which implies that the codimension of Λ(L) in V is at most s + 1. Therefore, by Proposition 1,
im Λ(L) is closed. It easily follows from (2.9) and (2.11) that

lin Λ(S) = Λ(L) +
(
Λ(M) + lin{Λū}

)
∩ lin Λ(S);

therefore, lin Λ(S) is closed, being the sum of a closed linear subspace and a finite-dimensional one.
By virtue of (2.7), we have

lin Λ(S) = V. (2.12)

Since Λ(L) is a closed linear subspace of finite codimension in V , there exists a finite-dimensional
subspace Ṽ in V such that V = Λ(L) ⊕ Ṽ . Let π denote the projector onto Ṽ along Λ(L), i.e.,
π ∈ L(V, Ṽ ), π2 = π, im π = Ṽ , and ker π = Λ(L). By virtue of (2.12), we have

lin π(Λ(S)) = π(lin Λ(S)) = im π = Ṽ .

Since 0 ∈ Λ(S), it follows that 0 ∈ π(Λ(S)) and, therefore, aff π(Λ(S)) = lin π(Λ(S)) = Ṽ . But if
the affine hull of a convex set in a finite-dimensional space coincides with the entire space, then the
interior of this set is nonempty (see, e.g., [14, Ch. 3, Theorem 1.12]). Thus,

int π(Λ(S)) �= ∅. (2.13)

The equality
Λ(S) + Λ(L) = Λ(S) (2.14)

immediately follows from the equality S + L = S; hence,

π−1(π(Λ(S))) = Λ(S). (2.15)

Indeed, if v ∈ π−1(π(Λ(S))), then πv ∈ π(Λ(S)), i.e., there exists v1 ∈ Λ(S) such that π(v−v1) = 0.
In other words, v2 = v − v1 ∈ ker π = Λ(L); this and (2.14) imply that v = v1 + v2 ∈ Λ(S). Thus,
π−1(π(Λ(S))) ⊂ Λ(S). The reverse inclusion is obvious.

Relations (2.13) and (2.15) imply (2.8), because the preimages of open sets under continuous
mappings are open. This completes the proof of the lemma.
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Lemma 6. Suppose that U and V are Banach spaces, A,Λ ∈ L(U, V ), the subspace Λ(ker A)
is closed, B ∈ L(U, Rs), v̄ ∈ V , and w̄ ∈ R

s. Suppose also that (2.6) holds.
Then the set Λ(S) is closed.
Proof. Take an element ū ∈ U such that Aū + v̄ = 0. We have

Λ(S) =
{
v ∈ V | ∃u ∈ ker A such that v = Λ(ū + u) and B(ū + u) + w̄ ≤ 0

}
. (2.16)

Set U0 = ker A and V0 = Λ(ker A). Consider the operator Λ0 ∈ L(U0, V0×R
s) defined by Λ0u =

(Λu,Bu) and set

Ω =
{
(v,w) ∈ V × R

s | ∃u ∈ ker A such that v = Λ(ū + u) and w ≥ B(ū + u) + w̄
}
.

Obviously, the codimension of im Λ0 in V0×R
s is finite; by Proposition 1, im Λ0 is closed. Moreover,

Ω = im Λ0 + (Λū, Bū + w̄) + {0} × R
s
+;

hence, Ω is closed by Lemma 3 since im Λ0 is closed. On the other hand, by virtue of (2.16), we
have Λ(S) = {v ∈ V | (v, 0) ∈ Ω}; this and the closedness of Ω imply the closedness of Λ(S). This
completes the proof of the lemma.

Finally, we mention a simple corollary to the mean-value theorem (see [4]). Suppose that U
and V are normed linear spaces and Φ: U → V is a mapping that is twice Fréchet differentiable at
a point ū ∈ U . Then, for u1, u2 ∈ U , we have

‖∆(u1) − ∆(u2)‖ = o(‖u1‖ + ‖u2‖)‖u1 − u2‖, (2.17)

where

∆(u) = Φ(ū + u) − Φ′(ū)u − 1
2
Φ′′(ū)[u, u].

3. 2-REGULARITY CONDITIONS OF THE FIRST AND SECOND ORDER

Throughout the rest of the paper, we assume that the mappings F and g are twice Fréchet
differentiable at a point x∗ ∈ D. The linearization of the set D at x∗ is the cone

H1(x∗) =
{
ξ ∈ X | F ′(x∗)ξ = 0, 〈g′i(x∗), ξ〉 ≤ 0 ∀ i ∈ I(x∗)

}
. (3.1)

Definition 1. We say that the 2-regularity condition holds at the point x∗ in a direction
h ∈ X if

im F ′(x∗) + F ′′(x∗)[h,H1(x∗)] = Y (3.2)

and there exist ξ̄1 ∈ X and ξ̄ 2 ∈ H1(x∗) such that

F ′(x∗)ξ̄ 1 + F ′′(x∗)[h, ξ̄ 2] = 0 and 〈g′i(x∗), ξ̄ 1〉 + g′′i (x∗)[h, ξ̄ 2] < 0 ∀ i ∈ I(x∗). (3.3)

Note that the 2-regularity condition in the direction h = 0 coincides with the MFCQ (for ξ̄ = ξ̄ 1).
Moreover, if the latter holds at the point x∗, then the 2-regularity condition holds at this point in
any direction h ∈ X, including h = 0 (we can take ξ̄ 1 = ξ̄ and ξ̄2 = 0).

In the absence of inequality constraints, the 2-regularity condition takes the form

im F ′(x∗) + F ′′(x∗)[h, ker F ′(x∗)] = Y (3.4)

and is equivalent to the 2-regularity of the mapping F at the point x∗ in the direction h, which was
introduced in [4].

Remark 1. It is easy to verify that 2-regularity is stable with respect to small perturbations
of h.
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The above 2-regularity condition makes it possible to characterize the elements of the contingent
cone (the first-order external tangent set) to the feasible set and obtain meaningful first-order
necessary conditions for a local extremum (see Sections 4 and 5 in this paper). Thus, it is natural
to call this condition a first-order 2-regularity condition. Along with it, we use a generally weaker
second-order 2-regularity condition, which is needed to characterize the second-order tangent set
and obtain second-order necessary conditions for a local extremum (see Sections 4 and 6 below).

For each h ∈ X, introduce a set of indices I(x∗, h) = {i ∈ I(x∗) | 〈g′i(x∗), h〉 = 0} and set

S2(x∗, h) =
{

x ∈ X
∣∣ F ′(x∗)x + F ′′(x∗)[h, h] = 0, 〈g′i(x∗), x〉 + g′′i (x∗)[h, h] ≤ 0 ∀ i ∈ I(x∗, h)

}
.

(3.5)
In the following definition, it is assumed that the mappings F and g are three times Fréchet differ-
entiable at the point x∗.

Definition 2. We say that the second-order 2-regularity condition holds at the point x∗ in a
direction h ∈ X if

0 ∈ int
(
im F ′(x∗) + 3F ′′(x∗)[h, S2(x∗, h)] + F ′′′(x∗)[h, h, h]

)
(3.6)

and there exist x̄1 ∈ X and x̄2 ∈ S2(x∗, h) such that

F ′(x∗)x̄1 + 3F ′′(x∗)[h, x̄2] + F ′′′(x∗)[h, h, h] = 0 (3.7)

and
〈g′i(x∗), x̄1〉 + 3g′′i (x∗)[h, x̄2] + g′′′i (x∗)[h, h, h] < 0 ∀ i ∈ I(x∗). (3.8)

It is easy to show that if h ∈ H1(x∗), then the set I(x∗) can be replaced by I(x∗, h) in both (3.3)
and (3.8): such a change does not affect the 2-regularity and second-order 2-regularity conditions in
the direction h. Moreover, it is easy to see that if S2(x∗, h) �= ∅, then 2-regularity in the direction h
implies second-order 2-regularity in this direction, but the converse is not generally true. Indeed,
the inclusion

S2(x∗, h) + H1(x∗) ⊂ S2(x∗, h) (3.9)

follows immediately from (3.1) and (3.5). Since S2(x∗, h) is nonempty, (3.2) implies (3.6). Take
elements x̃1 ∈ X and x̃2 ∈ S2(x∗, h) such that F ′(x∗)x̃1+3F ′′(x∗)[h, x̃2]+F ′′′(x∗)[h, h, h] = 0 (such
elements exist because of the relation (3.6) proved above). We set x̄1 = x̃1+tξ̄ 1 and x̄2 = x̃2+ 1

3 tξ̄2,
where ξ̄1 ∈ X and ξ̄2 ∈ H1(x∗) are the same as in (3.3). Then, for sufficiently large t > 0, we
obtain (3.7) and (3.8), and (3.9) gives x̄2 ∈ S2(x∗, h).

Examples 3 and 4 below show that the converse implication does not hold. In the absence of
inequality constraints, the 2-regularity and second-order 2-regularity conditions are equivalent (and,
accordingly, both are equivalent to (3.4)).

