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ABSTRACT

We consider the propagation of a spectral-line radiation in a correlated turbulent atmosphere. The ensembles of realizations of turbu-
lent velocities u(r, t) and optical depth τν are assumed to be Gaussian. We investigate the explicit analytical solution of the stochastic
radiative transfer equation for the intensity Iν of radiation. The scattering term is not taken into account. It is shown that, in addition
to the usual Doppler broadening of the spectral line, correlated turbulent motions of atoms and molecules give rise to considerable
changes in the shape of a spectral line. It was found for the first time that the mean intensity I(0)

ν (Iν = I(0)
ν + I′ν, 〈I′ν〉 = 0) obeys the usual

radiative transfer equation with renormalized extinction factor αeff
ν if the correlation length R0 of the turbulence is small as compared

to a photon free path. A simple analytical expression for αeff
ν is given. This expression integrally depends on the two-point correlation

function of the turbulent velocity field. We also discuss the problem how to obtain the main turbulence parameters from the analysis
of the shape of a spectral line.
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1. Introduction

In turbulent atmospheres of stars and in interstellar clouds the
optical depth τν (dτν = ανds) of the radiation path is a stochastic
quantity. As a result, the intensity Iν(s) of the radiation, its po-
larization and the shape of the spectral line acquire a stochastic
component. A typical example is the effect of star light variation
due to its propagation through the turbulent Earth’s atmosphere.

As for the shape of a spectral line, it was found that, apart
from thermal broadening, there exists additional Doppler broad-
ening due to small-scale chaotic turbulent motions of atoms and
molecules. The total line broadening ∆νD is determined by the
expression:

(∆νD)2 = (∆νTh)2 + (∆νk)2 =
2
3
· ν

2
0

c2

(
u2

Th + u2
k

)
, (1)

where u2
Th = 2kBT/m and u2

k = 〈u2(r, t)〉 are rms values of ther-
mal and turbulent velocities respectively, ν0 is the central fre-
quency of the spectral line, c is the speed of light, kB is the
Boltzmann constant, T is the temperature of the atmosphere.
The brackets 〈I〉 denote the ensemble average of the stochastic
quantity I.

Formula (1) has been derived under the assumption that both
the thermal velocity of atoms or molecules and the velocity of
turbulent motions are, so to say, “white noise”, i.e., these veloc-
ities are not correlated even in the nearest space-time vicinity.

The real turbulent velocity u(r, t) is always correlated. There
exist spatial interval |r − r′| ≡ R � R0 and time interval |t − t′| ≡
τ � τ0 where the velocity values are correlated. The case of
uncorrelated velocities formally corresponds to the limits R0 →
0 and τ0 → 0.

Turbulence gives rise to stochasticity of physical parame-
ters of the atmosphere such as magnetic field, number density of
scattering or absorbing particles, etc. As a result, the extinction
coefficient αν is also a stochastic quantity. The radiative transfer
equation (see Rybicki & Lightman 1979)

(n∇)Iν(n, s) ≡ dIν(n, s)
ds

= −αν(n, s)Iν(n, s) + jν(n, s) (2)

in a turbulent atmosphere acquires a stochastic meaning. Here n
is the direction of the light propagation, s is the path along n, jν
is the source of radiation, αν is the extinction factor.

Usually, thermal Doppler broadening ∆νTh is much greater
than the natural linewidth, and the extinction factor can be
taken as

αν = α0 exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝−
ν − ν0 − U0n

ν0
c
− un

ν0
c

∆νTh

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

· (3)

Here U0 is the regular velocity of the medium, u is the stochas-
tic (turbulent) velocity (〈u〉 = 0), α0 = N0σ0

√
π/∆νTh is the

extinction factor at the line center, N0 is the number density of
atoms or molecules at the resonant level, σ0 is the quantum-
mechanical cross section at ν = ν0. Strictly speaking, factor α0 is
also a stochastic quantity, because it is proportional to the num-
ber density N0. Obviously, N0, as a certain passive admixture, in
the turbulent medium is a stochastic value. Studying the shape
of a spectral line, we neglect the stochasticity of N0, because it
gives rise to effects analogous to those in the continuum radia-
tion. As shown by Silant’ev (2005), the effect of turbulence in
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non-magnetized atmospheres results in a small decrease of the
optical depth as compared to its direct averaged value.

The relation of the solutions of stochastic equation (2) to the
observed radiation intensity depends on the particular conditions
of the observation: exposure time, angular resolution of the tele-
scope, parameters R0, τ0, uk, etc. In this paper we study the shape
of a spectral line only for the average intensity. The conditions
when the observed intensity coincides with the ensemble aver-
aged value I(0)

ν (Iν = I(0)
ν + I′ν, 〈I′ν〉 = 0) were discussed in detail

by Levshakov & Kegel (1997). Usually, the exposure time is less
than the lifetime τ0 of turbulent motions and the coincidence of
I(0)
ν with the observed intensity requires the existence of multi-

ple turbulent cells in the observed region. In observations of stars
this condition is implemented nearly always; it takes place more
seldom in the observation of light propagation in turbulent inter-
stellar clouds. In the latter case it is necessary to observe a very
large part of a cloud.

As will be shown, the effect of correlated turbulence on the
line shape increases with increasing optical depth of the light
path. It seems that this effect can be observed most readily in
the propagation of maser emission. Usually the regions with
inverted populations of molecular levels are observed as small
“spots” inside the large molecular clouds. Intense maser emis-
sion can be observed even after the passage of an optically thick
layer. In this case the radiation penetrates many turbulent cells
and the observed emission coincides with the average inten-
sity I(0)

ν .
Of course, the analysis of the fluctuations of the observed

intensity is also very informative for estimation of turbulence pa-
rameters in stellar atmospheres, interstellar clouds and circum-
stellar envelopes.

The effect of turbulence on the propagation of continuum
radiation is rather small (see Silant’ev 2005). It consists mostly
in a decrease of the effective optical depth

τeff � τ0 − τ1
〈α′2〉
α2

0

, (4)

where τ1 = α0R0 is the mean optical depth of the region of tur-
bulent correlations, α0 and α′ are the mean and fluctuation parts
of the extinction factor respectively. Note that τeff describes the
propagation of the mean intensity I(0)

ν .
This gives rise to the coincidence of the angular distribution

and polarization of radiation outgoing from a turbulent semi-
infinite atmosphere with those for a non-turbulent one. However,
in a magnetized plasma atmosphere (due to the Faraday rotation
effect) the magnetic field fluctuations, frozen into the turbulent
conducting medium, decrease very strongly the linear polariza-
tion degree p(λ). The spectra of p(λ) and the position angle χ(λ)
of the outgoing radiation change very strongly compared to
those for a non-turbulent plasma atmosphere (Silant’ev 2005).

The effect of turbulent correlations on the spectral line shape
was investigated in a number of papers (Hundt 1973; Auvergne
et al. 1973; Gail et al. 1974, 1975; Schatzman & Magnan 1975;
Traving 1975; Magnan 1976; Frisch & Frisch 1976; Mitskevich
et al. 1993; Levshakov & Kegel 1994, 1996, 1997; Böger et al.
2003; etc.). The influence of turbulence on the shape of X-ray
lines in clusters of galaxies was investigated by Inogamov &
Sunyaev (2003).

Schatzman & Magnan (1975) have taken for the first time
into account the correlation between the velocity and tempera-
ture in the large-scale turbulence (convective bubbles). This al-
lowed them to explain the shift and asymmetry of lines formed
in thermally driven turbulence.

Magnan (1976) has elaborated the “effective cells” approach:
“cells” qualitatively represent regions of the atmosphere with
correlated turbulent velocities. Inside an effective cell the tur-
bulent velocity is uniform in every realization, and the one-
dimensional distribution of turbulent velocities is described by
the Gaussian ensemble of realizations. The velocities in neigh-
bouring cells are statistically independent. Considering the cells
as plane-parallel layers of the atmosphere and introducing the
coefficients of reflection and transmission of radiation for an in-
dividual sell, Magnan has constructed an efficient numerical pro-
cedure to find these coefficients for atmospheres consisting of n
“effective cells”. The case n = 1 corresponds to a macroturbu-
lent atmosphere and n 
 1 represents a usual turbulent atmo-
sphere in the absence of a finite correlation length. Seemingly
Magnan has found for the first time that statistically the tur-
bulent medium with a finite length of velocity correlation (the
thickness of an “effective layer” in his theory) is more transpar-
ent than the turbulent atmosphere with a vanishing correlation
length (“short-correlated” turbulence). In spite of its crude as-
sumptions, Magnan’s theory qualitatively truly describes the in-
fluence of the turbulence on the shape of a spectral line.

