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We consider the equations ofmotion of three-body problem in a Lagrange form (whichmeans a consideration of relativemotions of
3 bodies in regard to each other). Analyzing such a system of equations, we consider in detail the case ofmoon’s motion of negligible
mass𝑚

3
around the 2nd of two giant-bodies𝑚

1
,𝑚
2
(which are rotating around their common centre ofmasses onKepler’s trajectories),

themass of which is assumed to be less than themass of central body.Under assumptions of R3BP,we obtain the equations ofmotion
which describe the relative mutual motion of the centre of mass of 2nd giant-body𝑚

2
(planet) and the centre of mass of 3rd body

(moon) with additional effective mass 𝜉 ⋅ 𝑚
2
placed in that centre of mass (𝜉 ⋅ 𝑚

2
+ 𝑚
3
), where 𝜉 is the dimensionless dynamical

parameter. They should be rotating around their common centre of masses on Kepler’s elliptic orbits. For negligible effective mass
(𝜉 ⋅ 𝑚

2
+𝑚
3
) it gives the equations of motion which should describe a quasi-elliptic orbit of 3rd body (moon) around the 2nd body

𝑚
2
(planet) for most of the moons of the planets in Solar System.

1. Introduction

Thestability of themotion of themoon is the ancient problem
which leading scientists have been trying to solve during last
400 years. A new derivation to estimate such a problem from
a point of view of relative motions in restricted three-body
problem (R3BP) is proposed here.

Systematic approach to the problem above was suggested
earlier in KAM- (Kolmogorov-Arnold-Moser-) theory [1] in
which the central KAM-theorem is known to be applied for
researches of stability of Solar System in terms of restricted
three-body problem [2–5], especially if we consider photogra-
vitational restricted three-body problem [6–8] with addi-
tional influence ofYarkovsky effect of nongravitational nature
[9].

KAM is the theory of stability of dynamical systems [1]
which should solve a very specific question in regard to
the stability of orbits of so-called “small bodies” in Solar
System, in terms of restricted three-body problem [3]: indeed,
dynamics of all the planets is assumed to satisfy restrictions

of restricted three-body problem (such as infinitesimal masses
and negligible deviations of the main orbital elements).

Nevertheless, KAM also is known to assume the appro-
priate Hamilton formalism in proof of the central KAM-
theorem [1]; the dynamical system is assumed to be Hamil-
ton’s system and all the mathematical operations over such a
dynamical system are assumed to be associated with a proper
Hamilton system.

According to the Bruns theorem [5], there are no other
invariants except well-known 10 integrals for three-body pro-
blem (including integral of energy and momentum); this is a
classical example of Hamilton’s system. But in case of restri-
cted three-body problem, there are no other invariants except
only one, Jacobian-type integral of motion [3].

Such a contradiction is themain paradox of KAM-theory;
it adopts all the restrictions of restricted three-body problem,
but nevertheless it proves to use the Hamilton formalism,
which assumes the conservation of all other invariants (the
integral of energy, momentum, etc.).

To avoid ambiguity, let us consider a relative motion in
three-body problem [2].
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2. Equations of Motion

Let us consider the system of ODE for restricted three-body
problem in barycentric Cartesian coordinate system, at given
initial conditions [2, 3]:

𝑚1q
󸀠󸀠

1 = − 𝛾{

𝑚1𝑚2 (q1 − q2)
󵄨
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(1)

where q1, q2, and q3 mean the radius vectors of bodies 𝑚1,
𝑚2, and𝑚3, respectively; 𝛾 is the gravitational constant.

The systemabove could be represented for relativemotion
of three bodies as shown below (by the proper linear transfor-
mations):
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Let us designate the following:

R1,2 = (q1 − q2) ,

R2,3 = (q2 − q3) ,

R3,1 = (q3 − q1) .

(∗)

Using of (∗) above, let us transform the previous system to
another form:
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Analysing system (3) we should note that if we sum all the
above equations one to each other it would lead us to the
result below:

R󸀠󸀠1,2 +R󸀠󸀠2,3 +R󸀠󸀠3,1 = 0. (4)

If we also sum all the equalities (∗) one to each other, we
should obtain

R1,2 +R2,3 +R3,1 = 0. (∗∗)

Under assumption of restricted three-body problem, we
assume that themass of small 3rd body𝑚

3
≪ 𝑚
1
, 𝑚
2
, respec-

tively; besides, for the case of moving of small 3rd body𝑚
3
as

a moon around the 2nd body 𝑚
2
, let us additionally assume

|R
2,3
| ≪ |R

1,2
|.