4. CONTINGENT CONES AND SECOND-ORDER TANGENT SETS

The contingent cone to the set D at the point x∗ is defined as follows:

TD(x∗) =
{

h ∈ X
∣∣ ∃ {tk} ⊂ R+ \ {0} such that {tk} → 0 and dist(x∗ + tkh,D) = o(tk)

}
. (4.1)

Accordingly, the (external) second-order tangent set to D at x∗ in a direction h ∈ X is defined as

T 2
D(x∗, h) =

{
x∈X

∣∣∣ ∃ {tk}⊂R+ \ {0} such that {tk}→ 0 and dist
(
x∗ + tkh +

1
2
t2kx,D

)
= o

(
t2k

)}
.

(4.2)
As is known, both of these sets are always closed (see, e.g., [3]).
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Consider the cone

H2(x∗) =
{
h ∈ H1(x∗)

∣∣ ∃x ∈ X such that F ′(x∗)x + F ′′(x∗)[h, h] = 0

and 〈g′i(x∗), x〉 + g′′i (x∗)[h, h] ≤ 0 ∀ i ∈ I(x∗, h)
}

=
{
h ∈ H1(x∗) | S2(x∗, h) �= ∅

}
. (4.3)

Let H1
2 (x∗) denote the cone consisting of all h ∈ H2(x∗) for which the 2-regularity condition holds at

the point x∗ in the direction h. Similarly, by H2
2 (x∗) we denote the cone consisting of all h ∈ H2(x∗)

for which the second-order 2-regularity condition holds at x∗ in the direction h. It follows from what
was said above that H1

2 (x∗) ⊂ H2
2 (x∗).

The following assertion is a corollary to Theorem 6′ from [17]. We give its proof for completeness.
Theorem 1. The following inclusions hold :

H1
2 (x∗) ⊂ TD(x∗) ⊂ H2(x∗). (4.4)

Proof. For simplicity, we assume that g(x∗) = 0 (otherwise, we replace g by a mapping with
components gi, i ∈ I(x∗)).

Consider the cone K = {0} × R
m
− in the space Y × R

m. Let Φ: X → Y × R
m be the mapping

defined by Φ(x) = (F (x), g(x)). It follows from (1.2) that

D = {x ∈ X | Φ(x) ∈ K}. (4.5)

Moreover, we have Φ(x∗) = 0, and im Φ′(x∗) is closed by Lemma 3. It is easy to derive from (3.1),
(3.5), and (4.3) that

H2(x∗) =
{
h ∈ X | Φ′(x∗)h ∈ K, Φ′′(x∗)[h, h] ∈ K + im Φ′(x∗)

}
. (4.6)

If h ∈ TD(x∗), then, according to (4.1) and (4.5), there exist sequences {tk} ⊂ R+ \ {0} and
{rk} ⊂ X such that {tk} → 0, rk = o(tk), and Φ(x∗ + tkh + rk) ∈ K for any k. Hence,

K � Φ(x∗ + tkh + rk) = tkΦ′(x∗)h + Φ′(x∗)rk +
1
2
t2kΦ

′′(x∗)[h, h] + o
(
t2k

)
,

and so

K � tkΦ′(x∗)h + o(tk) and K + im Φ′(x∗) �
1
2
t2kΦ

′′(x∗)[h, h] + o
(
t2k

)
;

by Lemma 3, the set on the left-hand side of the last inclusion is closed. This and (4.6) immediately
imply that h ∈ H2(x∗).

Now, suppose that h ∈ H1
2 (x∗). Take ξ̄ 1 ∈ X and ξ̄2 ∈ H1(x∗) as in Definition 1. We set U =

X×X, V = Y , and P = X×H1(x∗). Let Φ be a mapping defined by Φ(u) = F ′(x∗)x1+F ′′(x∗)[h, x2]
for u = (x1, x2) ∈ U . We set ū = (ξ̄ 1, ξ̄ 2) ∈ P and v̄ = Φ(ū). By virtue of the equality in (3.3), we
have v̄ = 0. It follows from (3.2) and Robinson’s stability theorem [18] (see also Theorem 2.87 and
p. 71 in [3]) that the objects introduced above satisfy all assumptions of Lemma 1 for some a > 0,
ε1 > 0, and ε2 > 0. Let c > 0, δ1 > 0, and δ2 > 0 be the same as in Lemma 1.

For x ∈ X, we set

∆1(x) = F (x∗ + x) − F ′(x∗)x − 1
2
F ′′(x∗)[x, x], (4.7)

∆2(x) = g(x∗ + x) − g′(x∗)x − 1
2
g′′(x∗)[x, x]. (4.8)
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According to estimate (2.17), we have

∆1(th) = o(t2) and ∆2(th) = o(t2). (4.9)

Set
τ(t) = 4max

{
‖∆1(th)‖1/2, ‖∆2(th)‖1/2, t3/2

}
. (4.10)

It follows from (4.9) and (4.10) that

τ(t) = o(t) and lim
t→0+

t2

τ(t)
= 0. (4.11)

Take any x ∈ S2(x∗, h) (we have S2(x∗, h) �= ∅ by (4.3)); for any x1, x2 ∈ X and t > 0, we set

x(x1, x2; t) = x∗ + th + τ(t)x2 +
1
2
t2x + tτ(t)x1 (4.12)

and

ϕt(u) = ϕt(x1, x2) =
t2

2τ(t)
F ′′(x∗)[h, x] + tF ′′(x∗)[h, x1]

+
1

2tτ(t)
F ′′(x∗)

[
τ(t)x2 +

1
2
t2x + tτ(t)x1, τ(t)x2 +

1
2
t2x + tτ(t)x1

]

+
1

tτ(t)
∆1

(
x(x1, x2; t) − x∗

)
. (4.13)

Relations (2.17) and (4.11) imply that, on any bounded set, the mapping ϕt satisfies the Lipschitz
condition with a constant that tends to zero as t → 0+. Moreover, according to (2.17) and (4.11),∥∥∥∥∆1

(
th + τ(t)ξ̄ 2 +

1
2
t2x + tτ(t)ξ̄ 1

)∥∥∥∥ ≤ ‖∆1(th)‖

+
∥∥∥∥∆1

(
th + τ(t)ξ̄ 2 +

1
2
t2x + tτ(t)ξ̄ 1

)
− ∆1(th)

∥∥∥∥
= ‖∆1(th)‖ + o(tτ(t)) (4.14)

and, similarly, ∥∥∥∥∆2

(
th + τ(t)ξ̄ 2 +

1
2
t2x + tτ(t)ξ̄ 1

)∥∥∥∥ = ‖∆2(th)‖ + o(tτ(t)). (4.15)

It follows from (4.9)–(4.14) that ϕt(ū) → 0 as t → 0+.
Thus, for any sufficiently small t > 0, the mapping ϕt satisfies the Lipschitz condition with a

constant l < 1/a on Bδ1(ū), and ‖v̄ + ϕt(ū)‖ ≤ δ2.
For u = (x1, x2) ∈ U , relations (4.7), (4.12), and (4.13), the definition of Φ, and the inclusions

h ∈ H1(x∗) and x ∈ S2(x∗, h) (see also (3.1) and (3.5)) imply

F (x(x1, x2; t)) = τ(t)F ′(x∗)x2 + tτ(t)F ′(x∗)x1 + tτ(t)F ′′(x∗)[h, x2]

+
1
2
t3F ′′(x∗)[h, x] + t2τ(t)F ′′(x∗)[h, x1]

+
1
2
F ′′(x∗)

[
τ(t)x2 +

1
2
t2x + tτ(t)x1, τ(t)x2 +

1
2
t2x + tτ(t)x1

]
+ ∆1(x(t) − x∗)

= τ(t)F ′(x∗)x2 + tτ(t)(Φ(u) + ϕt(u)).
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Then, applying Lemma 1 to the set P and the mappings Φ and ϕ = ϕt, we conclude that for any
sufficiently small t > 0, there exist x1(t) ∈ X and x2(t) ∈ H1(x∗) (see (3.1)) such that

F (x(t)) = 0, (4.16)

where x(t) = x(x1(t), x2(t); t), and

‖x1(t) − ξ̄ 1‖ + ‖x2(t) − ξ̄ 2‖ = ‖u − ū‖ ≤ c‖v̄ + ϕt(ū)‖ = c‖ϕt(ū)‖. (4.17)

In (4.17), a standard norm on X × X is assumed which is given by the sum of norms on X.
Since ϕt(ū) → 0 as t → 0+, it follows from (4.17) that

‖x1(t) − ξ̄1‖ → 0 and ‖x2(t) − ξ̄ 2‖ → 0 (4.18)

as t → 0+; in particular, (4.11) and (4.12) imply x(t) = x∗+ th+o(t). Therefore, according to (4.1)
and (4.16), it remains to be shown that g(x(t)) ≤ 0 for any sufficiently small t > 0.