Gail et al. (1974) and Traving (1975) have developed a more
realistic approach to solve the problem. They approximated the
stochastic radiative transfer Eq. (2), depending on the turbulent
velocities u(r, t), by a stochastic Fokker-Planck equation. The ra-
diative transfer process is assumed to be Markovian. The derived
Fokker-Planck equation was numerically solved in a number of
the above-mentioned papers. As in Magnan’s paper, it was found
that a finite turbulent correlation length changes very strongly
the spectral line shape, both for absorption and emission lines.

Especially impressive results were obtained numerically by
Böger et al. (2003) for a maser emission line in a turbulent cloud
with inverted populations of molecular levels. Böger et al. calcu-
lated the intensity and line shape in the unsaturated mode. The
calculated maser spectra have a very complicated shape, which
looks like really observed maser spectra. Usually, one consid-
ers such spectra as a superposition of emission from separate
maser spots. Böger et al. mostly present non-averaged spectra.
They correspond to various particular realizations of the turbu-
lent velocity field, and many of them have very small linewidths.
It seems that these small linewidths are the consequence of very
large values of negative optical depths (τ0 = −110,−400) at the
line center. In the averaged spectra these features disappear.

Levshakov & Kegel (1997), using the Fokker-Planck equa-
tion, explain the line asymmetry by introducing an additional
parameter – hydrodynamic velocity u0 at the edge of the turbu-
lent cloud. To some extent this looks like introducing a surface
cell in Loucif & Magnan (1982).

The numerical calculations in the above-mentioned papers
have demonstrated that, in contrast to the usually used short-
correlated model of turbulence, turbulence with a finite length of
correlation changes significantly the line shape of both absorp-
tion and emission spectral lines.

All the features of the influence of turbulence on the spec-
tral line shape exist in the presented below simple analytical
theory of radiative transfer in turbulent atmospheres. Here we
first derive the usual radiative transfer equation for the aver-
aged intensity in turbulent atmospheres with renormalized (ef-
fective) absorption coefficient αeff

ν . The simple analytical expres-
sion for αeff

ν obtained in our paper depends on the explicit form
of the two-point turbulent velocity correlation function. In ad-
dition, we give a qualitative explanation of these effects based
on explicit formulae of our analytical approach, which essen-
tially complements the analogous discussion of Magnan (1976).
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Our discussion stresses more explicitly the statistical nature of
the effects and maintains also the discussion about the physical
realization of the “effective cells” model.

In this paper we investigate the effect of finite correlation
length R0 of turbulence on the spectral line shape using the
assumptions that stochastic optical length τν (dτν = αν(z)ds)
is a Gaussian stochastic quantity and the turbulence is statisti-
cally uniform and isotropic. As known (see Van Kampen 1981;
Gardiner 1985), Gaussian stochastic fields very often occur in
the nature. Most theoretical papers studying turbulence use this
assumption. This approach is simpler than the Fokker-Planck
equation approach, because we use the exact explicit solution of
the stochastic radiative transfer Eq. (2) without the source term:

Iν(s) = Iν(0)e−τν(s), (5)

τν(s) ≡ τ(0)
ν (s) + τ′ν(s) =

∫ s

0
ds′αν(s′). (6)

Below we study mainly the shape of the absorption line, which
corresponds to the mean intensity I(0)

ν (s) from Eq. (5). The anal-
ysis of this expression shows that for the case s 
 R0 (s is
the thickness of a turbulent layer) the averaged intensity I(0)

ν (s)
obeys the usual radiative transfer Eq. (2) with renormalized ex-
tinction factor αeff

ν . This factor depends linearly on the mean op-
tical thickness of the correlation length τ1 = 〈αν(ν = ν0)〉R0 at
the line center:

αeff
ν = 〈αν〉[ 1 − τ1 fν(ξ) ], (7)

where function fν(ξ) integrally depends on the correlation func-
tion of the turbulent velocities, and ξ = ∆νTh/∆νk = uTh/uk is
the ratio of the thermal Doppler width to the turbulent one. With
decreasing τ1 and increasing ξ, the second term in Eq. (7) van-
ishes. In this case correlations of turbulent velocities do not af-
fect the line shape and only the usual turbulent Doppler width
∆νk is present.

A simple model with a constant source function S ν = jν/αν
is used very often (see Rybicki & Lightman 1979; Böger et al.
2003). In this case the analytical solution of the radiative transfer
Eq. (2) also has a very simple form:

Iν(s) = Iν(0)e−τν(s) + S ν
(
1 − e−τν(s)

)
. (8)

The mean intensity I(0)
ν in this model is also determined by the

term 〈exp(−τν(s))〉, which, in the case of Gaussian processes,
has a very simple expression:

〈e−τν(s)〉 = e−τ
(0)
ν (s) e

1
2 〈τ′2ν (s)〉. (9)

The mean value of the square of fluctuations 〈τ′2ν (s)〉 is related
to the turbulent correlation function in a rather simple way (see
below).

Thus, averaging Eq. (5) yields the following expression for
the mean intensity:

I(0)
ν (s) = Iν(0)e−τ

(0)
ν (s) e

1
2 〈τ′2ν (s)〉 ≡ Iν(0)e−τ

eff
ν (s). (10)

The intensity fluctuations can be estimated as

〈I′2ν (s)〉 =
(
I(0)
ν (s)

)2 [
e〈τ

′2
ν (s)〉 − 1

]
. (11)

From Eq. (10) follows the definition of the effective optical depth
τeff
ν (s):

τeff
ν (s) = τ(0)

ν (s) − 1
2
〈τ′2ν (s)〉.

According to this formula, τeff
ν ≤ τ(0)

ν , i.e., the turbulent at-
mosphere is effectively more transparent than the non-turbulent
one for all the frequencies. This is a purely statistical effect.
Remember that τeff

ν (s) describes the propagation of the mean in-
tensity I(0)

ν (s) in the atmosphere. The mean intensity has only a
statistical meaning. Earlier we have briefly discussed the condi-
tion when this statistical value coincides with the observed in-
tensity. In an atmosphere with inverted populations of resonant
atoms or molecules τ(0)

ν < 0, and the absolute value of τeff
ν is

larger than |τ(0)
ν |, i.e., a turbulent medium increases the intensity

of resonant radiation more efficiently than a non-turbulent one.
Our explicit formulae enable us to estimate the correlation

length R0 of the turbulence, its characteristic velocity uk and the
ratio of thermal and turbulent velocities uTh/uk. It is easier to
analyze the usual radiative transfer equation for the mean inten-
sity with the effective absorption factor, derived here for the first
time, than the more complicated Fokker-Planck equation.

2. Basic formulae

To obtain the explicit relationship for the mean intensity I(0)
ν (s)

(see Eq. (10)), we calculate first 〈τ′2ν (s)〉; it is

〈τ′2ν (s)〉 = 〈τ2
ν(s)〉 − 〈τν(s)〉2. (12)

When deriving terms in Eq. (12), we must know the mean values
〈αν(s)〉 and 〈αν(s)αν(s′)〉, which can be readily obtained using
formulae:

αν(s) =
α0∆νTh√
π

×
∫ ∞

0
dt cos

[(
ν − ν0 − U0n

c
ν0 − un

c
ν0

)
t

]
e−∆ν

2
Tht2/4, (13)

〈cos

(
ν − ν0 − U0n

c
ν0 − un

c
ν0

)
t〉 =

cos

[(
ν − ν0 − U0n

c
ν0

)
t

]
e−∆ν

2
k t2/4. (14)

Recall that ∆ν2k = 2u2
kν

2
0/3c2, and u2

k = 〈u2〉. In the derivation of
expression (14) we take into account that for a Gaussian ensem-
ble of turbulent velocities u the mean value of an odd number
of velocity components is zero and the mean value of an even
number of components is equal to the sum of all possible pair
correlations. For example,

〈ui(1)u j(2)up(3)uq(4)〉 = 〈ui(1)u j(2)〉〈up(3)uq(4)〉

+〈ui(1)up(3)〉〈u j(2)uq(4)〉 + 〈ui(1)uq(4)〉〈u j(2)up(3)〉. (15)

For brevity we denote here the space-time coordinates by num-
bers. Expression (9) was also obtained using these simple rules.

