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Abstract: Hydrogen titanates (H-titanates) of different nanostructures (nanotubes, nanowires,
nanosheets) have been synthesized by hydrothermal methods. The europium (III) sorption from
aqueous solutions onto nano-sized H-titanates was studied as a function of contact time, pH values,
and initial Eu (III) concentration in batch experiments. Reversibility of adsorption of europium has
been investigated as well. Nano-sized H-titanates can be used for tri-valent f-elements removal in
polluted water treatment due to fast and efficient sorption of Eu (III).
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1. Introduction

The development of nuclear energy results in increasing discharge of radionuclides in natural
environments due to accidents in nuclear power or reprocessing plants [1]. Among different products,
actinides and lanthanides are formed in spent nuclear fuel (SNF) and radioactive waste (RW). Thus,
storage and reprocessing of SNF and RW can release these elements, as well as other components,
into the natural water and soil environment. Transplutonium actinides (mainly, Am and Cm) and
lanthanides formed in nuclear fuel during its operation are important hazardous elements due to their
high toxicity and radioactivity. Therefore, it is very important to develop materials and methods for
their effective removal from wastewater and groundwater.

Americium and curium present only in trivalent form under environmental conditions and
their chemical behavior is very close to lanthanides, particularly Eu (III). Different techniques of An
(III)/Ln (III) extraction from water solutions have been developed using inorganic sorbents [2–11],
organic/polymer sorbents [12–15], and different types of chromatography [16–18]. Recently nanosized
Na, H-titanates attracted attention due to their properties. They have layered crystal structure, high
ion exchange capacity, high surface charge, and fast ion diffusivity. Layered nanosized titanates
have different structures and morphology [19,20]: Nanotubes, nanowires, nanospherulites, etc.
It was demonstrated that these materials can effectively remove heavy metals [21,22], cesium [23],
strontium [22], thorium [24], and uranium [25,26] from water solutions. Usually, only one type of
nanotitanate structure is studied in a research work. In this work we have investigated the sorption of
europium (III), as an analogue of An (III), onto nano-sized H-titanates with different structures.
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2. Materials and Methods

The procedure to prepare various titanate nanostructures is described as follows. In all synthesis
experiments, anatase TiO2 particles (Sigma-Aldrich, USA) were used as the precursor. The short titanate
nanotubes were synthesized following the conventional hydrothermal synthesis method [20,27]. In a
typical experiment, 0.5 g TiO2 particles were dispersed in 80 mL 10 M NaOH solution and transferred
into a 125 mL Teflon-lined stainless-steel autoclave. The hydrothermal synthesis was carried out at
130 ◦C for 48 h. The short titanate nanowires were synthesized under the same synthesis conditions
and procedure, except that the temperature was set at 170 ◦C for 48 h. For the synthesis of titanate
nanosheet structures, the NaOH concentration was lowered to 5 M, and the synthesis was carried out
at 150 ◦C for 48 h.

The long titanate nanotube and nanowire samples were synthesized using a stirring hydrothermal
method detailed elsewhere [20,28]. In a typical experiment, 0.1 g TiO2 particles were dispersed in 15 mL
10 M NaOH solution via continuous stirring. The solution with dispersed particles was then transferred
into a 23 mL Teflon-lined stainless-steel autoclave with a magnetic stirrer placed inside. The autoclave
was placed in a silicone oil bath heated to a designated synthesis temperature. During the synthesis,
magnetic stirring rate was maintained at 500 rpm. Long titanate nanotubes were obtained after the
stirring hydrothermal synthesis at 130 ◦C for 48 h. Long titanate nanowires were synthesized at 170 ◦C
for 24 h.

After the above syntheses were completed, different forms of sodium titanate precipitates were
produced and collected using a centrifuge. The as-synthesized precipitates were washed with DI
water several times until the pH value of the water solution decreased to around 7. The collected
precipitates were then soaked in a 0.6 M HCl solution for 72 h, under constant stirring, and collected
by centrifugation. The sample was then washed by DI water as described above. The entire process
of proton exchange was repeated 2–3 times until the pH of the solution reached around 6, which
indicated that the sodium ions were completely exchanged by hydrogen ions to form hydrogen titanate,
while the nanostructures of the sodium titanates were retained.