The relations (4.8), (4.12), x2(t) ∈ H1(x∗) (see also (3.1)), (4.10), (4.11), (4.15), and (4.18)
imply

g(x(t)) = tg′(x∗)h + τ(t)g′(x∗)x2(t) +
1
2
t2

(
g′(x∗)x + g′′(x∗)[h, h]

)
+ tτ(t)

(
g′(x∗)x1(t) + g′′(x∗)[h, x2(t)]

)
+

1
2
t3g′′(x∗)[h, x] + t2τ(t)g′′(x∗)[h, x1(t)]

+
1
2
g′′(x∗)

[
τ(t)x2(t) +

1
2
t2x + tτ(t)x1(t), τ(t)x2(t) +

1
2
t2x + tτ(t)x1(t)

]
+ ∆2(x(t) − x∗)

≤ tg′(x∗)h +
1
2
t2

(
g′(x∗)x + g′′(x∗)[h, h]

)
+ tτ(t)

(
g′(x∗)ξ̄ 1 + g′′(x∗)[h, ξ̄ 2]

)
+ o(tτ(t)).

(4.19)
If i ∈ {1, . . . ,m} \ I(x∗, h), then 〈g′(x∗), h〉 < 0 because h ∈ H1(x∗) (see (3.1)), and (4.19) implies
that gi(x(t)) < 0 for any sufficiently small t > 0. If i ∈ I(x∗, h), then 〈g′(x∗), h〉 = 0 and, since
x ∈ S2(x∗, h) (see (3.5)), relation (4.19) and the inequalities in (3.3) give

gi(x(t)) ≤ tτ(t)
(
g′(x∗)ξ̄ 1 + g′′(x∗)[h, ξ̄ 2]

)
+ o(tτ(t)) < 0

for any sufficiently small t > 0. This completes the proof of the theorem.

Thus, H2(x∗) is an outer approximation of the contingent cone TD(x∗), and H1
2 (x∗) is its inner

approximation. In the absence of inequality constraints, Theorem 1 was first obtained in [4]. An
earlier version of this result under stronger smoothness requirements can be found in [19].

It is easy to see from the proof of Theorem 1 suggested above that both inclusions in (4.4)
remain valid when the contingent cone TD(x∗) is replaced by the so-called interior tangent cone

T i
D(x∗) =

{
h ∈ X | dist(x∗ + th,D) = o(t), t ≥ 0

}
to the set D at the point x∗.

Definition 3. We say that the 2-regularity condition holds at the point x∗ if the 2-regularity
condition holds at this point in any direction h ∈ H2(x∗) \ {0}, i.e., if H2(x∗) \ {0} = H1

2 (x∗) \ {0}.
Theorem 1 implies the following corollary.
Corollary 1. If the 2-regularity condition holds at x∗, then TD(x∗) = H2(x∗).
Moreover, since TD(x∗) is closed, the equality TD(x∗) = H2(x∗) holds even if H1

2 (x∗) is just
dense in H2(x∗).
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Recall that if the MFCQ holds at the point x∗, then the 2-regularity condition holds at this point
in any direction h ∈ X, i.e., H1

2 (x∗) = H2(x∗). Moreover, in this case, we have H2(x∗) = H1(x∗).
Indeed, for any h ∈ H1(x∗), we can take an element x̃ ∈ X such that F ′(x∗)x̃ = −1

2F ′′(x∗)[h, h]
(such an element exists because im F ′(x∗) = Y ). We set x = x̃ + tξ̄, where ξ̄ ∈ X is the same as
in (1.3). For any sufficiently large t > 0, we then have x ∈ S2(x∗, h); according to (4.3), it follows
that h ∈ H2(x∗).

Thus, if the MFCQ holds at the point x∗, Corollary 1 reduces to the traditional description of
the contingent cone by the equality TD(x∗) = H1(x∗). However, the conditions of Theorem 1 and
Corollary 1 are much less restrictive than the MFCQ.

In the absence of equality constraints, analogs of Theorem 1 and Corollary 1 were obtained
in [11, 12].

In the following theorem, it is assumed that the mappings F and g are three times Fréchet
differentiable at the point x∗. For any h, x ∈ X, we define a set of indices

I(x∗, h, x) =
{
i ∈ I(x∗, h) | 〈g′i(x∗), x〉 + g′′i (x∗)[h, h] = 0

}
and put

S3(x∗, h) =
{

x2 ∈S2(x∗, h)
∣∣ ∃x1 ∈X such that F ′(x∗)x1 + 3F ′′(x∗)[h, x2] + F ′′′(x∗)[h, h, h] = 0,

〈g′i(x∗), x1〉 + 3g′′i (x∗)[h, x2] + g′′′i (x∗)[h, h, h] ≤ 0 ∀ i ∈ I(x∗, h, x2)
}

. (4.20)

Theorem 2. For any h ∈ X, the following inclusion holds:

T 2
D(x∗, h) ⊂ S3(x∗, h). (4.21)

If h ∈ H2
2 (x∗), then the reverse inclusion is also valid, i.e.,

T 2
D(x∗, h) = S3(x∗, h). (4.22)

Proof. Again, without loss of generality, we assume that g(x∗) = 0.
If T 2

D(x∗, h) �= ∅, then (4.1) and (4.2) imply h ∈ T 2
D(x∗); therefore, by virtue of the second

inclusion in (4.4), we have h ∈ H2(x∗).
Let x∈T 2

D(x∗, h). It follows from (1.2) and (4.2) that there exist sequences {tk}⊂R+ \ {0} and
{rk} ⊂ X such that {tk} → 0, rk = o(t2k), and Φ

(
x∗ + tkh + 1

2t2kx + rk
)
∈ K for all k.

Let m̃ denote the number of elements in the set I(x∗, h). Consider the cone K = {0} × R
m̃
−

in Y × R
m̃, the mapping g̃ : X → R

m̃ with components gi(x), i ∈ I(x∗, h), and the mapping
Φ: X → Y ×R

m̃ defined by Φ(x) = (F (x), g̃(x)). We have Φ(x∗) = 0; (3.1), (4.3), and the inclusion
h ∈ H2(x∗) imply h ∈ ker Φ′(x∗). Moreover, it follows from (3.5) that

S2(x∗, h) =
{
x ∈ X | Φ′(x∗)x + Φ′′(x∗)[h, h] ∈ K

}
. (4.23)

For any k, the inclusion h ∈ ker Φ′(x∗) yields

K � Φ
(

x∗ + tkh +
1
2
t2kx + rk

)
=

1
2
t2k

(
Φ′(x∗)x + Φ′′(x∗)[h, h]

)
+ o

(
t2k

)
.

By virtue of (4.23), this implies x ∈ S2(x∗, h).
Now, let m̃ denote the cardinality of the set I(x∗, h, x) and g̃ : X → R

m̃ be the mapping with
components gi(x), i ∈ I(x∗, h, x). Consider the cone K ⊂ Y ×R

m̃ and the mapping Φ: X → Y ×R
m̃
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defined in the same way as above but for the new m̃ and g̃. Again, we have Φ(x∗) = 0, im Φ′(x∗)
is closed by Lemma 3, and h ∈ ker Φ′(x∗). Definition (4.20) implies

S3(x∗, h) =
{
x ∈ S2(x∗, h) | 3Φ′′(x∗)[h, x] + Φ′′′(x∗)[h, h, h] ∈ K + im Φ′(x∗)

}
. (4.24)

Moreover, by the definition of the set I(x∗, h, x), it follows from (4.3) and the inclusion h ∈ H2(x∗)
that Φ′(x∗)x + Φ′′(x∗)[h, h] = 0. Hence, for any k, we have

K � Φ
(

x∗ + tkh +
1
2
t2kx + rk

)
= Φ′(x∗)rk +

1
2
t3k

(
Φ′′(x∗)[h, x] +

1
3
Φ′′′(x∗)[h, h, h]

)
+ o

(
t3k

)
and, therefore,

K + im Φ′(x∗) �
1
2
t3k

(
Φ′′(x∗)[h, x] +

1
3
Φ′′′(x∗)[h, h, h]

)
+ o

(
t3k

)
;

according to Lemma 3, the set on the left-hand side of this inclusion is closed. This and rela-
tion (4.24) immediately imply x ∈ S3(x∗, h).

Now, suppose that h ∈ H2
2 (x∗) and x = x2 ∈ S3(x∗, h). Take any element x1 ∈ X such that

F ′(x∗)x1 + 3F ′′(x∗)[h, x2] + F ′′′(x∗)[h, h, h] = 0 (4.25)

and
〈g′i(x∗), x1〉 + 3g′′i (x∗)[h, x2] + g′′′i (x∗)[h, h, h] ≤ 0 ∀ i ∈ I(x∗, h, x2) (4.26)

(such an element exists by virtue of (4.20)). Take x̄1 ∈ X and x̄2 ∈ S2(x∗, h) as in Definition 2.
For every θ ∈ (0, 1], we set x̂1(θ) = (1 − θ)x1 + x̄1 and x̂2(θ) = (1 − θ)x2 + x̄2. Let us show
that x̂2(θ) ∈ T 2

D(x∗, h); this inclusion implies that x2 ∈ T 2
D(x∗, h) since T 2

D(x∗, h) is closed and
x̂2(θ) → x2 as θ → 0+.