Using Eqs. (13) and (14), we can average Eq. (6):

〈τν(s)〉 ≡ τ(0)
ν (s) = 〈αν〉s, (16)

〈αν〉 = α0
∆νTh

∆νD
e−(x−x0)2

, (17)

where the total Doppler linewidth ∆νD can be found from the
relationship (∆νD)2 = (∆νTh)2 + (∆νk)2. Thus, it consists of the
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contributions of thermal and turbulent chaotic velocities. We also
introduce here dimensionless frequencies:

x =
ν − ν0
∆νD

, x0 =
U0n

c
· ν0
∆νD
· (18)

Remember that the velocity of the regular motion of atoms and
molecules U0 is assumed to be constant. Due to homogeneity of
turbulence, the mean extinction factor 〈αν(s)〉 ≡ 〈αν〉 is indepen-
dent of the distance s. It is visible from Eq. (17) that 〈αν〉 has a
Gaussian shape with total linewidth ∆νD.

The expression 〈αν(s)αν(s′)〉 can be obtained in a similar
way:

〈αν(s)αν(s′)〉 = α
2
0 ∆ν

2
Th

2π

∫ ∞

0
dt

∫ ∞

0
dt′e−∆ν

2
Th(t2+t′2)/4

×
{

e−∆ν
2
Th(t2+t′2+2b||(R)tt′)/4 cos

[(
ν − ν0 − U0n

c
ν0

)
(t + t′)

]

+e−∆ν
2
Th(t2+t′2−2b||(R)tt′)/4 cos

[(
ν − ν0 − U0n

c
ν0

)
(t − t′)

]}
.(19)

Here R = |s− s′| is the distance along the line of sight n, b||(R) is
the correlation function of the uniform and isotropic turbulence.
It is determined by the expression:

〈u||(s)u||(s′)〉 = u2
k

3
b||(R), u||(s) = un. (20)

Function b||(R) at R = 0 is equal to unity and it rapidly vanishes
at R > R0. Remember that R0 is the characteristic length of tur-
bulent eddies (cells).

The following models of a turbulence are frequently used:

(1) b||(R) = 1 −
(

R
R0

)2

for R ≤ R0,

b||(R) = 0 for R > R0, (21)

(2) b||(R) = exp

(
− R

R0

)
· (22)

A special case is the so called acoustic turbulence, i.e., chaotic
superposition of acoustic waves. For acoustic turbulence one fre-
quently takes

(3) b||(R) =
sin(R/R0)

R/R0
· (23)

Introducing new variables T = t + t′, τ = t − t′, expression (19)
can be calculated in the analytical form:

〈αν(s)αν(s′)〉 ≡ C(R)

= 〈αν〉α0∆νTh

∆νD

exp

[
−(x − x0)2 1 − ηb||(R)

1 + ηb||(R)

]
√

1 − η2b2
|| (R)

, (24)

where we introduce dimensionless parameters:

η =
∆ν2k
∆ν2D

=
∆ν2k

∆ν2Th + ∆ν
2
k

≡ 1
1 + ξ2

,

ξ =
∆νTh

∆νk
=

uTh

uk
· (25)

At R 
 R0 (b||(R) � 0) the values of αν(s) and αν(s′)
are virtually independent and the expression (19) tends to
〈αν(s)αν(s′)〉 → 〈αν〉2.

Using Eq. (24), we can write the formula for 〈τ2
ν〉:

〈τ2
ν〉 =

∫ s

0
ds′

∫ s

0
ds′′〈αν(s′)αν(s′′)〉

=

∫ s

0
ds′

∫ s

0
ds′′C(|s′ − s′′|)

=

∫ s

0
dR C(R)

∫ 2s−R

R
dr = 2

∫ s

0
dR (s − R) C(R). (26)

Here we have used substitutions r = s′ + s′′ and R = s′ − s′′ and
taken into account that C(R) is an even function of R.

Finally, expression (12) for 〈τ′2ν (s)〉 becomes:

〈τ′2ν (s)〉 = 2τ(0)
ν (s)

α0∆νTh

s∆νD

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
− s2

2
e−(x−x0)2

+

∫ s

0
dR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(s − R)

exp

[
−(x − x0)2 1 − ηb||(R)

1 + ηb||(R)

]
√

1 − η2b2
|| (R)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
· (27)

Note that α0 ∝ ∆νTh and Eq. (27) depends only on ∆νD and
ξ = ∆νTh/∆νk.

Now mean intensity (10) can be written as

I(0)
ν (s) = Iν(0)A(s, x − x0), (28)

where transmission coefficient Aν is

A(s, x − x0) = e−τ
eff
ν (s), (29)

τeff
ν (s) = τ(0)

ν (s)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 +
τ1 s
2R0

e−(x−x0)2

−τ1

∫ s/R0

0
dy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
1 − yR0

s

) exp

[
−(x − x0)2 1 − ηb||(y)

1 + ηb||(y)

]
√

1 − η2b2
|| (y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (30)

Here we have used the following dimensionless quantities:

y =
R
R0
, τ1 = α0

∆νTh

∆νD
R0, τ0 = τ1s/R0. (31)

Parameters τ1 and τ0 are the optical depths of the correlation
length R0 and of the layer s at the line center respectively; τ(0)

ν (s)
is the mean optical depth of the distance s (see Eq. (16)). The
terms with τ1 in Eq. (30) describes the contribution of turbu-
lent motions to the effective optical depth τeff

ν (s) of the layer s.
When the atmosphere is non-turbulent (u = 0, ∆νk = 0, η = 0)
this term is zero for any τ1. In this case τ(0)

ν (s) is determined by
Eqs. (16) and (17), where ∆νD = ∆νTh. Of course, the choice of
parameters must preserve τeff

ν (s) > 0 for the usual medium with
non-inverted population of atomic levels.
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If the correlation length R0 → 0, i.e., τ1 → 0 (but 〈u2〉 � 0),
then the terms with τ1 vanishes for any correlation functions
b||(R) and any values of η. This limit corresponds to the case of
uncorrelated turbulence when the effect of turbulence is reduced
to an additional line broadening only. If τ1 does not tend to zero,
but parameter η � 1 (ξ 
 1), the term with the correlation func-
tion ηb||(R) � 1 is insignificant. In these limits the transmission
coefficient is

A0(s, x − x0) = e−τ
(0)
ν (s). (32)

Below we will compare coefficients A(s, x− x0) and A0(s, x− x0).
For estimations we can use the explicit expression of τeff

ν (s)
for the crude correlation function b||(R) = 1 at R ≤ R0 and equal
to zero at R > R0:

τeff
ν (s) = τ(0)

ν (s)

×

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 − τ1

(
1 − R0

2s

)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
exp

(
−(x − x0)2 1 − η

1 + η

)
√

1 − η2
− e(x−x0)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (33)

The largest deviation of τeff
ν from the short-correlated value τ(0)

ν

occurs at the line center x = x0. In this case Eq. (33) acquires a
simple form:

τeff
0 = τ0 ·

⎧⎪⎪⎨⎪⎪⎩1 − τ1

(
1 − R0

2s

) ⎡⎢⎢⎢⎢⎢⎣ 1 + ξ2

ξ
√

2 + ξ2
− 1

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ . (34)

Here we have used a physically clearer parameter ξ = uTh/uk
(see Eq. (25)).

Expression (34) can be used for the estimation of the con-
tribution of finite-correlation turbulence to the effective optical
depth. It is clear that the case s = R0, (τ1 = τ0) is the lim-
iting case when we can at all speak about the turbulence in
a layer of material. It is the limiting case of macroturbulence.
Thus, the maximum contribution is τ0[(1+ξ2)/(ξ

√
2 + ξ2−1)]/2.

The term in square brackets for ξ = 0.1, 0.2, 0.5, 1 and 2 is
equal to 6.14, 2.64, 0.67, 0.15 and 0.02, respectively. It should
be noted that the exponential dependence of transmission coeffi-
cients A(s, x − x0) and A0(s, x − x0) increases the relative contri-
bution of finite-correlation turbulence to the spectral line shape
for larger optical depths τ0:

A(s, 0)
A0(s, 0)

= exp

⎧⎪⎪⎨⎪⎪⎩τ1τ0

⎡⎢⎢⎢⎢⎢⎣ 1 + ξ2

ξ
√

2 + ξ2
− 1

⎤⎥⎥⎥⎥⎥⎦
(
1 − R0

2s

)⎫⎪⎪⎬⎪⎪⎭· (35)

Let us take for example ξ = 0.5, R0/s = 0.1. Formulae (34)
and (35) yield (τeff

0 − τ(0)
0 ) ≡ ∆τ = 0.063τ2

0, ∆τ/τ0 = 6.3τ0%,
∆A/A0 = (exp (∆τ) − 1). For τ0 = 1, 2, 3, 4 the quantities
∆τ/τ0 and ∆A/A0 take the values 6.3%, 12.6%, 18.9%, 25.2%
and 6.5%, 13.4%, 76.3%, 174%, respectively. Thus, relatively
small differences between τeff

ν and τ(0)
ν result in very large differ-

ences in the transmission coefficients for τ0 ≥ 2.
It is interesting to compare our results with those obtained

by Magnan (1976), who developed the “effective cells” approxi-
mation to describe turbulence with a finite correlation length. To
use the method of addition of layers, Magnan considered plane-
parallel layers with thickness R0 as statistically independent “ef-
fective cells” with a uniform distribution of turbulent velocities
inside every cell. The one-dimensional distribution of velocities
of each cell is taken as a Gaussian one. Thus, a crude correlation

function b||(|z− z′|) = 1 at |z− z′| ≤ R0, and b|| = 0 at |z− z′| > R0
was used. Here z and z′ are the coordinates along the normal to
the surface of the layer.