The morphology of synthesized H-titanates was studied by scanning electron microscopy.
Specific surface area of the synthesized H-titanates samples was determined by N2

sorption–desorption and further fitting with the BET (Brunauer–Emmett–Teller) model [29].
The 152Eu radionuclide was used in this study to determine the content of europium in water

solutions. All other commercial reagents were of analytical grade and used as received. All solutions
were prepared with deionized MilliQ water.

All experiments were carried out at ambient atmospheric conditions and at room
temperature (22–23 ◦C).

Radionuclide removal was studied in aqueous solutions at different pH values. Solutions were
prepared with deionized water and pH values were adjusted with 0.1 M NaOH and 0.1 M HCl
solutions after the addition of H-titanates. The solid to liquid ratio was 1 g L−1 in all experiments.
Europium solutions were prepared by dilution of Eu (NO3)3 stock solution (natural content of
stable isotopes). 152Eu (T1/2 = 13.54 years) was added as tracer to measure europium content by
γ-ray spectrometry (high purity germanium detector, GC 3020, Canberra, Australia). Total initial
concentration of europium was ca. 10−9 M. H-titanates were added first in water solution, then
aliquots of Eu stock solution were added, and further pH values were adjusted. Then solutions were
intensively shaken for few seconds and left on the orbital shaker. The solutions at pH 4 were sampled
periodically to determine the optimal equilibration time—i.e., time when the steady-state is reached.
All other samples were sampled after two days of experimentation, after re-measurement of the pH
values. All samples were centrifuged at 40,000× g within 10 min to remove particles of H-titanates.
Supernatants were then analyzed for the content of europium. Sorption isotherms were obtained in
the same manner, but the initial concentration of Eu (III) was varied from 10−9 M to 10−4 M.
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3. Results

The morphology of synthesized H-titanates revealed by scanning electron microscopy is presented
in Figure 1.
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Figure 1. SEM images of H-titanates of different structures: (a) nanotubes short; (b) nanotubes long; 
(c) nanowires short; (d) nanowires long; (e) nanosheets. 
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Figure 1. SEM images of H-titanates of different structures: (a) nanotubes short; (b) nanotubes long;
(c) nanowires short; (d) nanowires long; (e) nanosheets.

Values of the specific surface area of the synthesized H-titanates samples are presented in Table 1.
Short names of the studied samples given in Table 1 are used throughout the text.

Table 1. Specific surface area of the investigated H-titanates.

Sample Specific Surface Area, m2 g−1

Nanowires short, NWS 104
Nanowires long, NWL 33
Nanotubes short, NTS 283
Nanotubes long, NTL 158

Nanosheets, NS 148
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The dependence of the Eu (III) removal from aqueous solution at different pH 4 versus time
is shown in Figure 2. The steady state has been reached within 10 min of experiments in all cases.
The equilibrium fraction of the sorbed europium (III) is more than 98%.
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Figure 2. Time dependence of Eu (III) removal from aqueous solutions at pH 4 by H-titanates of
different morphology.

The removal of europium (III) from aqueous solutions at different pH values by H-titanates of
different structures at steady state is shown in Figure 3. The complete recovery of Eu (III) occurs at pH
4 for all investigated H-titanates.
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Figure 3. Removal (%) of europium (III) from aqueous solutions at different pH values.

Strong sorption of cations can lead to their irreversible fixation. We have performed desorption
studies after sorption experiments by shifting pH values to more acidic. During desorption studies the
supernatant solutions were not changed, but only small portions of HCl solutions were added to shift
the pH values to lower values. The results for all the investigated samples are presented in Figure 4.
The example scheme of pH shifting (arrows) is presented in Figure 4a for short nanotubes.
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Figure 4. Results of Eu (III) sorption–desorption experiments for: (a) nanotubes short; (b) nanotubes 
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Figure 4. Results of Eu (III) sorption–desorption experiments for: (a) nanotubes short; (b) nanotubes
long; (c) nanowires short; (d) nanowires long; (e) nanosheets.

Investigated H-titanates have different morphology and specific surface areas (see Table 1). Thus,
it is useful to compare specific sorption properties of these materials, e.g., distribution coefficient (Kd).
We calculated the Kd values with Equation (1):

Kd =
%/(S · m)

(100 − %)/V
(1)

where Kd—is the distribution coefficient, mL m−2; %—fraction of a sorbed cation; V—volume of the
sample, mL; S—specific surface area, m2 g−1; m—mass of the sorbent, g.