It follows from (3.5), (4.20), (3.7), (3.8), (4.25), and (4.26) that x̂2(θ) ∈ S2(x∗, h),

F ′(x∗)x̂1(θ) + 3F ′′(x∗)[h, x̂2(θ)] + F ′′′(x∗)[h, h, h] = 0, (4.27)

and
〈g′i(x∗), x̂1(θ)〉 + 3g′′i (x∗)[h, x̂1(θ)] + g′′′i (x∗)[h, h, h] < 0 ∀ i ∈ I(x∗, h, x2). (4.28)

We set U = X × X, V = Y , and P = X × S2(x∗, h) and define a mapping Φ as Φ(u) =
F ′(x∗)x1 + 3F ′′(x∗)[h, x2] + F ′′′(x∗)[h, h, h] for u = (x1, x2) ∈ U . Let ū = (x̂1(θ), x̂2(θ)) ∈ P and
v̄ = Φ(ū). By virtue of (4.27), we have v̄ = 0. It follows from (3.6) and Robinson’s stability theorem
that the objects introduced above satisfy all the conditions of Lemma 1 for some a > 0, ε1 > 0, and
ε2 > 0. Let the numbers c > 0, δ1 > 0, and δ2 > 0 be chosen as in Lemma 1.

For any x ∈ X, we define ∆1(x) and ∆2(x) according to (4.7) and (4.8). For x1, x2 ∈ X and
t > 0, we set

x(x1, x2; t) = x∗ + th +
1
2
t2x2 +

1
3!

t3x1 (4.29)

and

ϕt(u) = ϕt(x1, x2) = tF ′′(x∗)[h, x1] +
3
t3

F ′′(x∗)
[
1
2
t2x2 +

1
3!

t3x1,
1
2
t2x2 +

1
3!

t3x1

]

+
3!
t3

∆1(x(x1, x2; t) − x∗) − F ′′′(x∗)[h, h, h]. (4.30)
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Estimate (2.17) implies that, on any bounded set, the mapping ϕt : U → V satisfies the Lipschitz
condition with constant tending to zero as t → 0+. Moreover, according to (4.7), we have

∆1

(
th +

1
2
t2x2 +

1
3!

t3x1

)
=

1
3!

t3F ′′′(x∗)[h, h, h] + o(t3); (4.31)

similarly, according to (4.8), we have

∆2

(
th +

1
2
t2x2 +

1
3!

t3x1

)
=

1
3!

t3F ′′′(x∗)[h, h, h] + o(t3). (4.32)

It follows from (4.30) and (4.31) that ϕt(ū) → 0 as t → 0+.
Thus, for any sufficiently small t > 0, the mapping ϕt satisfies the Lipschitz condition on Bδ1(ū)

with a constant l < 1/a, and ‖v̄ + ϕt(ū)‖ ≤ δ2.
Now, for u = (x1, x2) ∈ U , it follows from (4.7), (4.29)–(4.31), the definition of Φ, and the

inclusion h ∈ H1(x∗) (see also (3.1)) that

F (x(x1, x2; t)) =
1
2
t2F ′(x∗)x2 +

1
3!

t3F ′(x∗)x1 +
1
2
t2F ′′(x∗)[h, h] +

1
2
t3F ′′(x∗)[h, x2]

+
1
3!

t4F ′′(x∗)[h, x1] +
1
2
F ′′(x∗)

[
1
2
t2x2 +

1
3!

t3x1,
1
2
t2x2 +

1
3!

t3x1

]
+ ∆1(x(t) − x∗)

=
1
2
t2

(
F ′(x∗)x2 + F ′′(x∗)[h, h]

)
+

1
3!

t3(Φ(u) + ϕt(u)) = 0.

Applying Lemma 1 to the set P and the mappings Φ and ϕ = ϕt, we see that for any sufficiently small
t > 0, there exist x1(t) ∈ X and x2(t) ∈ S2(x∗, h) (see (3.5)) such that, for x(t) = x(x1(t), x2(t); t),
we have

F (x(t)) = 0 (4.33)

and
‖x1(t) − x̂1(θ)‖ + ‖x2(t) − x̂2(θ)‖ = ‖u − ū‖ ≤ c‖v̄ + ϕt(ū)‖ = c‖ϕt(ū)‖. (4.34)

In (4.34), it is assumed that the norm on X × X is the sum of the norms on the copies of X.
Since ϕt(ū) → 0 as t → 0+, it follows from (4.34) that

‖x1(t) − x̂1(θ)‖ → 0 and ‖x2(t) − x̂2(θ)‖ → 0 (4.35)

as t → 0+; in particular, by virtue of (4.29), we have

x(t) = x∗ + th +
1
2
t2x̂2(θ) +

1
2
t2(x2(t) − x̂2(θ)) +

1
3!

t3x1(t) = x∗ + th +
1
2
t2x̂2(θ) + o(t2).

Thus, according to (4.2) and (4.33), to prove the inclusion x̂2(θ) ∈ T 2
D(x∗, h), it remains to show

that g(x(t)) ≤ 0 for any sufficiently small t > 0.
Relations (4.8), (4.29), (4.32), and (4.35) give

g(x(t)) = tg′(x∗)h +
1
2
t2

(
g′(x∗)x2(t) + g′′(x∗)[h, h]

)
+

1
3!

t3g′(x∗)x1(t) +
1
2
t3g′′(x∗)[h, x2(t)]

+
1
3!

t4g′′(x∗)[h, x1(t)] +
1
2
g′′(x∗)

[
1
2
t2x2 +

1
3!

t3x1,
1
2
t2x2 +

1
3!

t3x1

]
+ ∆2(x(t) − x∗)

= tg′(x∗)h +
1
2
t2

(
g′(x∗)x2(t) + g′′(x∗)[h, h]

)
+

1
3!

t3
(
g′(x∗)x1(t) + 3g′′(x∗)[h, x2(t)] + g′′′(x∗)[h, h, h]

)
+ o(t3). (4.36)
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If i ∈ {1, . . . ,m} \ I(x∗, h), then 〈g′(x∗), h〉 < 0 because h ∈ H1(x∗) (see (3.1)), and (4.36) implies
that gi(x(t)) < 0 for any sufficiently small t > 0. If i ∈ I(x∗, h)\I(x∗, h, x̂2(θ)), then 〈g′(x∗), h〉 = 0,
the inclusion x̂2(θ) ∈ S2(x∗, h) implies 〈g′i(x∗), x̂2(θ)〉 + g′′i (x∗)[h, h] < 0 (see (3.5)), and according
to (4.35) and (4.36) we have

g(x(t)) =
1
2
t2

(
g′(x∗)x2(t) + g′′(x∗)[h, h]

)
+ o(t2) =

1
2
t2

(
g′(x∗)x̂2(θ) + g′′(x∗)[h, h]

)
+ o(t2) < 0

for any sufficiently small t > 0. Finally, if i ∈ I(x∗, h, x̂2(θ)), then 〈g′(x∗), h〉 = 0, and since
x̂2(t) ∈ S2(x∗, h), it follows from (4.35), (4.36), and (4.28) that

gi(x(t)) ≤ 1
3!

t3
(
g′(x∗)x1(t) + 3g′′(x∗)[h, x2(t)] + g′′′(x∗)[h, h, h]

)
+ o(t3)

=
1
3!

t3
(
g′(x∗)x̂1(θ) + 3g′′(x∗)[h, x̂1(θ)] + g′′′(x∗)[h, h, h]

)
+ o(t3) < 0

for any sufficiently small t > 0. This completes the proof of the theorem.

It is easy to see from the proof of Theorem 2 that both assertions of this theorem remain
valid when the second-order tangent set T 2

D(x∗, h) is replaced by the so-called inner second-order
tangent set

T i,2
D (x∗, h) =

{
x ∈ X

∣∣∣ dist
(

x∗ + th +
1
2
t2x,D

)
= o(t2), t ≥ 0

}

to D at the point x∗ in the direction h ∈ X.

5. FIRST-ORDER NECESSARY CONDITIONS

This section is devoted to first-order necessary conditions for a local minimum in prob-
lem (1.1), (1.2). These conditions are of first order in the sense that they involve only the first
derivative of the objective function of the problem. Moreover, these conditions are a natural devel-
opment of the usual first-order necessary conditions for a local extremum. Thus, we assume that
the function f is Fréchet differentiable at the point x∗ under consideration.

Theorem 1 immediately implies the following first-order necessary condition.
Proposition 2. If x∗ is a local solution to problem (1.1), (1.2), then

〈f ′(x∗), h〉 ≥ 0 ∀h ∈ H1
2 (x∗).

The rest of this section is devoted to the derivation of a first-order necessary condition in the
Lagrangian form.

For an arbitrary h ∈ X, let G(x∗, h) : X × X → Y be a linear operator defined by

G(x∗, h)(x1, x2) = F ′(x∗)x1 + F ′′(x∗)[h, x2]. (5.1)

Note that this operator appears on the left-hand side of (3.2). We also define a cone

C2(x∗) =
{
h ∈ H2(x∗) | 〈f ′(x∗), h〉 ≤ 0

}
, (5.2)

which is a restriction of the critical cone of problem (1.1), (1.2) at the point x∗ (see (5.14) below).
Finally, we define a generalized Lagrangian for problem (1.1), (1.2) by relation (1.7).