Firstly, we compare the values of A(s, 0) = exp (−τeff
0 ) cor-

responding to our three-dimensional crude correlation function
(see Eq. (34)) with Magnan’s A(s, 0) at τ0 = 2.3025 (A0(s, 0) =
exp (−τ0) = 0.1) and ξ = uTh/uk = 0.2. For s/R0 ≡ n = 16 we
have, instead of Magnan’s value 0.15, the value 0.23. For n = 8
the corresponding values are 0.21 and 0.52. The difference in the
results is rather large.

The analogous comparison of the results for the correla-
tion functions (21), (22) and (23) yields, instead of Magnan’s
value 0.15 (for n = 16), the values 0.13, 0.116 and 0.19, re-
spectively. For n = 8, instead of Magnan’s value 0.21, we have
obtained the values 0.166, 0.133 and 0.35, respectively.

Thus, the comparison of the results demonstrates that the
“effective cells” model can be considered only as a qualita-
tive model. However, qualitatively this model describes all the
features of the influence of finite-correlation turbulence on the
shape of a spectral line.

3. The radiative transfer equation for the mean
intensity I(0 )

ν (s)

The terms with τ1 in Eq. (30) depends on the distance s, i.e.,
τeff
ν (s) is a nonlinear function of s, and the expression (29) is not

interpreted as a solution of radiative transfer Eq. (2) with any ef-
fective extinction coefficient αeff

ν . However, in the case R0 � s
this is possible. Indeed, in this case the term with τ1 virtually
does not depend on s, because correlation function b||(R) rapidly
vanishes at R ≥ R0. In this approximation (s 
 R0) expres-
sion (30) becomes

τeff
ν (s) = τ(0)

ν (s)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 + τ1

(
1 − R0

2s

)
e−(x−x0)2

−τ1

∫ 1

0
dy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
1 − yR0

s

) exp

[
−(x − x0)2 1 − ηb||(y)

1 + ηb||(y)

]
√

1 − η2b2
|| (y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
· (36)

For the crude correlation function b||(r) = 1 at R ≤ R0 this ex-
pression transforms to expression (33).

Neglecting small terms � R0/s � 1, we obtain that the
term with τ1 in Eq. (30) does not depend on s. In this case
formula (29) can be considered as the solution of the radiative
transfer equation for the mean intensity I(0)

ν (s) with renormal-
ized effective extinction factor:

dI(0)
ν (s)
ds

= −αeff
ν I(0)
ν (s) + 〈 jν(s)〉, (37)

αeff
ν = 〈αν〉

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 + τ1e−(x−x0)2

−τ1

∫ 1

0
dy

exp

[
−(x − x0)2 1 − ηb||(y)

1 + ηb||(y)

]
√

1 − η2b2
|| (y)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
· (38)
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When deriving Eq. (38), we assume that R0 corresponds to the
distance at which the correlation of turbulent velocities almost
disappears, i.e., b||(R0) � 0. For this reason, in Eq. (38) the upper
integration limit can be taken to be ∞; this makes the calcula-
tions simpler. In the radiative transfer theory the characteristic
length is the unit optical depth. Therefore, the validity condition
of the usual radiative transfer Eq. (37) is τ1 � 1, i.e., the optical
depth at the center of the line of the correlation region is to be
small.

Simple formulae (33)–(35) demonstrate that at τ1 � 1 the
difference between τeff

ν and τ(0)
ν can be sufficiently large if pa-

rameter ξ ≤ 1. Just at these conditions the new radiative transfer
Eq. (37) describes the sufficiently large influence of the corre-
lated turbulence on the shape of spectral lines.

The solution methods for the usual radiative transfer Eq. (37)
are known. It is easier to solve Eq. (37) for the calculation
of the mean intensity I(0)

ν (s) than to use the more compli-
cated Fokker-Planck equation, derived by Gail et al. (1974) and
Traving (1975). Particularly, the method of addition of layers,
successfully applied by Magnan (1976, 1985, 1993) to the so-
lution of radiative transfer problems in turbulent atmospheres,
can be used for solving the exact Eq. (37). In this case one does
not need to employ the rather crude model of effective turbulent
cells, introduced in these papers.

4. Qualitative discussion of the results

It is visible from Eqs. (30) and (38) that the correlations of tur-
bulent velocities give rise to a decrease in αeff

ν and τeff
ν (s) as com-

pared to the mean values 〈αν〉 and τ(0)
ν (s) at α0 > 0, and, on the

contrary, these effective coefficients are greater than the mean
values at α0 < 0 (the case of an atmosphere with inverted popu-
lations of atomic levels). This is a purely statistical effect. Below
we present two qualitative models which help us to understand
this effect.

First we consider non-statistically the simple model of corre-
lated turbulence and demonstrate that this effect (A(x) > A0(x))
arises even in this model for x ≈ 0. For simplicity we accept
that the regular motion of atoms and molecules is absent, i.e.,
U0 = 0. The condition 〈u〉 = 0 means that inside the corre-
lation region R0 there are two subregions with mutually oppo-
site turbulent velocities u and −u, so the mean value 〈u〉 = 0.
Let the optical depths of these subregions at the line center
be τ1/2. The total optical depth of these regions is τν(x) =
(τ1/2) exp[−(x − x′)2] + (τ1/2) exp[−(x + x′)2]. This yields for
the transmission coefficient the expression

A(x) = A1(x − x′)A2(x + x′)

= exp
[
−τ1

2

(
e−(x−x′)2

+ e−(x+x′)2)]
, (39)

where x′ = (u||/c)(ν0/∆νD). We consider here the case x′2 ≤ 0.5
when expression (39) has only one maximum at x = 0. Note that
Eq. (39) depends on two characteristic velocities, corresponding
to x′ and −x′.

We compare this expression with the transmission coeffi-
cient A0(x) (see Eq. (32)), which does not take into account the
finite length of the turbulent correlation. In our model the A0(x)-
coefficient takes the form:

A0(x) = exp
[
−τ1e−x2]

. (40)

The ratio of these transmission coefficients is:
A(x)
A0(x)

= exp
[
τ1e−x2 (

1 − e−x′2 cosh (2xx′)
)]
. (41)

The expression (41) at τ1 > 0 takes the maximum value at x = 0:

A(0)
A0(0)

= exp
[
τ1

(
1 − e−x′2

)]
> 1. (42)

The inequality A(x) > A0(x) follows from Eq. (41) for x ≤ 0.7
and then there exists the little opposite inequality A(x) < A0(x).
Finally, at x → ∞ one has A(x) → A0(x). Thus, even this non-
statistical consideration of simple correlated turbulence demon-
strates that a usual, non-inverted medium becomes more trans-
parent as compared to the case when correlations are not taken
into account.

On the contrary, for an atmosphere with inve rted popula-
tions of atomic levels (τ1 < 0) we have A(x)/A0(x) < 1, i.e.,
taking into account the finite correlation length R0 gives rise to
an effective obscuration of the medium.

The existence of inequality A(x) > A0(x) in correlated tur-
bulence is a pure statistical effect. It can be demonstrated in a
general form for all x in simple model of two realizations. Let
we have two realizations of the turbulence in a layer. The first
realization corresponds to optical depth τν = τ

(0)
ν + τ

′
ν, and the

second one to τν = τ
(0)
ν − τ′ν with the mean optical depth of the

layer equal to τ(0)
ν . The mean value of the intensity is

〈Iν(s)〉 = 1
2

(
I(0)e−(τ(0)

ν +τ
′
ν) + I(0)e−(τ(0)

ν −τ′ν)
)

= I(0)e−τ
(0)
ν cosh (τ′ν) ≥ I(0)e−τ

(0)
ν , (43)

i.e., the effective optical depth τeff
ν is smaller for every frequency

than the mean value τ(0)
ν . For small τ′ν we have cosh (τ′ν) ≈

1+ τ′2ν /2 ≈ exp (τ′2ν /2), which coincides with the formula below
Eq. (11). It means that A(x) ≡ exp (−τeff

ν ) ≥ A0(x) for any values
of dimensionless frequencies x. The numerical calculations with
Eq. (29) for various models of turbulence confirm this qualitative
analysis. Integration of A(x) and A0(x) from (−∞) to (+∞) evi-
dently conserves the inequality. Remember that this integration
is connected with the equivalent width of an absorption line.