The resulting values of Kd are presented in Figure 5. The values of sorbed Eu (III) fraction
expressed in percentage units demonstrate almost no difference between different H-titanates at pH
values above 4 (see Figure 2). However, Kd values differ significantly—at least order of magnitude
between long nanowire (NWL) and long nanotube (NTL) samples. The reason is the sensitivity of
Kd values to very high (close to 100%) or very low (close to 0%) sorption percentage. In this range,
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the uncertainty of radioactivity measurements is even bigger than the “(100−%)” term in Equation (1).
Thus, Kd values cannot be correctly used for the investigated system at pH > 4.
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Figure 5. Distribution coefficients of Eu (III) onto H-titanates of different morphology.

4. Discussion

The obtained materials demonstrate different morphology, specific surface area, and sorption
capacities towards Eu (III) ions. It must be noted that X-ray diffraction analysis demonstrates that all
the materials are mixtures of different H-titanates and admixtures of titanium oxides.

The effect of pH on Eu (III) sorption percentage is shown in Figures 3 and 4. A pronounced
rise of Eu (III) sorption from 0 to 100% is observed within pH values 2–4. The typical pH range of
the trivalent metal cations sorption edge on different oxide surfaces is within 2–6 [3,30–32]. Thus,
H-titanates demonstrate very strong binding with Eu (III).

The high values of the trivalent f-elements (lanthanides and actinides) removal (Figures 2 and 3)
can be usually explained by their high tendency to sorb onto different mineral surfaces
and by formation of strong inner-sphere complexes with different surface hydroxyl groups
(e.g., ≡Ti–OH) [3,33]. The spectroscopic studies and quantum-chemical calculations are ongoing
to determine the sorbed complexes of Eu (III) onto H-titanates.

The investigated samples of H-titanates demonstrate total reversibility of Eu sorption (Figure 4).
This is again typical for the sorption by formation of inner-sphere complexes with surface hydroxyl
groups. This is similar to the commonly known hydrolysis reactions; hydrolysis species (like complexes
with surface groups) form with pH increasing, but can be decomposed by increasing the acidity,
i.e., pH decreasing. Europium is considered as a chemical analogue of trivalent actinides, which was
confirmed in several sorption studies with different materials [34–36]. Thus, H-titanates can be applied
for reversible extraction of trivalent lanthanides and actinides. For example, trivalent f-elements can be
sorbed at pH 7–8 (typical for many natural waters) and then be removed in acidic conditions (pH < 3)
to recycle the sorbent. Additionally, sorbents with the adsorbed trivalent f-elements can be removed
from the solution by centrifugation or filtration. After that, they can be annealed at temperatures above
300 ◦C to form very stable TiO2 phases in which lanthanides or actinides can be encapsulated. Thus,
the investigated H-titanates can serve as a precursor of the stable matrix for the immobilization of
trivalent actinides.

Fitting of the sorption isotherms with the Langmuir equation gives the following values for the
maximum sorption capacity of the investigated samples: nanosheets 0.62 µmol m−2 (91.8 µmol g−1,
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14.0 mg g−1), nanowires short 0.45 µmol m−2 (46.8 µmol g−1, 7.1 mg g−1), nanowires long 0.39 µmol
m−2 (12.9 µmol g-1, 2.0 mg g-1), nanotubes short 0.53 µmol m-2 (150.0 µmol g-1, 22.8 mg g-1), nanotubes
long 0.41 µmol m−2 (64.8 µmol g−1, 9.8 mg g−1). The sorption capacity values of H-titanates of
different morphology relative to the surface area are very close. That means affinity to Eu (III) and
number of sorption sites per surface area are similar for the investigated samples. However, more
precise studies are required to understand the difference. Due to the significant difference in specific
surface area, the mass sorption capacity values (per g) differ from sample to sample.