Theorem 3. Suppose that x∗ is a local solution to problem (1.1), (1.2) and the subspaces
im F ′(x∗) and G(x∗, h)(X × ker F ′(x∗)) are closed.
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Then, for any h ∈ C2(x∗), there exist λ0 = λ0(h) ≥ 0, λ1 = λ1(h) ∈ Y ∗, λ2 = λ2(h) ∈ Y ∗,
µ1 = µ1(h) ∈ R

m, and µ2 = µ2(h) ∈ R
m such that λ0, λ2, and µ2 do not vanish simultaneously

and
∂L2

∂x
(x∗, h, λ0, λ

1, λ2, µ1, µ2) = 0, (F ′(x∗))∗λ2 + (g′(x∗))∗µ2 = 0, (5.3)

µ1 ≥ 0, 〈µ1, g(x∗)〉 = 0, µ2 ≥ 0, 〈µ2, g(x∗)〉 = 0. (5.4)

Proof. First, suppose that h ∈ H1
2 (x∗). Consider the minimization problem

〈f ′(x∗), ξ〉 → min, ξ ∈ H2(x∗). (5.5)

Proposition 2 and (5.2) imply

〈f ′(x∗), h〉 = 0. (5.6)

Moreover, according to Remark 1, there exists a δ > 0 such that H2(x∗) ∩ Bδ(h) ⊂ H1
2 (x∗); hence,

by Proposition 2, we have

〈f ′(x∗), ξ〉 ≥ 0 ∀ ξ ∈ H2(x∗) ∩ Bδ(h).

Together with (5.6), this means that h is a local solution to problem (5.5).
Now, consider the problem

〈f ′(x∗), ξ〉 → min, (x, ξ) ∈ D2(x∗), (5.7)

D2(x∗) =
{

(x, ξ) ∈ X × H1(x∗)
∣∣ F ′(x∗)x + F ′′(x∗)[ξ, ξ] = 0,

〈g′i(x∗), x〉 + g′′i (x∗)[ξ, ξ] ≤ 0 ∀ i ∈ I(x∗, h)
}

. (5.8)

By the definition of the set H2(x∗) (see (3.5) and (4.3)), there exists an element x(h) ∈ X such that
(x(h), h) ∈ D2(x∗). It follows from the above considerations that such a point (x(h), h) is a local
solution to problem (5.7), (5.8); it is easy to see that the condition of 2-regularity in the direction h
implies that the constraints of problem (5.7), (5.8) satisfy the Robinson regularity condition at this
solution (see, e.g., [3, (3.13)]). Using the dual cone lemma [2, Section 3.3.4] and (1.7), it is easy to
derive the required relations (5.3) and (5.4) for λ0 = 1 and some λ1 ∈ Y ∗, λ2 ∈ Y ∗, µ1 ∈ R

m, and
µ2 ∈ R

m.
Now, suppose that h /∈ H1

2 (x∗). Let s denote the number of elements in the set I(x∗). Consider
the mapping g̃ : X → R

s with components gi(x), i ∈ I(x∗).
First, suppose that condition (3.2) is violated. Set U = X × X, V = Y , and S = X × H1(x∗)

and define linear operators A, Λ, and B as follows: Au = F ′(x∗)x, Λu = G(x∗, h)u, and Bu =
g̃ ′(x∗)x for u = (x, ξ) ∈ U . We set v̄ = 0 and w̄ = 0. Lemma 6 implies that the convex cone
G(x∗, h)(X × H1(x∗)) is closed. The violation of condition (3.2) means that this cone does not
coincide with the entire Y ; hence, by the second separation theorem (see [15, p. 210]), there exist
y ∈ Y and λ2 ∈ Y ∗ such that

〈(F ′(x∗))∗λ2, x〉 + 〈(F ′′(x∗)[h])∗λ2, ξ〉 = 〈λ2, G(x∗, h)(x, ξ)〉 > 〈λ2, y〉 ∀x ∈ X, ∀ ξ ∈ H1(x∗)

(see (5.1); the inequality λ2 �= 0 holds automatically). This relation implies that

(F ′(x∗))∗λ2 = 0 and 〈(F ′′(x∗)[h])∗λ2, ξ〉 ≥ 0 ∀ ξ ∈ H1(x∗).
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Using the dual cone lemma [2, Section 3.3.4] and relations (3.1) and (1.7), we obtain the required
relations (5.3) and (5.4) for λ0 = 0, some λ1 ∈ Y ∗, the λ2 ∈ Y ∗ \ {0} specified above, µ1 = 0, and
µ2 = 0.

Finally, suppose that condition (3.2) holds but condition (3.3) is violated. The latter means
that the set

S =
{

(y, z) ∈ Y × R
m̃

∣∣ ∃ ξ1 ∈ X, ξ2 ∈ H1(x∗) such that y = G(x∗, h)(ξ1, ξ2)

and z > g̃ ′(x∗)ξ1 + g̃ ′′(x∗)[h, ξ2]
}

(5.9)

does not contain 0; moreover, the set S is obviously convex, and intS �= ∅ by (3.2). By the first
separation theorem (see [15, p. 209]), there exist λ2 ∈ Y ∗ and µ̃2 ∈ R

s such that they do not vanish
simultaneously and

〈λ2, y〉 + 〈µ̃2, z〉 ≥ 0 ∀ (y, z) ∈ S. (5.10)

According to (5.9), we have S + {0} × R
s
+ ⊂ S, and (5.10) implies µ̃2 ≥ 0.

Moreover, according to (5.9) and (5.10), we have〈
(F ′(x∗))∗λ2 + (g̃ ′(x∗))∗µ̃2, ξ1

〉
+

〈
(F ′′(x∗)[h])∗λ2 + (g̃ ′′(x∗)[h])∗µ̃2, ξ2

〉
=

〈
λ2, G(x∗, h)(ξ1, ξ2)

〉
+

〈
µ̃2, g̃ ′(x∗)ξ1 + g̃ ′′(x∗)[h, ξ2]

〉
≥ 0

∀ ξ1 ∈ X, ∀ ξ2 ∈ H1(x∗).

It follows that
(F ′(x∗))∗λ2 + (g̃ ′(x∗))∗µ̃2 = 0 (5.11)

and 〈
(F ′′(x∗)[h])∗λ2 + (g̃ ′′(x∗)[h])∗µ̃2, ξ

〉
≥ 0 ∀ ξ ∈ H1(x∗).

The last relation, the dual cone lemma [2, Section 3.3.4], and (3.1) imply the existence of λ1 ∈ Y ∗

and µ̃1 ∈ R
s such that µ̃1 ≥ 0 and

(F ′(x∗))∗λ1 + (g̃ ′(x∗))∗µ̃1 + (F ′′(x∗)[h])∗λ2 + (g̃ ′′(x∗)[h])∗µ̃2 = 0. (5.12)

Let µ1 ∈ R
m and µ2 ∈ R

m be defined by the equalities µ1
i = µ̃1

i and µ2
i = µ̃2

i for i ∈ I(x∗) and
µ1

i = µ2
i = 0 for i ∈ {1, 2, . . . ,m} \ I(x∗). The required relations (5.3) and (5.4) for λ0 = 0, these

µ1 ∈ R
m, µ2 ∈ R

m, and λ1 ∈ Y ∗, λ2 ∈ Y ∗ specified above follow from (1.7), (5.11), and (5.12);
moreover, λ2 and µ2 do not vanish simultaneously. This completes the proof of the theorem.

Let
C1

2 (x∗) = C2(x∗) ∩ H1
2 (x∗). (5.13)

It is easy to see that if h ∈ C1
2 (x∗), then relations (5.3) and (5.4) hold only for λ0 > 0. This

observation and the proof of Theorem 3 imply that for any h ∈ H2(x∗), relations (5.3) and (5.4)
hold for λ0 = 0 and some λ1, λ2 ∈ Y ∗ and µ1, µ2 ∈ R

m such that λ2 and µ2 do not vanish
simultaneously if and only if the 2-regularity condition in the direction h is violated at x∗.

If the MFCQ holds at the point x∗, then Theorem 3 becomes the usual first-order necessary
condition in the form (1.6). Indeed, as mentioned above, in this case we have H1

2 (x∗) = H2(x∗) =
H1(x∗), and it follows from (5.2) and (5.13) that C1

2 (x∗) coincides with the usual critical cone

C(x∗) = C1(x∗) =
{
h ∈ H1(x∗) | 〈f ′(x∗), h〉 ≤ 0

}
(5.14)
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for problem (1.1), (1.2) at the point x∗. In particular, C1
2 (x∗) contains h = 0. Applying Theorem 3

with h = 0 and using the equality

L2(x, 0, λ0, λ
1, λ2, µ1, µ2) = L(x, λ0, λ, µ)

∀x ∈ X, ∀λ1 = λ ∈ Y ∗, ∀λ2 ∈ Y ∗, ∀µ1 = µ ∈ R
m, ∀µ2 ∈ R

m,

which follows from (1.4) and (1.7), we see that relations (5.3) and (5.4) imply the required rela-
tions (1.6) (recall that λ0 cannot equal zero in this case).