This contradicts the statement of Magnan (1976): “the
macroturbulence does not change the equivalent width”. What
is the cause of this discrepancy? Magnan has checked this
statement only for one “effective cell”. In this case there ex-
ists only one characteristic turbulent velocity uk, and, intro-
ducing a new variable y = x − xk (xk = (ukν0/c)/∆νD),
we obtain that integration of A(x) and A0(x) yields the same
value. Real turbulence consists of many “effective cells”, each
with its own independent characteristic velocity uk: A(x) =
A1(x, u(1)

k )A2(x, u(2)
k ) · · ·An(x, u(n)

k ). Clearly, in this case a com-
mon new variable y, which transforms all the An(x, u(n)) to the
form An(y), does not exist.

The limiting case of macroturbulence in Magnan (1976) cor-
responds to n = 1, which means that there exists only one “effec-
tive cell”, which corresponds physically to a plane-parallel layer
with a uniform velocity of material in each realization. Such a
realization does not describe any turbulence at all. A realistic im-
plementation of turbulent motion must keep the position of the
center of masses at rest, i.e., every physically feasible realization
must have positive as well as negative velocities of material. Of
course, one may consider an ensemble with positive and nega-
tive velocity directions, as it was made by Magnan, but physical
implementation of such an ensemble in the nature is question-
able: too artificial are the realizations of such an ensemble! It
seems that the case of many “effective cells” indeed represents
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to some extent the real turbulent atmosphere. As a minimum, us-
ing the concept of “effective cells”, we are to consider the case of
two cells (n = 2), where Magnan’s statement is already invalid.
To some extent our simple model of turbulence (see Eq. (39))
corresponds to two “effective layers”.

Thus, the true statement is: “the finite length turbulence di-
minishes the equivalent width”.

Our above-considered qualitative model has taken into ac-
count only the dependence on the finite correlation length R0.
Formula (30) for τeff

ν (s) also depends on parameters s/R0 and
ξ = ∆νTh/∆νk (remember that η = 1/(1 + ξ2)). In a more inter-
esting case s 
 R0 the s/R0-dependence nearly disappears. On
the contrary, the dependence of τeff

ν on the parameter ξ is very
strong. The reason for this dependence has a purely kinematic
character.

Remember that in the rest atom frame of an atom the extinc-
tion factor αν (see Eq. (3)) has linewidth ∆νTh. Since an atom
participates in two statistically independent motions-thermal
and chaotic, uncorrelated turbulent motions, the absorption of
a propagating radiation beam occurs in a broad frequency in-
terval ∆νD (∆ν2D = ∆ν

2
Th + ∆ν

2
k). The propagation of radiation

through the layer τ1/2 decreases the intensity due to the transpa-
ration coefficient A1(x) = exp (−τ1/2 exp (−x2)). The second
layer with the same mean optical depth τ1/2 in the uncorrelated
turbulence does not differ physically from the first one and gives
rise to the same absorption of radiation, A2(x) = A1(x). The to-
tal absorption of radiation in these two layers is described by
A(x) = A1(x)A2(x) ≡ A0(x).

In a turbulent atmosphere with the finite size R0 of the corre-
lation length the situation is different: more probably, the second
gas volume has velocity −u, as it was accepted earlier in our
simple model of turbulence. If the velocity difference ∼2uk lies
beyond the linewidth ∼∆νTh, this second absorption practically
does not occur. Thus, correlated turbulence is more transparent
(if αν > 0) that uncorrelated one.

It follows from this qualitative analysis that the transparation
effect is more profound for a relatively large optical depth of the
medium when the probability of the second absorption of light
is sufficiently large. This was earlier mentioned in Levshakov
& Kegel (1994) as a consequence of numerical Fokker-Planck
equation calculations. Our calculations and illustrative model
with crude correlation function b||(R) = 1 at R ≤ R0 (see
Eqs. (33)–(35)) confirm this distinctly.

If the velocity difference ∼2uk is about the characteristic
thermal velocity uTh (the parameter ξ � 1), the absorption in
the second layer occurs practically with the same intensity as
in the first layer and the effect of transparation is small. In this
case the extinction coefficients in the first and second layer over-
lap widely. When inequality uk > uTh takes place, overlap of
the extinction coefficients is small, only at the wings, and the
absorption of radiation in the second layer virtually does not oc-
cur. This corresponds to the large transparation effect. It is clear
from these qualitative considerations that for ξ = ∆νTh/∆νk =
uTh/uk > 1 resonant absorption occurs more frequently than for
ξ < 1, and the transparation effect is larger in the latter case.
Thus, for τ0 = 〈αν(ν = ν0)〉s = 2 and s = 10R0 turbulent
model (21) yields A(0) = 0.221 at ξ = 0.1 and A(0) = 0.152
at ξ = 0.5. For uncorrelated (or, better to say, short-correlated)
turbulence we have A(0) = 0.135. For turbulent model (22) the
corresponding values are 0.168 and 147, i.e., are closer to the
case of short-correlated turbulence.

The transmission coefficients A(x) and A0(x) for a number
of values of τ0 and ξ are presented in Figs. 1–7. The first three
figures correspond to the layer thickness of 10R0, and Figs. 4–6
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Fig. 1. Transmission functions A(x) and A0(x) for turbulence model
(21) for optical depths of the layer at the line center τ0 = 1, 2 and
3 (from top to bottom, respectively). The dotted line corresponds to
A0(x) (short-correlated turbulence). The dash-dotted curves show A(x)
for ξ = ∆νTh/∆νk = 0.1. The solid lines represent the case ξ = 1. The
layer thickness is 10R0.
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Fig. 2. Same as in Fig. 1, but for turbulence model (22) (b||(R) =
exp (−R/R0)).

represent the case τ0/τ1 = 5. The optical depth takes the val-
ues τ0 = 1, 2 and 3 (curves from top to bottom). Figures 1
and 4 correspond to the model of turbulence (21), Figs. 2 and 5
represent the exponential model (22), and Figs. 3 and 6 corre-
spond to acoustic turbulence (23). Firstly, we see that the larger
is τ0 the greater is the contribution of the finite correlation length
R0. Model (22) with the exponential correlation function gives a
lesser transparency effect as compared to models (21) and (23).
The most efficient one for transparency is acoustic turbulence.
This is due to the slow decrease of correlation function (23)
as compared to functions (21) and (22). The figures demon-
strate that the transparency effect is very sensitive to the value
of ξ = ∆νTh/∆νk. Above we have discussed the cause of this.
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Fig. 3. Same as in Fig. 1, but for turbulence model (23 (acoustic tur-
bulence with b||(R) = sin (R/R0)/(R/R0)). The dash-dotted lines corre-
spond to ξ = 0.5.
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Fig. 4. Transmission functions A(x) and A0(x) for turbulence model
(21) with optical depths of the layer at the line center τ0 = 1, 2 and
3 (from top to bottom, respectively). The dotted line corresponds to
A0(x) (short-correlated turbulence). The dash-dotted curves show A(x)
for ξ = ∆νTh/∆νk = 0.1. The solid lines represent the case ξ = 1. The
layer thickness is 5 R0.

From the figures it follows that at ξ = 1 the transparency effect
is very small, but for ξ = 0.1 it is large.