So taking into consideration (∗∗), we obtain from system
(3) the following:
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(5)

where the 1st equation of (5) describes the relativemotion of 2
massive bodies (which are rotating around their common cen-
tre of masses on Kepler’s trajectories); the 2nd describes the
orbit of small 3rd body𝑚

3
(moon) relative to the 2nd body𝑚

2

(planet), for which we could obtain according to the trigono-
metric “Law of Cosines” [10]:
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where 𝛼 is the angle between the radius-vectorsR
2,3

andR
1,2
.

Equation (6) could be simplified under the additional
assumption above |R

2,3
| ≪ |R

1,2
| for restricted mutual

motions of bodies𝑚1 and𝑚2 in R3BP [3] as below:
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Moreover, if we present (7) in the form below
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(8)

then (8) describes the relative motion of the centre of mass
of 2nd giant-body 𝑚2 (planet) and the centre of mass of 3rd
body (moon) with the effective mass (𝜉 ⋅ 𝑚

2
+𝑚
3
), which are

rotating around their common centre of masses on the stable
Kepler’s elliptic trajectories.

Besides, if the dimensionless parameters 𝜉, 𝜂 → 0, then
(8) should describe a quasi-circle motion of 3rd body (moon)
around the 2nd body𝑚

2
(planet).

3. The Comparison of the Moons in
Solar System

As we can see from (8), 𝜉 is the key parameter which deter-
mines the character of moving of the small 3rd body𝑚

3
(the

moon) relative to the 2nd body 𝑚
2
(planet). Let us compare

such a parameter for all considerable known cases of orbital
moving of the moons in Solar System [11] (Table 1).

4. Discussion

As we can see from Table 1, the dimensionless key parameter
𝜉, which determines the character of moving of the small
3rd body 𝑚

3
(moon) relative to the 2nd body 𝑚

2
(planet),

is varying for all variety of the moons of the planets (in
Solar System) from the meaning 0.0004 ⋅ 10−6 (for Proteus of
Neptune) to the meaning 54.46 ⋅ 10−6 (for Iapetus of Saturn),
but it still remains to be negligible enough for adopting the
stable moving of the effective mass (𝜉 ⋅ 𝑚

2
+ 𝑚
3
) on quasi-

elliptic Kepler’s orbit around their common centre of masses
with the 2nd body𝑚

2
.

Equation (8) and the corresponding parameter 𝜉 play a
key role in this paper. As for the physical meaning of (8), it
describes the relative motion of the centre of mass of 2nd
giant-body 𝑚

2
(planet) and the centre of mass of 3rd body

(moon)with the effectivemass (𝜉⋅𝑚
2
+𝑚
3
), which are rotating

around their common centre of masses on the stable Kepler’s
elliptic trajectories. In case the dimensionless parameters 𝜉,
𝜂 → 0 then (8) should describe a quasi-circle motion of 3rd
body (moon) around the 2nd body𝑚

2
(planet).

For example, (8) refers to the classical two-body problem
if 𝜉 is a constant; nevertheless, 𝜉 is fluctuating with time dur-
ing orbital motion in R3BP, and hence (8) actually describes a
perturbed two-body problem and its solution is nonconstant
elliptic instead of fixed elliptic. As for physical explanation on
the effectivemass (𝜉⋅𝑚

2
+𝑚
3
), it seems that 𝜉⋅𝑚

2
could be also

considered as the secular part of the third-body perturbation.
As for the connection (similarities, differences, etc.) bet-

ween equation of relative motion (8) and the classical per-
turbed two-body problem (with the main perturbation being

third-body gravity), they are roughly equivalent, but the pro-
posed ansatz is obviously an alternative approach, which
could be more effective for the investigations of mutual rela-
tivemotion and stability of the moons orbits in Solar System.