Moreover, it is easy to show that if the MFCQ holds at x∗, then the second equality in (5.3)
and the condition on µ2 in (5.4) may hold simultaneously only for λ2 = 0 and µ2 = 0. Thus, using
the equality

L2(x, h, λ0, λ
1, 0, µ1, 0) = L(x, λ0, λ, µ) ∀x, h ∈ X, ∀λ1 = λ ∈ Y ∗, ∀µ1 = µ ∈ R

m,

which follows from (1.4) and (1.7), we reduce relations (5.3) and (5.4) to (1.6) for any h ∈ C(x∗)
(not only for h = 0).

At the same time, in the irregular case, when the MFCQ does not hold, relations (5.3) and (5.4)
(possibly, with λ2 �= 0 and/or µ2 �= 0) give meaningful information about the point x∗ under
consideration.

Example 1. Let X = R
3, Y = R, m = 1, f(x) = 〈l, x〉 for l ∈ R

3, F (x) = x1x3, and g(x) =
x2

1 +x2
2−x2

3. The point x∗ = 0 is feasible for problem (1.1), (1.2); moreover, F (x∗) = g(x∗) = 0 and
F ′(x∗) = g′(x∗) = 0. Thus, the MFCQ is violated and the standard first-order necessary conditions
hold trivially at the point x∗ for any l.

However, it follows from (3.1), (3.5), (4.3), and (5.2) that

C2(x∗) =
{
h ∈ R

3 | h1 = 0, h2
2 ≤ h2

3, l2h2 + l3h3 ≤ 0
}

and, as is easy to verify, C1
2 (x∗) = C2(x∗) \ {0}.

For any h ∈ C2(x∗), relations (5.3) and (5.4) hold for any numbers λ1, λ2, µ1 ≥ 0, and µ2 ≥ 0
satisfying the equalities

l1 + λ2h3 = 0, l2 + 2µ2h2 = 0, and l3 − 2µ2h3 = 0. (5.15)

It is easy to show that if l2 �= 0 or l3 �= 0, then there exists an h ∈ C2(x∗) \ {0} such that the
last two equalities in (5.15) hold for no µ2. Therefore, according to Theorem 3, x∗ cannot be a local
solution to problem (1.1), (1.2) in this case.

At the same time, if l2 = l3 = 0, then (5.15) holds for any h ∈ C2(x∗) \ {0} with λ2 = −l1/h3

and µ2 = 0. It is easy to see that in this case x∗ is indeed a solution to problem (1.1), (1.2). Note
that (1.5) holds only for λ0 = 0 at this solution.

Thus, in this example, Theorem 3 completely characterizes the presence (or absence) of a local
extremum at the point x∗. However, the situation certainly changes when f , F , or g contain terms
of order higher than 2 (see Example 2 below).

6. SECOND-ORDER NECESSARY CONDITIONS

This section is devoted to second-order necessary conditions for a local minimum in prob-
lem (1.1), (1.2). These conditions are of second order in the sense that they include the first
two derivatives of the objective function of the problem and are a natural development of the usual
second-order necessary optimality conditions. Thus, we assume that the function f is twice Fréchet
differentiable at the point x∗ under consideration. We also need to assume that the mappings F
and g are three times Fréchet differentiable at x∗.
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We set
C2

2 (x∗) = C2(x∗) ∩ H2
2 (x∗). (6.1)

The following proposition gives a second-order necessary condition.
Proposition 3. Let x∗ be a local solution to problem (1.1), (1.2).
Then, for any h ∈ C2

2 (x∗),

〈f ′(x∗), x〉 + f ′′(x∗)[h, h] ≥ 0 ∀x ∈ S3(x∗, h). (6.2)

Proof. By virtue of (6.1) and Theorem 2, for any h ∈ C2
2 (x∗) and x ∈ S3(x∗, h), there exists

a mapping r : R+ → X such that r(t) = o(t2) and x∗ + th + 1
2 t2x + r(t) ∈ D for all t ≥ 0. Since x∗

is a local solution to problem (1.1), (1.2), it follows from (5.2) and (6.1) that

0 ≤ f

(
x∗ + th +

1
2
t2x + r(t)

)
− f(x∗)

= 〈f ′(x∗), h〉t +
1
2
(
〈f ′(x∗), x〉 + f ′′(x∗)[h, h]

)
t2 + o

(
t2k

)
≤ 1

2
(
〈f ′(x∗), x〉 + f ′′(x∗)[h, h]

)
t2 + o(t2)

for any sufficiently small t ≥ 0. This immediately implies (6.2), which proves the proposition.
If the MFCQ holds at x∗, then C2

2 (x∗) = C1
2 (x∗) = C2(x∗) = C(x∗) according to the above

considerations. Moreover, in this case, S3(x∗, h) = S2(x∗, h) for any h ∈ X. Indeed, given x = x2 ∈
S2(x∗, h), take an element x̃ ∈ X such that F ′(x∗)x̃ = −3F ′′(x∗)[h, x] − F ′′′(x∗)[h, h, h] (such an
element exists because im F ′(x∗) = Y ). Let x1 = x̃+tξ̄, where ξ̄ ∈ X is the same as in (1.3). All the
conditions on the right-hand side of (4.20) are satisfied for sufficiently large t > 0, which means that
x ∈ S3(x∗, h). The validity of Proposition 3 in this case is well known (see, e.g., [3, Lemma 3.44]).

Let us proceed to a second-order necessary condition in the Lagrangian form.
Theorem 4. Suppose that x∗ is a local solution to problem (1.1), (1.2) and the subspaces

im F ′(x∗) and G(x∗, h)(X × ker F ′(x∗)) are closed.
Then, for any h ∈ C2(x∗), there exist λ0 = λ0(h) ≥ 0, λ1 = λ1(h) ∈ Y ∗, λ2 = λ2(h) ∈ Y ∗,

µ1 = µ1(h) ∈ R
m, and µ2 = µ2(h) ∈ R

m such that λ0, λ2, and µ2 do not vanish simultaneously,
relations (5.3) and (5.4) hold, and

∂2L2

∂x2

(
x∗, h, λ0, λ

1,
1
3
λ2, µ1,

1
3
µ2

)
[h, h] ≥ 0. (6.3)

Proof. Let m̂ and m̃ denote the cardinalities of the sets I(x∗, h) and I(x∗), respectively. Let
ĝ : X → R

m̂ be the mapping with components gi(x), i ∈ I(x∗, h), and g̃ : X → R
m̃ be the mapping

with components gi(x), i ∈ I(x∗).
Consider two cases. First, suppose that h ∈ C2

2 (x∗). Let us prove that in this case the required
assertion is true for λ0 = 1.

Set U = X × X, V = Y × Y , and s = m̂ + m̃. Define linear operators A, B and a linear
functional l by

Au =
(
F ′(x∗)x2, F ′(x∗)x1 + 3F ′′(x∗)[h, x2]

)
,

Bu =
(
ĝ ′(x∗)x2, g̃ ′(x∗)x1 + 3g̃ ′′(x∗)[h, x2]

)
,

and 〈l, u〉 = 〈f ′(x∗), x2〉 for u = (x1, x2) ∈ U . We set a = f ′′(x∗)[h, h],

v =
(
F ′′(x∗)[h, h], F ′′′(x∗)[h, h, h]

)
, and w =

(
ĝ ′′(x∗)[h, h], g̃ ′′′(x∗)[h, h, h]

)
.
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It follows from (3.5) and (4.3) that S2(x∗, h) �= ∅. For an arbitrary x ∈ S2(x∗, h), (3.5) implies

F ′′(x∗)[h, S2(x∗, h)] ⊂ F ′′(x∗)[h, x] + F ′′(x∗)[h, ker F ′(x∗)]. (6.4)

By (3.6),
int

(
im F ′(x∗) + 3F ′′(x∗)[h, S2(x∗, h)]

)
�= ∅.

Therefore, taking into account (6.4), we obtain

int
(
im F ′(x∗) + 3F ′′(x∗)[h, ker F ′(x∗)]

)
�= ∅;

since the set on the left-hand side of this inequality is a linear subspace, we have

im F ′(x∗) + 3F ′′(x∗)[h, ker F ′(x∗)] = Y.