The comparison of Figs. 1, 2 with 4, 5, presented in Fig. 7,
shows that turbulence with a larger correlation length is more
transparent than that with a smaller correlation length. We see
also that the A(x)-coefficient acquires the characteristic half-
value (1 − A(x)) = 0.5(1 − A(0)) at lesser values of x than the
A0(x)-function. It means that turbulence with a finite correlation
length gives rise to a smaller linewidth as compared to that for
the short-correlated turbulence. The forms of A(x) in all the con-
sidered cases look as the A0(x) curve, but they lie in a region
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Fig. 5. Same as in Fig. 4, but for turbulence model (22) (b||(R) =
exp (−R/R0)).
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Fig. 6. Same as in Fig. 4, but for turbulence model (23) (acoustic tur-
bulence with b||(R) = sin (R/R0)/(R/R0)). The dash-dotted lines corre-
spond to ξ = 0.5.

above the A0(x) values. Purely geometrically, it is rather evident
that the the halfwidth values of x for A(x) have to be smaller
than the halfwidth value for A0(x). The curve a is an especially
impressive example. The reason for this effect lies in our previ-
ous qualitative considerations. The sharpness of the line profile
is the integral characteristic of a line. It is difficult to explain it
in a purely qualitative manner, so the following qualitative con-
sideration cannot be considered as some “proof” of the effect.
The statement that the halfwidth of a spectral line in a turbulent
medium is smaller than that in a non-turbulent case also has a
statistical nonlinear character as the effect of transparency (see
the term 〈τ′2ν 〉/2 in the expression for τeff

ν ).
The existence of a finite correlation length gives rise to an in-

complete overlap of the extinction factors in the first and second
layers of the atmosphere. In each realization of turbulent motion
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Fig. 7. Comparison of the transmission functions A(x) for turbulence
models (21) (a–curves) and (22) (b–curves). Parameter ξ = ∆νTh/∆νk =
uTh/uk = 0.1 and the optical depth of the layer s at the line center τ0 = 3.
The dotted lines correspond to s = 5 R0, and the dash-dotted represent
the case s = 10 R0. At s = 100 R0 (small-scale turbulence) both mod-
els yield virtually the same A(x) and are represented by c)–curve. At
the bottom the x-positions of the halfwidth level are shown. It is visi-
ble that finite-correlated turbulence produces narrower absorption lines
than short–correlated turbulence (the curve A0(x)).

the overlap pattern is, evidently, not symmetric: overlap in one
of the absorption profile wings is lesser (denote it as a left wing)
than in the opposite (right) wing. The radiation with a frequency
of the left wing will be absorbed less during its propagation in
the second layer and the left-side profile of the absorption line
will be steeper than the right-side one. Thus, one realization of
turbulence gives rise to the asymmetry of a spectral line. In usual
isotropic turbulence the velocities u and −u occur with equal
probability. Thus, in a realization with opposite velocities the
right wing of the spectral line will be steeper than the left one.
Due to nonlinear dependence of the effective extinction factor
on 〈τ′2ν 〉, the resulting steepness of these opposite realizations
preserves.

From Fig. 7 we see that a turbulent layer with many (>100)
turbulent cells practically does not differ from a layer with short-
correlated turbulence. Moreover, in this limit different forms of
the correlation function b||(R) yield the same shape of the spec-
tral line A(x). This result is rather evident. In this case every
turbulent cell of size R0 is not correlated with the neighbouring
cell (we remind that the length of correlation is R0). These chaot-
ically moving cells are similar to a cloud of chaotically moving
absorbing atoms. This effect was discussed for the first time by
Magnan (1976).

There exists another way to obtain the limit of short-
correlated turbulence even if the number of turbulent cells is not
large. Remember that A(x) depends on the parameter ξ = uTh/uk.
If this parameter is large, ξ ≥ 1 , i.e., the characteristic turbulent
velocity uk is smaller than the thermal velocity of atoms inside
the turbulent cells, the existence of finite correlation length R0
does not affect the shape of the spectral line. This effect is very
large. Thus, in the case when the turbulent layer has thickness

s = R0 (the limiting case of large-scale turbulence) the dif-
ference of τeff

ν at the line center from τ0 is ≈30% and 4% for
ξ = 1 and 2, respectively. This effect is also evident. The case
uk � uTh corresponds to a very small shift of the center of the
αν-profile (see Eq. (3)), for either correlated or uncorrelated tur-
bulence. Large values of ξ correspond to small values of parame-
ter η = 1/(1+ ξ2) ≤ 1. This parameter is always related to corre-
lation function b||(R/R0) ≤ 1 (see Eq. (30)) and characterizes the
effectiveness of the finite-length turbulent velocity correlations.

Let us summarize the discussion. A very large number of
turbulent cells (n ≥ 100) within the layer is a sufficient condition
for the existence of the short-correlated limit. If this condition
is not valid, the short-correlated limit occurs when parameter
ξ = uTh/uk ≥ 1. In the intermediate case (n < 100 and ξ ≤ 1) the
effects of finite correlation length of turbulent velocities on the
line shape can be large, especially if the optical depth τ0 > 2.

5. Estimation of characteristic turbulent parameters

We discuss now the problem of how to obtain the main turbu-
lence parameters uk,R0 and U0|| = U0n from the analysis of the
shape of a spectral line. The effective optical depth τeff

ν (s) (see
Eq. (30)) depends also on thermal velocity uTh and thickness s
of the layer. Dimensionless frequency x = (ν− ν0)/∆νD depends
on linewidth∆νD, which is related to unknown characteristic tur-
bulent velocity uk = (〈u2(r, t)〉)1/2 and thermal velocity uTh (see
Eq. (3)). Thus, the unknown quantities are uk, uTh, R0, s and
U0||. Of course, τeff

ν (s)-coefficient depends also on the particular
form of the correlation function b||(R/R0), but this dependence
is integral and not very sensitive to the choice of a particular
model (see Figs 1–6). To estimate five unknown quantities, we
can use one of the models (21) or (22). It seems that the case of
acoustic turbulence (23) is not so plausible in the nature as the
former ones. The observed spectra can be presented as functions
of arbitrary dimensionless frequency x = (ν − ν0)/∆ν∗, where
∆ν∗ is some arbitrary linewidth used in the reduction of the data.
Usually one takes ∆ν∗ corresponding to a velocity of 1 km s−1.
To compare our theoretical formulae with the observational data,
we have to write them as functions of x = (ν− ν0)/∆ν∗. It means
that in all the formulae we substitute, instead of old x and x0, the
values ax and ax0, where new parameter a is

a =
∆ν∗
∆νD
· (44)

Thus, the expression for τeff
ν (s) becomes:

τeff
ν (s) = τ(0)

ν (s)

{
1 +
τ1 s
2R0

e−a2(x−x0)2 − τ1

∫ s/R0

0
dy

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
1 − yR0

s

) exp

[
−a2(x − x0)2 1 − ηb||(y)

1 + ηb||(y)

]
√

1 − η2b2
|| (y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
· (45)

τ(0)
ν (s) = τ0e−a2(x−x0)2

. (46)

Here x is the dimensionless frequency used in the reduction of
observational data.

We consider two observational situations corresponding to
propagation of continuum radiation and spectral line (maser)
through the layer s, respectively.
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5.1. Absorption line in turbulent medium

Considering propagation of continuum radiation in a resonant
turbulent medium, we can take the intensity of incident radia-
tion equal to a constant value inside the frequency interval of
the absorption line. For simplicity we take this constant equal to
unity. Evidently, the shape of the absorption line is independent
of the frequency shift x0, and we take x0 = 0. Usually the in-
tensity of the absorption line is taken from the local level of the
continuum radiation intensity. Thus, the shape of an absorption
line is described by the expression:

H(x) = 1 − A(x) ≡ 1 − e−τ
eff
ν (s). (47)

The maximum value of H(x) corresponds to x = 0:

H(0) ≡ H0 = 1 − e−τ
eff
0 , (48)

τeff
0 = τ0

{
1 +
τ1s
2R0

−τ1

∫ s/R0

0
dy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
1 − yR0

s

) 1√
1 − η2b2

|| (y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ · (49)

Here τeff
0 is the effective optical depth of the layer s at the center

of a spectral line. Remember that τeff
0 < τ0.

Thus, from Eq. (48) we can obtain the value of τeff
0 ,

which depends on parameters τ0, τ1, ξ (s/R0 ≡ τ0/τ1 and
η = 1/(1 + ξ2)):

τeff
0 = − ln (1 − H0). (50)

If τeff
0 > 1 then one also has τ0 > 1, and the influence of turbu-

lence (if it exists!) can be really observable. The case τeff
0 < 1

does not warrant that τ0 < 1 also takes place. Note that, accord-
ing to Eq. (50), the value of H0 determines just the τeff

0 -value, not
the τ0-coefficient. If we approximate the profile of the spectral
line by the formula in short-correlated turbulence limit

H(x) = 1 − A0(x) ≡ 1 − exp (−τ0e−a2 x2
), (51)

we obtain that the parameter τ0 is equal to τeff
0 . Thus, the ap-

proximation (51) indeed means “mixed” approximation with the
transmission coefficient

Amixed(x) = exp
(
−τeff

0 e−a2 x2)
. (52)

Turbulent transmission coefficient A(x) and function Amixed(x)
are equal at x = 0. For this reason the “mixed” approxi-
mation Amixed(x) lies nearer to the real A(x)-function than the
A0(x)-coefficient. The largest discrepancy between these func-
tions occurs at x ≈ 0.8. Turbulence model (21) demonstrates
that Amixed(0.8) is less by 1.5%, 6% and 13% than the real value
of A(0.8) at ξ = 0.1 and τ0 = 1, 2 and 3, respectively. The
non-turbulent A0(x)-function differs from A(x) larger: it is less
by 7.7%, 27% and 51%, respectively. Note that there exist in-
equalities A(x) > Amixed(x) > A0(x). Nevertheless, the “mixed”
approximation of the absorption line

Hmixed(x) = 1 − exp
(
−τeff

0 e−a2 x2)
(53)

can be useful. To obtain parameter a2 in this model, we can use
the formula:

a2 ≡
(
∆ν∗
∆νD

)2

= − 1
x2

ln
ln (1 − H(x))
ln (1 − H0)

· (54)

It is interesting that formally we can choose any x – the right
side of Eq. (54) does not depend on x for Hmixed(x). This prop-
erty can be used to examine whether finite-correlation turbulence
exists in the atmosphere or not. The statistical confidence of this
statement can be obtained by using many values of x from the
observed line shape.