If the total sum of dimensionless parameters (𝜉 + 𝜂) is
negligible then (8) should describe a stable quasi-circle orbit
of 3rd body (moon) around the 2nd body𝑚

2
(planet). Let us

consider the proper examples which deviate (differ) to some
extent from the negligibility case (𝜉 + 𝜂) → 0 above (Table 1)
[11]:

(1) Nereid-Neptune:

(𝜉 + 𝜂) = (35.81+ 0,29) ⋅ 10−6, eccentricity 0.7507. (9)

(2) Triton-Neptune:

(𝜉 + 𝜂) = (0.01+ 210) ⋅ 10−6,

eccentricity 0.000016.
(10)

(3) Iapetus-Saturn:

(𝜉 + 𝜂) = (54.46+ 3.4) ⋅ 10−6, eccentricity 0.0286. (11)

(4) Titan-Saturn:

(𝜉 + 𝜂) = (2.2+ 240) ⋅ 10−6, eccentricity 0.0288. (12)

(5) Io-Jupiter:

(𝜉 + 𝜂) = (0.168+ 47) ⋅ 10−6, eccentricity 0.0041. (13)

(6) Callisto-Jupiter:

(𝜉 + 𝜂) = (14.89+ 58) ⋅ 10−6, eccentricity 0.0074. (14)

(7) Ganymede-Jupiter:

(𝜉 + 𝜂) = (2.73+ 79) ⋅ 10−6, eccentricity 0.0013 (15)

(8) Phobos-Mars:

(𝜉 + 𝜂) = (0,217+ 0,02) ⋅ 10−6, eccentricity 0.0151. (16)

(9) Moon-Earth:

(𝜉 + 𝜂) = (5,532+ 12,300) ⋅ 10−6,

eccentricity 0.0549.
(17)

The obvious extreme exception is the Nereid (moon of Nep-
tune) from this scheme; Nereid orbits Neptune in the pro-
grade direction at an average distance of 5,513,400 km, but its
high eccentricity of 0.7507 takes it as close as 1,372,000 km
and as far as 9,655,000 km [11].

The unusual orbit suggests that itmay be either a captured
asteroid or Kuiper belt object or that it was an inner moon in
the past and was perturbed during the capture of Neptune’s
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Table 1: Comparison of the averaged parameters of the moons in Solar System.

Masses of the
planets (Solar
System), kg

Ratio𝑚
1
(Sun) to

mass𝑚
2
(planet)

Distance |R
1,2
|

(between Sun and
planet), AU

Parameter 𝜂, ratio
𝑚
3
(moon) to mass

𝑚
2
(planet)

Distance |R
2,3
| (between

moon and planet) in
103 km

Parameter
𝜉 = ((𝑚1/𝑚2) ⋅ (

󵄨
󵄨
󵄨
󵄨
R2,3

󵄨
󵄨
󵄨
󵄨

3
/
󵄨
󵄨
󵄨
󵄨
R1,2

󵄨
󵄨
󵄨
󵄨

3
))

Mercury,
3.3 ⋅ 1023 (332,946/0.055) 0.387AU

Venus,
4.87 ⋅ 1024 (332,946/0.815) 0.723AU

Earth,
5.97 ⋅ 1024

1 Earth =
332,946 kg

1 AU =
149,500,000 km 12, 300 ⋅ 10−6 383.4 Moon:

5, 532 ⋅ 10−6

Mars,
6.42 ⋅ 1023 (332,946/0.107) 1.524AU

(1) Phobos:
0.02 ⋅ 10−6
(2) Deimos:
0.003 ⋅ 10−6

(1) Phobos:
9.38
(2) Deimos:
23.46

(1) Phobos:
0.22 ⋅ 10−6
(2) Deimos:
3.4 ⋅ 10−6

Jupiter,
1.9 ⋅ 1027 (332,946/317.8) 5.2 AU

(1) Ganymede:
79 ⋅ 10−6
(2) Callisto:
58 ⋅ 10−6
(3) Io:
47 ⋅ 10−6
(4) Europa:
25 ⋅ 10−6

(1) Ganymede:
1,070
(2) Callisto:
1,883
(3) Io:
422
(4) Europa:
671

(1) Ganymede:
2.73 ⋅ 10−6
(2) Callisto:
14.89 ⋅ 10−6
(3) Io:
0.17 ⋅ 10−6
(4) Europa:
0.67 ⋅ 10−6