It follows easily from this equality and the definition of the operator A that im A = im F ′(x∗)× Y ,
and so im A is a closed subspace (because im F ′(x∗) is closed). Moreover, definition (3.5) and
the second-order 2-regularity condition in the direction h imply that the set S defined by (2.1)
is nonempty; indeed, it contains the pair (x̄1, x̄2) ∈ X × S2(x∗, h), which satisfies (3.7) and (3.8).
Finally, (3.5), (4.20), and Proposition 3 imply (2.2). By Lemma 2, the required relations (5.3), (5.4),
and (6.3) hold for λ0 = 1 and some λ1, λ2 ∈ Y ∗ and µ1, µ2 ∈ R

m.
Consider the second case. Suppose that h /∈ C2

2 (x∗), i.e., h ∈ C2(x∗) \ H2
2 (x∗) (see (6.1)). Let

us prove that in this case the required assertion is true for λ0 = 0.
First, suppose that

int
(
im F ′(x∗) + 3F ′′(x∗)[h, S2(x∗, h)]

)
= ∅. (6.5)

We set U = X × X, V = Y , and s = m̂. Define linear operators A, Λ, and B as Au = F ′(x∗)x2,
Λu = F ′(x∗)x1 + 3F ′′(x∗)[h, x2], and Bu = ĝ ′(x∗)x2 for u = (x1, x2) ∈ U . Set v̄ = F ′′(x∗)[h, h]
and w̄ = ĝ ′′(x∗)[h, h]. Note that G(x∗, h)(X × ker F ′(x∗)) is closed if and only if Λ(ker A) is closed.
The inclusion h ∈ C2(x∗), together with (4.3) and (5.2), implies that the set S = X × S2(x∗, h)
defined by (2.6) is nonempty. Applying Lemma 5, we see that (6.5) may hold only when (2.7) is
violated, i.e.,

cl
(
lin

(
im F ′(x∗) + 3F ′′(x∗)[h, S2(x∗, h)]

))
�= Y. (6.6)

If −F ′′′(x∗)[h, h, h] ∈ im F ′(x∗) + 3F ′′(x∗)[h, S2(x∗, h)], then (6.6) is equivalent to

cl
(
lin

(
im F ′(x∗) + 3F ′′(x∗)[h, S2(x∗, h)] + F ′′′(x∗)[h, h, h]

))
�= Y. (6.7)

Thus, (6.6) means that either (6.7) holds or

−F ′′′(x∗)[h, h, h] /∈ im F ′(x∗) + 3F ′′(x∗)[h, S2(x∗, h)]. (6.8)

Moreover, by Lemma 6, im F ′(x∗) + 3F ′′(x∗)[h, S2(x∗, h)] is closed.
It follows from the second separation theorem (see [15, p. 210]) that in each of these cases, there

exists a λ2 ∈ Y ∗ \ {0} such that〈
λ2, F ′(x∗)x1 + 3F ′′(x∗)[h, x2] + F ′′′(x∗)[h, h, h]

〉
≥ 0 ∀x1 ∈ X, ∀x2 ∈ S2(x∗, h).

Set U = X × X, V = Y , and s = m̂ and define linear operators A and B and a linear functional l
by the equalities Au = F ′(x∗)x2, Bu = ĝ ′(x∗)x2, and 〈l, u〉 = 〈λ2, F ′(x∗)x1 + 3F ′′(x∗)[h, x2]〉 for
u = (x1, x2) ∈ U . Set a = 〈λ2, F ′′′(x∗)[h, h, h]〉, v = F ′′(x∗)[h, h], and w = ĝ ′′(x∗)[h, h]. Applying
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Lemma 2, we obtain the required relations (5.3) and (5.4) for λ0 = 0, some λ1 ∈ Y ∗ and µ1 ∈ R
m,

the λ2 ∈ Y ∗ \ {0} specified above, and µ2 = 0.
Now, suppose that

int
(
im F ′(x∗) + 3F ′′(x∗)[h, S2(x∗, h)]

)
�= ∅ (6.9)

but either (3.6) is violated or there exist no x̄1 ∈ X and x̄2 ∈ S2(x∗, h) satisfying (3.7) and (3.8).
Obviously, in this case 0 /∈ int S, where

S =
{
(y, z) ∈ Y × R

m̃
∣∣ ∃x1 ∈ X, x2 ∈ S2(x∗, h) such that

y = F ′(x∗)x1 + 3F ′′(x∗)[h, x2] + F ′′′(x∗)[h, h, h] and

z > g̃ ′(x∗)x1 + 3g̃ ′′(x∗)[h, x2] + g̃ ′′′(x∗)[h, h, h]
}

. (6.10)

Clearly, the set S is convex.
Let us show that intS �= ∅. We set U = X × X, V = Y , and P = X × S2(x∗, h) and define

a mapping Φ by Φ(u) = F ′(x∗)x1 + 3F ′′(x∗)[h, x2] + F ′′′(x∗)[h, h, h] for u = (x1, x2) ∈ U . It
follows from (6.9) that intΦ(P ) �= ∅. This means that there exists a ū = (x̂1, x̂2) ∈ P such that
v̄ = Φ(ū) ∈ int Φ(P ). Moreover, by Robinson’s stability theorem, the objects introduced above
satisfy the conditions of Lemma 1 for some a > 0, ε1 > 0, and ε2 > 0. Let c > 0, δ1 > 0, and δ2 > 0
be the numbers defined according to Lemma 1. Take any y ∈ Bδ2(v̄) and consider the mapping
ϕ : U → V defined by ϕ(u) ≡ −y. This mapping satisfies the Lipschitz condition with constant
l = 0 and the condition ‖v̄ + ϕ(ū)‖ = ‖y − v̄‖ ≤ δ2 on U . By Lemma 1, there exists a u ∈ P such
that

Φ(u) = y and ‖u − ū‖ ≤ c‖y − v̄‖ ≤ cδ2,

i.e.,
Bδ2(v̄) ⊂ Φ(P ∩ Bcδ2(ū)). (6.11)

Consider the set

S̃ = Bδ2(v̄) ×
{

z ∈ R
m̃

∣∣∣
zi > max

j∈I(x∗)

(
‖g′j(x∗)‖(‖x̂1‖ + cδ2) + ‖g′′j (x∗)[h]‖(‖x̂2‖ + cδ2) + ‖g′′′j (x∗)[h, h, h]‖

)
, i ∈ I(x∗)

}
.

Obviously, int S̃ �= ∅; moreover, (6.10), (6.11), and the definition of P and Φ imply S̃ ⊂ S. Thus,
int S �= ∅.

By the first separation theorem (see [15, p. 209]), there exist λ̃2 ∈ Y ∗ and µ̃2 ∈ R
m̃ such that

they do not vanish simultaneously and

〈λ̃2, y〉 + 〈µ̃2, z〉 ≥ 0 ∀ (y, z) ∈ S. (6.12)

According to (6.10), we have S + {0} × R
m̃
+ ⊂ S; this inclusion and the inequality in (6.12) imply

µ̃2 ≥ 0.
Relations (6.10) and (6.12) yield〈
(F ′(x∗))∗λ̃2 + (g̃ ′(x∗))∗µ̃2, x1

〉
+ 3

〈
(F ′′(x∗)[h])∗λ̃2 + (g̃ ′′(x∗)[h])∗µ̃2, x2

〉
+

〈
λ̃2, F ′′′(x∗)[h, h, h]

〉
+

〈
µ̃2, g̃ ′′′(x∗)[h, h, h]

〉
≥ 0

∀x1 ∈ X, ∀x2 ∈ S2(x∗, h).
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Therefore,
(F ′(x∗))∗λ̃2 + (g̃ ′(x∗))∗µ̃2 = 0 (6.13)

and

3
〈
(F ′′(x∗)[h])∗λ̃2 + (g̃ ′′(x∗)[h])∗µ̃2, x

〉
+

〈
λ̃2, F ′′′(x∗)[h, h, h]

〉
+

〈
µ̃2, g̃ ′′′(x∗)[h, h, h]

〉
≥ 0

∀x ∈ S2(x∗, h).

Using the last relation and (3.5) and applying Lemma 2 with U = X, V = Y , s = m̂, A = F ′(x∗),
B = ĝ ′(x∗), l = (F ′′(x∗)[h])∗λ̃2 + (g̃ ′′(x∗)[h])∗µ̃2, a = 〈λ̃2, F ′′′(x∗)[h, h, h]〉 + 〈µ̃2, g̃ ′′′(x∗)[h, h, h]〉,
v = F ′′(x∗)[h, h], and w = ĝ ′′(x∗)[h, h], we see that there exist λ1 ∈ Y ∗ and µ̂1 ∈ R

m̂ such that
µ̂1 ≥ 0,

(F ′(x∗))∗λ1 + (ĝ ′(x∗))∗µ̂1 + 3(F ′′(x∗)[h])∗λ̃2 + 3(g̃ ′′(x∗)[h])∗µ̃2 = 0, (6.14)

and

〈λ, F ′′(x∗)[h, h]〉 + 〈µ̂1, ĝ ′′(x∗)[h, h]〉 + 〈λ̃2, F ′′′(x∗)[h, h, h]〉 + 〈µ̃2, g̃ ′′′(x∗)[h, h, h]〉 ≥ 0. (6.15)

Set λ2 = 3λ̃2 and define vectors µ1 ∈ R
m and µ2 ∈ R

m by the equalities µ1
i = µ̂1

i for i ∈ I(x∗, h),
µ1

i = 0 for i ∈ {1, 2, . . . ,m}\I(x∗, h), µ2
i = 3µ̃2

i for i ∈ I(x∗), and µ2
i = 0 for i ∈ {1, 2, . . . ,m}\I(x∗).

It follows from (1.7) and (6.13)–(6.15) that the required relations (5.3), (5.4), and (6.3) hold for
λ0 = 0 and the λ1 ∈ Y ∗, µ1 ∈ R

m, λ2 ∈ Y ∗, and µ2 ∈ R
m specified above; moreover, λ2 and µ2 do

not vanish simultaneously. This completes the proof of the theorem.

It is easy to show that if h ∈ C2
2 (x∗), then relations (5.3), (5.4), and (6.3) hold only for λ0 > 0.