Table 2 represents the comparison of Eu (III) sorption capacity of the investigated samples with
some other materials. Different authors reported sorption capacity either as mg g−1 or as mol g−1.
In Table 2 we have recalculated respective values by using the atomic mass of stable europium, equal
to 151.964 according to the latest version of IUPAC Technical Report [37], and rounded the values
to the first decimal place (the original numbers are presented as published). As it can be seen from
Table 2, H-titanates are not superior materials for Eu sorption. However, fast and reversible sorption
of different cations [21–26] and possibility for further transformation to a very stable TiO2 make this
materials perspective for applications in purification of water solutions.

Table 2. Eu (III) sorption capacity of different materials [2,14,38–59].

Material pH Sorption Capacity
Reference

mg g−1 µmol g−1

H-Titanates nanowires short 4.1 7.1 46.8 This study

H-Titanates nanowires long 4.1 2.0 12.9 This study

H-Titanates nanotubes short 4.2 22.8 150.0 This study

H-Titanates nanotubes long 4.2 9.8 64.8 This study

H-Titanates nanosheets 4.2 14.0 91.8 This study

Multi-walled carbon nanotubes (MWCNT) 4.3 1.4 9.24 [38]

TiO2 4.5 1.5 9.91 [39]

ZSM-5 zeolite 3.62
4.85

2.4
3.3

15.9
21.6 [40]

Humic acid-MWCNT hybrid 4.3 2.6 17.4 [38]

4-(2- Pyridylazo) resorcinol loaded polyurethane
foam (PAR-PUF) 7.0 3.0 19.5 [41]

Al2O3/expanded graphite 4.0
6.0

4.74
5.14

31.2
33.8 [42]

SBA-15 mesoporous silicas functionalized with
N-propyl salicylaldimine (SBA/SA) 4.0 5.1 33.6 [43]

Magnetite nanoparticles 2.5 5.75 37.8 [44]

Cellulose acetate (CA) membrane 5.0 9.35 61.5 [45]

Fe3O4@Humic acid magnetic nanoparticles 5.0 10.6 69.5 [46]

2-thenoyltrifluoroacetone loaded polyurethane
foam (HTTA-PUF) 3.5 12.5 82.0 [47]

SBA-15 mesoporous silicas functionalized with
ethylenediaminepropylesalicylaldimine

(SBA/EnSA)
4.0 15.6 102.7 [43]

8-Hydroxyquinoline (HQ)/benzene/silica gel 4.2 18.52 121.9 [48]

Titanate nanotubes 4.5 18.8 124.0 [49]



Appl. Sci. 2019, 9, 697 8 of 11

Table 2. Cont.

Material pH Sorption Capacity
Reference

mg g−1 µmol g−1

CA-AAm (Acrylamide) membrane 5.0 19.08 125.6 [45]

Activated carbon 4.5
5.0

20.12
46.5

132.4
306.0

[50]
[51]

Sepiolite 6.0 22.85 150.4 [52]

CA-PEG (Polyethylene glycol) membrane 5.0 27.40 180.3 [45]

Magnetic Fe3O4/sepiolite composite 5.0 30.85 203.0 [53]

CMPO on SiO2 3 M HNO3 31.3 206.0 [14]

α-Ti (HPO4)·2H2O 6.0 40.6 267.2 [54]

Molecular sieve (Al-MCM-41) 5.0 43.2 284.0 [55]

Carbonaceous nanofibers 4.5 62.6 411.9 [56]

Magnetic graphene oxide 4.5 70.15 461.6 [57]

Layered Metal Sulfide (KInSn2S6) 2.0 86.58 569.7 [58]

Graphene oxide

4.5
5.0
4.5
6.0

89.654
115.5
161.29
175.44

590.0
760.0

1061.4
1154.5

[57]
[2]

[50]
[50]

Mg–Al layered double hydroxide intercalated with
nitrate anions (LDH-NO3) 4.25 119.56 786.8 [59]

LDH modified with sodium lauryl sulfate
(LDH-NaLS) 4.25 156.45 1029.5 [59]

5. Conclusions

Investigated H-titanates of different nanostructures demonstrate fast and efficient sorption of
trivalent lanthanides from aqueous solutions. The sorption of Eu (III) is strongly dependent on pH
values, but almost independent on structure of H-titanates. These results, along with low solubility of
H-titanates and previous data reported in literature, show that these materials have a high potential
for the decontamination of polluted wastewater and groundwater.
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