Saturn,
5.69 ⋅ 1026 (332,946/95.16) 9.54AU

(1) Titan:
240 ⋅ 10−6
(2) Rhea:
4.1 ⋅ 10−6
(3) Iapetus:
3.4 ⋅ 10−6
(4) Dione:
1.9 ⋅ 10−6
(5) Tethys:
1.09 ⋅ 10−6
(6) Enceladus:
0.19 ⋅ 10−6
(7) Mimas:
0.07 ⋅ 10−6

(1) Titan:
1,222
(2) Rhea:
527
(3) Iapetus:
3,561
(4) Dione:
377
(5) Tethys:
294.6
(6) Enceladus:
238
(7) Mimas:
185.4

(1) Titan:
2.2 ⋅ 10−6
(2) Rhea:
0.18 ⋅ 10−6
(3) Iapetus:
54.46 ⋅ 10−6
(4) Dione:
0.07 ⋅ 10−6
(5) Tethys:
0.03 ⋅ 10−6
(6) Enceladus:
0.016 ⋅ 10−6
(7) Mimas:
0.008 ⋅ 10−6

Uranus,
8.69 ⋅ 1025 (332,946/14.37) 19.19 AU

(1) Titania:
40 ⋅ 10−6
(2) Oberon:
35 ⋅ 10−6
(3) Ariel:
16 ⋅ 10−6
(4) Umbriel:
13.49 ⋅ 10−6
(5) Miranda:
0.75 ⋅ 10−6

(1) Titania:
436
(2) Oberon:
584
(3) Ariel:
191
(4) Umbriel:
266.3
(5) Miranda:
129.4

(1) Titania:
0.08 ⋅ 10−6
(2) Oberon:
0.2 ⋅ 10−6
(3) Ariel:
0.01 ⋅ 10−6
(4) Umbriel:
0.019 ⋅ 10−6
(5) Miranda:
0.002 ⋅ 10−6

Neptune,
1.02 ⋅ 1026 (332,946/17.15) 30.07AU

(1) Triton:
210 ⋅ 10−6
(2) Proteus:
0.48 ⋅ 10−6
(3) Nereid:
0.29 ⋅ 10−6

(1) Triton:
355
(2) Proteus:
118
(3) Nereid:
5,513

(1) Triton:
0.01 ⋅ 10−6
(2) Proteus:
0.0004 ⋅ 10−6
(3) Nereid:
35.81 ⋅ 10−6

largest moon Triton [11]. One could suppose that the orbit
of Nereid should be derived preferably from the assumptions
of R4BP (the case of restricted four-body problem) or more
complicated cases.

As we can see from consideration above, in case of Earth’s
Moon, such dimensionless key parameters increase simulta-
neously to the crucial meanings 𝜉 = 0.0055 and 𝜂 = 0.0123,

respectively, (𝜉 + 𝜂) = 0.0178. It means that the orbit for
relative motion of the moon in regard to the Earth could not
be considered as quasi-elliptic orbit and should be considered
as nonconstant elliptic orbit with the effective mass (𝜉 ⋅ 𝑚

2
+

𝑚
3
) placed in the centre of mass for the moon.
As we know [3, 4], the elements of that elliptic orbit

depend on the position of the common centre of masses for
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3rd small body (moon) and the planet (Earth). But such a
position of their common centre of mass should obviously
differ for the real mass𝑚

3
and the effective mass (𝜉 ⋅𝑚

2
+𝑚
3
)

placed in the centre of mass of the 3rd body (moon). So,
the elliptic orbit of motion of the moon derived from the
assumptions of R3BP should differ from the elliptic orbit
which could be obtained from the assumptions of R2BP (the
case of restricted two-body problem: itmeansmutualmoving
of 2 gravitating masses without the influence of other central
forces).

As for the meanings of the terms quasi-elliptic, quasi-
circle, and nonconstant elliptic, “quasi” means that the main
orbital elements of the orbit of moon around the planet still
remain approximately the same without essential alterations
(due to negligible influence of moon’s gravity in a frame of
the R3BP), but the term “nonconstant elliptic” means that (8)
describes actually a perturbed two-body problem and its
solution is nonconstant elliptic instead of fixed elliptic.