It follows from this observation and the proof of Theorem 4 that, for any h ∈ H2(x∗), the validity
of relations (5.3), (5.4), and (6.3) for λ0 = 0 and some λ1, λ2 ∈ Y ∗ and µ1, µ2 ∈ R

m such that λ2

and µ2 do not vanish simultaneously is equivalent to the violation of the second-order 2-regularity
condition at x∗ in the direction h.

The following example describes a situation in which Theorem 3 does not detect the absence of
an extremum at a feasible point under consideration, while Theorem 4 does.

Example 2. Let X = R
4, Y = R

2, m = 1, f(x) = x1, F (x) = (x1x3 + x3
3, x

2
1 + x2

2 − x2
3),

and g(x) = x2
1 − x2

4. The point x∗ = 0 is feasible for problem (1.1), (1.2); moreover, F (x∗) = 0,
g(x∗) = 0, F ′(x∗) = 0, g′(x∗) = 0, and the MFCQ is violated at x∗.

As in Example 1, we obtain

C2(x∗) =
{
h ∈ R

4 | h1 = 0, h2
2 = h2

3

}
and C1

2 (x∗) = {h ∈ C2(x∗) | h2 �= 0, h4 �= 0}.
For any h ∈ C1

2 (x∗) \ {0}, relations (5.3) and (5.4) hold for λ0 = 1 and any λ1, λ2 ∈ R
2 and

µ1 ≥ 0, µ2 ≥ 0 satisfying the equalities

1 + λ2
1h3 = 0, λ2

2h2 = 0, λ2
2h3 = 0, and µ2h4 = 0. (6.16)

Thus, the first-order necessary conditions provided by Theorem 3 hold at the point x∗. At the same
time, for h = (0, 1, 1, 1) ∈ C1

2 (x∗), (6.16) implies the equalities λ2 = (−1, 0) and µ2 = 0; therefore,

∂2L2

∂x2

(
x∗, h, 1, λ1,

1
3
λ2, µ1,

1
3
µ2

)
[h, h] = −2µ1 + 2λ2

1 < 0

for all λ1, λ2, µ1 ≥ 0, and µ2 satisfying (6.16). Thus, according to Theorem 4, x∗ is not a local
solution to problem (1.1), (1.2).
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Note that replacing the inequality constraint by the equality in this example yields

C2(x∗) =
{
h ∈ R

4 | h1 = h4 = 0, h2
2 = h2

3

}
and C1

2 (x̄) = ∅. Therefore, previous results concerning problems with 2-regular equality constraints
do not apply to this example.

In [20], a second-order necessary condition was obtained that may be meaningful even when the
MFCQ is violated. Namely, if x∗ is a local solution to problem (1.1), (1.2), then, for any h ∈ C(x∗),
there exist λ0 = λ0(h) ≥ 0, λ = λ(h) ∈ Y ∗, and µ = µ(h) ∈ R

m such that they do not vanish
simultaneously, conditions (1.5) hold, and

∂2L

∂x2
(x∗, λ0, λ, µ)[h, h] ≥ 0. (6.17)

Let us show that this assertion is a special case of Theorem 4.
Indeed, suppose that h ∈ C2(x∗). Choose λ0, λ1, λ2, µ1, and µ2 according to Theorem 4.

If λ2 = 0 and µ2 = 0, then λ0 > 0 and the required assertion for λ = λ1 and µ = µ1 follows
from (1.4), (5.2)–(5.4), and (6.3). Now, suppose that λ2 and µ2 do not vanish simultaneously.
Relations (3.1), (4.3), and (5.2)–(5.4) imply that

〈λ2, F ′′(x∗)[h, h]〉 + 〈µ2, g′′(x∗)[h, h]〉 = −λ0〈f ′(x∗), h〉 − 〈λ1, F ′(x∗)h〉 − 〈µ1, g′(x∗)h〉 ≥ 0. (6.18)

Then the required inequality for λ0 = 0, λ = λ2, and µ = µ2 follows from the second relation
in (5.3) and relations (5.4) and (6.18).

Now, suppose that h ∈ C(x∗) \ C2(x∗) = C(x∗) \ H2(x∗), i.e., h ∈ H1(x∗) and S2(x∗, h) �= ∅

(see (4.3), (5.2), and (5.14)).
Again, let m̂ denote the number of elements in I(x∗, h). Consider the cone K = {0} × R

m̂
−

in Y × R
m̂, the mapping ĝ : X → R

m̂ with components gi(x), i ∈ I(x∗, h), and the mapping
Φ: X → Y × R

m̂ defined by Φ(x) = (F (x), ĝ(x)). The set S2(x∗, h) is empty if and only if

Φ′′(x∗)[h, h] /∈ K + im Φ′(x∗),

and by Lemmas 3 and 4, the convex cone K +im Φ′(x∗) is closed. By the second separation theorem
(see [15, p. 210]), there exists a ν = (λ, µ̂) ∈ Y ∗ × R

m̂ such that

〈ν, η + Φ′(x∗)ξ〉 ≤ 0 < 〈ν,Φ′′(x∗)[h, h]〉 ∀ ξ ∈ X, ∀ η ∈ K.

It follows from these inequalities and the definition of K and Φ that µ̂ ≥ 0,

(F ′(x∗))∗λ + (ĝ ′(x∗))∗µ̂ = 0, and 〈λ, F ′′(x∗)[h, h]〉 + 〈µ̂, ĝ ′′(x∗)[h, h]〉 > 0,

which implies the required assertion for λ0 = 0, the λ specified above, and the µ ∈ R
m defined by

the equalities µi = µ̂i for i ∈ I(x∗, h) and µi = 0 for i ∈ {1, 2, . . . ,m} \ I(x∗, h).
In relation to the above-mentioned necessary extremum condition from [20], we suggest the

following definition.
Definition 4. We say that the second-order regularity condition holds at x∗ in a direction

h ∈ X if im F ′(x∗) = Y and there exists an x̄ ∈ X such that

F ′(x∗)x̄ + F ′′(x∗)[h, h] = 0 (6.19)

and
〈g′i(x∗), x̄〉 + g′′i (x∗)[h, h] < 0 ∀ i ∈ I(x∗). (6.20)
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Take an arbitrary h ∈ C(x∗). It is easy to see that if the second-order regularity condition in
this direction h is satisfied, then (1.5) and (6.17) hold only for λ0 > 0, although the MFCQ may
be violated. This fact follows directly from Theorem 4. Indeed, the second-order regularity in the
direction h ∈ X at x∗ readily implies the second-order 2-regularity in this direction. Moreover, it
follows from (3.5), (4.3), (5.2), (6.19), and (6.20) that h ∈ C2(x∗). However, according to (3.1), (4.3),
and (5.2)–(5.4), the second-order 2-regularity in the direction h ∈ C2(x∗) implies (6.18) and

〈λ2, F ′(x∗)x̄〉 + 〈µ2, g′(x∗)x̄〉 = 0,

where x̄ ∈ X is chosen as in Definition 4. Summing the relations obtained yields〈
λ2, F ′(x∗)x̄ + F ′′(x∗)[h, h]

〉
+

〈
µ2, g′(x∗)x̄ + g′′(x∗)[h, h]

〉
≥ 0.

By virtue of (5.4), (6.19), and (6.20), this inequality may hold only for µ2 = 0, and the second
relation in (5.3), together with im F ′(x∗) = Y , implies λ2 = 0. We have thus shown that if the
second-order regularity condition in a direction h ∈ C2(x∗) holds at the point x∗, then relations (5.3)
and (5.4) may hold only for λ2 = 0 and µ2 = 0. In other words, in this case Theorem 4 completely
reduces to the necessary condition from [20] with λ0 > 0.

On the other hand, if the second-order regularity condition does not hold at x∗, then, as is
easy to see, the necessary condition from [20] holds automatically for λ0 = 0. At the same time,
Theorem 4 gives meaningful information about the point x∗ under consideration.

Example 3. Let X = R, m = 1, f(x) = x, and g(x) = x3. It is easy to show that at the
feasible point x∗ = 0, problem (1.1), (1.2) satisfies the necessary condition from [20], C2(x∗) = R−,
and C2

2 (x∗) = R \ {0}, but the second-order necessary condition provided by Theorem 4 is violated
and, therefore, x∗ is not a local solution to problem (1.1), (1.2). Note also that C1

2 (x∗) = ∅ and
the first-order necessary condition provided by Theorem 3 holds for λ0 = 0.

Finally, the following example shows that the second-order 2-regularity may be weaker than the
2-regularity even when the point under consideration is a local solution to problem (1.1), (1.2).

Example 4. Let X = R
2, m = 2, f(x) = x1x2, and g(x) = (x3

1, x
3
2). Then the point x∗ = 0 is

a local solution to problem (1.1), (1.2); moreover, H1
2 (x∗) = ∅ and C2

2 (x∗) = H2
2 (x∗) = {h ∈ R

2 |
h1 < 0, h2 < 0}. It is easy to show that the first-order necessary condition from Theorem 3 may
hold at the point x∗ for h ∈ C2

2 (x∗) and λ0 = 0, while the second-order necessary condition from
Theorem 4 holds only for λ0 > 0.
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