If the Hmixed(x)-curve differs sufficiently (outside the obser-
vational errors) from the observed profile then we make sure that
finite correlation turbulence indeed exists in the layer s. In this
case we have to construct the profile using a more sophisticated
model (46), which depends on four parameters, τ0, τ1, ξ, and a2.
To obtain these parameters, we can use relationships (46) at four
x-values from the observed line shape. This yields four nonlin-
ear equations for the above-mentioned parameters. It should be
stressed that a good coincidence of model (53) with the observed
line shape does not guarantee that turbulent effects are insuffi-
cient. This is due to the fact that the “mixed” approximation uses
the most important parameter τeff

0 that is indeed a function of τ0,
τ1 and ξ. Strictly speaking, we must always use model (46). If,
as a result, we obtain that τ1 is very small or ξ ≥ 1, then we are
sure that τeff

0 � τ0 and turbulence effects are really insignificant.

5.2. Propagation of maser radiation

As we have seen, the influence of finite-length turbulent corre-
lations is most profound in the propagation of radiation in opti-
cally thick layers. These effects can be observed most readily in
the propagation of a maser emission. Intense maser emission can
be observed even after the passage of an optically thick layer. In
this case radiation penetrates many turbulent cells, and the ob-
served emission coincides with average intensity I(0)

ν . It seems
that maser emission from a region with inverted populations of
molecular levels is statistically independent of conditions in the
turbulent layer with the normal distribution of the level popu-
lations. Very frequently a maser emission line has a Gaussian
shape with the Doppler width ∆νS. First, using our general for-
mulae, we demonstrate the influence of turbulence on the shape
of maser radiation. We obtain the following expression for the
mean intensity:

I(0)
ν (x) = I0e−b2 x2

A(x − x0) ≡ I0e−(b2 x2+τeff
ν (s)). (55)

The term I0 exp (−b2x2) is the incident maser intensity from the
source with the Doppler width∆νS. Here x and x0 are dimension-
less frequencies (18) with the Doppler width∆νD in the turbulent
layer s, b = ∆νD/∆νS.

In Fig. 8 we present normalized intensities I(0)
ν (x)/I(0)

νmax ≡
H(x) for values b = 0.5, 1, 2 and mean optical depths at the
center of a line τ0 = 1, 2 and 3. Figures (an), (bn) and (cn) cor-
respond to the values b = 0.5, 1 and 2, respectively. We have
considered the simplest case with x0 = 0, i.e., absence of a regu-
lar motion in the layer. Solid lines correspond to turbulence with
ξ ≡ uTh/uk = 0.1 and s = 5 R0. Dotted lines represent the trans-
formation of the line shape when turbulence is short-correlated
(τ1 = 0):

I(0)
ν (x) = I0e−b2 x2

A0(x − x0) ≡ I0e−(b2 x2+τ(0)
ν (s)). (56)

First of all, we see that turbulence with a finite correlation size
makes lines narrower than short-correlated turbulence. This is
due to the fact that transmission coefficient A(x) is narrower than
the A0(x)-coefficient (see Figs. 1–6). The case b = 0.5 corre-
sponds to broadband incident emission as compared to the char-
acteristic width of the transmission coefficients A(x) and A0(x).
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Fig. 8. Normalized shape Iν(x)/Iνmax of the
maser line with a Gaussian initial profile after
the passage of a turbulent cloud (solid lines).
The dotted lines correspond to the usual model
of short-correlated turbulence. The cases (an),
(bn) and (cn) represent ∆νD/∆νS = 0.5, 1
and 2, respectively; ∆νD and ∆νS are the
Doppler widths in the cloud and maser source.
The optical depth of the cloud τ at the line cen-
ter takes the values 1, 2 and 3. Turbulence cor-
relation length R0 is taken to be one-fifth of the
layer’s depth, and parameter ξ = uTh/uk = 0.1;
uTh and uk-values are characteristic thermal and
turbulent velocities in the cloud.

This produces central minima in the line shape. Naturally, lay-
ers with a large optical depth give rise to more profound minima
than layers with lesser thickness. The case b = 3 corresponds to
narrowband incident emission. In this case the line shape virtu-
ally does not change. The intensity decreases only by its value
proportionally to A(0) and A0(0).

Thus, the presented figures demonstrate that the shape of a
maser line changes quite substantially after the passage of an
optically thick turbulent layer with a finite length of correlation
as compared to the model of short-correlated turbulence.

To approximate the observed lines, we must substitute to our
theoretical formulae the values of x and x0 with quantities ax
and ax0, as it was explained in detail in the previous subsection
(see Eq. (44)). Note that after this substitution x is the dimen-
sionless frequency used by reduction of the observational data.
The observed intensity at x = 0 is related to the τeff

0 -coefficient:

I(0)
ν (0) = I0e−τ

eff
0 . (57)

This yields

τeff
0 = − ln

I(0)
ν (0)

I0
· (58)

As in the case of an absorption line, using approximation (56)
instead of τ0 gives rise to τeff

0 . Thus, this approximation indeed
denotes the “mixed” approximation:

I(0)
ν (x) = I0 exp

(
−a2b2x2 − τeff

0 e−a2 x2)
. (59)

The normalized form of function (59) is

Hmixed(x) ≡ I(0)
ν (x)

I(0)
νmax

= exp
[
−a2b2(x2 − x2

m) − τeff
0

(
e−a2 x2 − e−a2 x2

m
)]
, (60)



1000 N. A. Silant’ev et al.: Influence of turbulence on the shape of a spectral line

where xm corresponds to the maximum value of the observed
intensity. The derivative of Hmixed(x) is equal to zero at x = 0
and at xm:

x2
m =

1
a2

ln
τeff

0

b2
· (61)

If τeff
0 /b

2 < 1, there exists a unique maximum at x = 0. To obtain
the formulae for τeff

0 , a2 and b2 from Eq. (60), we introduce, for
brevity, notation

H0 ≡ Hmixed(0), Hn ≡ Hmixed(xn), e−x2
1a2 ≡ y. (62)

Taking the natural logarithm of Eq. (60), we obtain:

− ln
Hmixed(x)

H0
= a2b2x2 + τeff

(
e−x2a2 − 1

)
· (63)

Taking this equation at x = x1, x2 =
√

2x1 and x3 =
√

3x1 we
obtain a set of equations for y, y2 and y3, which can be easily
solved:

y =
ln (H2

2/H1H3)

ln (H2
1/H0H2)

· (64)

This solution yields for parameters a2, b2 and τeff
0 the following

expressions:

a2 = − 1

x2
1

ln y,

τeff
0 =

ln (H2
1/H0H2)

(y − 1)2
,

b2 =
1

x2
1a2

(
ln

H0

H1
− (y − 1)τeff

0

)
. (65)

We emphasize that x1 is some arbitrary value of x. Thus, vary-
ing the position of x1 at the observed curve H(x) we can check
whether parameters a2, b2 and τeff

0 change their values or not.
If they take various values it is clear that there exists the finite-
turbulence influence on the shape of a spectral line. In this case
it is necessary to use general formula (55). Note that, to obtain
three parameters (a2, b2 and τeff

0 ) analytically, we have used the
values of the observational shape curve at four points: x = 0, x1,
x2 =

√
2x1 and x3 =

√
3x1.

The second proof of the validity of the “mixed” approxima-
tion is substituting the obtained parameters a2, b2 and τeff

0 to the
exact relationship (61), where xm is known from observational
line shape.

The asymmetric maser lines are observed more frequently.
In these cases we have to use the formulae with x0 � 0. In this
case the “mixed” approximation has the form:

Hmixed(x) = e−a2b2(x2−x2
m)

×e
−τeff

0

(
e−(x−x0 )2a2−e−(xm−x0 )2

)
. (66)

Instead of expression (61) for the position of the maximum of
the line shape, we have a more complicated formula:

(xm − x0)2a2 = ln

⎡⎢⎢⎢⎢⎣ xmτ
eff
0

(xm − x0)b2

⎤⎥⎥⎥⎥⎦. (67)

In this case we have not obtained analytical formulae for four
parameters a2, b2, x0 and τeff

0 . So, they have to be obtained by nu-
merical methods from set of Eqs. (66) taken at various points xn.
The substitution of the obtained parameters to the exact formula
(67) can be used to check whether the finite-correlation turbu-
lence influences the line shape or not.

The obtained parameters a = ∆ν∗/∆νD, b = ∆νD/∆νS, x0
and τeff

0 allow us to construct the “mixed” approximation for-
mulae (57) or (66). If this approximation lies beyond the ob-
served line shape H(x), then it is clear that the effects of the
finite-correlation turbulence play an important role and one must
use the more complex approximation (55). It seems that param-
eters a, b, x0 and τeff

0 obtained from “mixed” approximation can
be used as a starting point to construct approximation (55). Note
once more that the good coincidence of Hmixed(x) with the ob-
served H(x) does not guarantee that the influence of turbulence
is small (remember that the obtained value τeff

0 is a function of
τ0, τ1 and ξ). In the general case approximation (55) depends on
six parameters τ0, τ1, ξ, a, b and x0. To obtain these parameters
we must use additional values of the observed line profile H(x).
A detailed investigation of this complicated procedure is beyond
the scope of this paper.

It should be emphasized that the obtained parameters a and ξ
allow us to estimate separately characteristic thermal velocity
uTh and turbulent velocity uk. This is impossible if one uses the
short-correlated model of turbulence.

5.3. Estimation of the parameters of the H2 O maser source
in S252A

To illustrate our theory, we have chosen a flare of the H2O maser
in the source S252A at VLSR = 10 km s−1, not a single two-peak
profile, because this one may be produced by a simple overlap of
two physically unassociated components with similar velocities
VLSR. In addition, it is important to stress that during strong flares
the maser operation mode may change, resulting in a variation in
linewidths of individual features. However, in such cases maxi-
mum linewidth variations are a few times less than the linewidth
itself. For the flare in S252A at V = 10 km s−1 the minimum sep-
aration between the components was 0.5 km s−1, which is close
to the linewidth. The maximum separation reached 0.8 km s−1.
Hence it is clear that the changes in the line structure are not re-
lated to the maser operation mode. Finally, important evidence
favouring our choice of the flare were time-correlated flux vari-
ations of both components.

Thus, the two-peak line profile at 10 km s−1 in S252A, in
which the components have similar radial velocities and their
fluxes change in phase can be a proof of physical association of
the components, i.e., the source of emission at 10 km s−1 is a
single maser feature.

The observed convergence of the components during the
flare and their subsequent mutual recession (see Fig. 9b) took
place also in other maser sources. For this phenomenon in W75S
and W31A we have proposed a mechanism based on coherent
properties of the radiation (see, e.g., Lekht et al. 1996). Here we
propose another possible mechanism for the explanation of this
phenomenon.

The H2O maser source in the S252A region was observed
at Pushchino Radio Astronomical Observatory (Russia) during
1987–1988. As all the masers in star-forming regions H2O maser
in S252A is located inside a dense molecular cloud. The frag-
ments of the observed spectra are presented in Fig. 9a (Berulis
et al. 1996). In the reduction of these spectra they were repre-
sented as a sum of two Gaussian profiles (Lekht et al. 1996).
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Fig. 9. a) Fragments of the H2O maser spectra of S252A in 1988; b)
variations in the difference between the centers of the approximating
Gaussians.

It was found that after a burst of the emission at the beginning
of 1988 the distance between these two Gaussian profiles de-
creased systematically up to May 1988, and then the distance in-
creased to a new level, lower than the initial one. This is clearly
seen in Fig. 9b. What is the cause of this effect? We have seen
from Fig. 8 that propagation of maser emission through a turbu-
lent layer with a finite correlation length decreases the width of
the spectral line. Thus, it is natural to explain the effect by this
mechanism.

Here we suppose that after the burst the existing turbulent
layer has acquired an additional regular-velocity motion and,
possibly, other parameters have also changed. Here we present
only a preliminary solution of this problem. Our main goal will
be to demonstrate that the simple analytical theory developed in
this paper allows us to find very quickly the basic parameters
of turbulence by the “hit and fit” method. For this purpose we
use general formulae (55) and (66) with unknown parameters
τ0, x0, a2 and b2. We take the two initial Gaussian curves with
x0 = 0 and x0 = 0.8 and seek at what parameters the distance
between the centers of these curves takes the value x0 = 0.5.

The calculation of τeff
ν was done for correlation function (21). Of

course, in such a simple statement of the problem the solution
is not unique. But we restrict our solution by the condition that
the final linewidth is about the observed value, 1–1.1 km s−1. It
seems that this restriction does not make the solution unique, but
anyway it makes the range of possible values of the parameters
narrower.

As a result, we have found that the parameters characteriz-
ing the layer are: τ0 = 3, optical depth in center of a line, regular
velocity along the line of sight U0 � 1, mean turbulent velocity
uk � 0.5, and the thermal velocity uTh � 0.1 km s−1. It is in-
teresting that the “mixed” approximation yields a shift of 0.46
instead of 0.5 km s−1 for the general formula (55). The differ-
ence is rather large and the solution for the layer with a finite
correlation length is more preferable. The obtained preliminary
results can be used in the construction of a physical model of the
maser source in S252A.

Thus, this illustrative example shows that the simple analyt-
ical formulae obtained in our paper can be used to estimate pos-
sible parameters of turbulence in interstellar clouds. Of course,
any additional information about the conditions in molecular
cloud, which usually exists, can help to obtain the unique so-
lution.

6. Conclusion

Let us summarize the results of the paper. First of all, we have
developed the analytical theory of radiative transfer of a resonant
line in turbulent atmospheres with a finite length of correlation.
We have found for the first time that mean intensity I(0)

ν ≡ 〈Iν〉
obeys the usual radiative transfer equation with renormalized ex-
tinction factor αeff

ν if correlation length R0 is small as compared
to the photon free path. Effective absorption coefficient αeff

ν does
not coincide with mean absorption factor α(0)

ν ≡ 〈αν〉. The tran-
sition αeff

ν → α(0)
ν takes place if the optical depth at the line cen-

ter τ1 of correlation length R0 tends to zero (the case of short-
correlated turbulence), or characteristic thermal velocity uTh is
equal to or greater than characteristic turbulent velocity uk (pa-
rameter ξ = uTh/uk ≥ 1).

Assuming that the ensemble of turbulent velocities is
Gaussian, we have obtained an explicit analytical formula for
αeff
ν , which integrally depends on the correlation function of tur-

bulent velocities. It is found that αeff
ν ≤ α(0)

ν . It means that statis-
tically a turbulent layer with a finite correlation length is more
transparent then a layer of short-correlated turbulence.

It is shown that, in addition to the usual Doppler broadening
of the spectral line, correlated turbulent motions of atoms and
molecules produce considerable changes in the shape of a spec-
tral line. Averaged spectral line intensity I(0)

ν is narrower than
that described by radiative transfer equation with averaged ex-
tinction factor α(0)

ν . This distortion of the shape increases with
increasing optical depth τ0 of the turbulent layer at the line cen-
ter. An increase in the parameter τ1 and decrease in ξ also give
rise to an increase in the distortion of the shape. If the turbulent
layer contains many (τ0/τ1 ≥ 100) turbulent cells, the effects of
finite correlation length turbulence disappear. If the number of
turbulent cells is not large, but uTh ≥ uk, the finite correlation
length effects also tend to disappear.

Explicit analytical formulae allow us to obtain physically ob-
vious qualitative explanations of all the effects. They are very
useful for a quick interpretation of the observed spectral lines.
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These effects were mentioned earlier in various papers as the re-
sults of purely numerical calculations, without a simple physical
explanation. The simple analytical formulae derived in this paper
allow us to understand the expected effects of turbulence with-
out complicated numerical calculations. In particular, we have
found that turbulence with finite correlation length diminishes
the equivalent width of an absorption line, which is opposite to
the statement of Magnan (1976).

Finally, we briefly discuss the problem how to obtain the
main turbulent parameters from the analysis of the shape of an
absorption line or maser line propagating through a turbulent in-
terstellar cloud. We present tests whether the shape of a spectral
line is distorted by finite correlation length turbulence or not.
This analysis basically allows us to estimate separately the cloud
temperature and characteristic turbulent velocity uk; this is not
possible when using the usual short-correlated model of turbu-
lence. As an illustrative example, we have estimated the possible
parameters of the H2O maser source in S252A. We hope that the
obtained analytical formulae will be useful for a detailed expla-
nation of various observational data.
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