5. Remarks about the Eccentricities of
the Orbits

According to the definition [11], the orbital eccentricity of
an astronomical object is a parameter that determines the
amount bywhich its orbit around another body deviates from
a perfect orbit:

𝑒 = √1 + 2𝜀ℎ2

𝜇
2 , (18)

where 𝜀 is the specific orbital energy, ℎ is the specific angular
momentum,𝜇 is the sumof the standard gravitational param-
eters of the bodies, and 𝜇 = 𝛾 ⋅ 𝑚

2
⋅ (1 + 𝜉 + 𝜂); see (8).

The specific orbital energy equals the constant sum of
kinetic and potential energy in a 2-body ballistic trajectory
[11]:

𝜀 = −

𝜇

2𝑎
= const; (19)

here 𝑎 is the semimajor axis. For an elliptic orbit, the spe-
cific orbital energy is the negative of the additional energy
required to accelerate amass of one kilogram to escape veloc-
ity (parabolic orbit).

Thus, assuming 𝜉 = 𝜉(𝑡), we should obtain the following
from the equality above:

−

𝛾 ⋅ 𝑚2 (1 + 𝜉 (𝑡) + 𝜂)

2𝑎 (𝑡)
= const,

󳨐⇒ 𝑎 (𝑡) = 𝑎0 ⋅ (1+ 𝜉 (𝑡) + 𝜂) ,

(20)

where 𝜉(𝑡) is the periodic function depending on time-
parameter 𝑡, which is slowly varying during all the time-
periods from the minimal meaning 𝜉min > 0 to the maximal
meaning 𝜉max, preferably (𝜉max − 𝜉min) → 0.

Besides, we should note that, in an elliptical orbit, the spe-
cific angular momentum ℎ is twice the area per unit time
swept out by a chord of ellipse (i.e., the area which is totally
covered by a chord of ellipse during its motion per unit time,

multiplied by 2) from the primary to the secondary body [11],
according to Kepler’s 2nd law of planetary motion.

Since the area of the entire orbital ellipse is totally swept
out in one orbital period, the specific angular momentum ℎ

is equal to twice the area of the ellipse divided by the orbital
period, as represented by

ℎ = 𝑏
√
𝛾 (1 + 𝜉 + 𝜂) ⋅ 𝑚2

𝑎

,
(21)

where 𝑏 is the semiminor axis. So, from (20) we should obtain
that, for the constant specific angularmomentum ℎ, the semi-
minor axis 𝑏 should be constant also.

Thus, we could express the components of elliptic orbit as
follows:

𝑥 (𝑡) = 𝑎0 ⋅ (1+ 𝜉 (𝑡) + 𝜂) ⋅ cos 𝑡,

𝑦 (𝑡) = 𝑏 ⋅ sin 𝑡,

(22)

which could be schematically imagined as it is shown in
Figures 1(a), 1(b), and 1(c).

As for the chosen parameters in Figures 1(a), 1(b), and
1(c), meanings of the parameter 𝑎0 ⋅ 𝜂 are varying in the
range from 0.0123 (Figure 1(a)) to 10.123 (Figure 1(b)) and
49.5 (Figure 1(c)); parameter 𝑎0 ⋅ 𝜉(𝑡) is varying in the range
from 0.0055⋅(0.9 + 0.1⋅sin 𝑡) (Figure 1(a), 𝑏 = 1) to 0.55⋅ (0.9 +
0.1 ⋅ sin 𝑡) (Figure 1(b), 𝑏 = 10) and 100 ⋅ (1.0 + 0.5 ⋅ sin 𝑡)

(Figure 1(c), 𝑏 = 150). Obviously, we can see that the orbit
of moon at the end of Figures 1(a), 1(b), and 1(c) quite differs
from the elliptic one.

6. Conclusion

We have considered the equations of motion of three-body
problem in a Lagrange form (for the relative motions of 3
bodies in regard to each other). Analyzing such a system of
equations, we explore the case of moon’s motion of negligible
mass 𝑚

3
around the 2nd of two giant-bodies 𝑚

1
, 𝑚
2
, the

mass of which is assumed to be less than the mass of central
body𝑚

2
. Besides, only the natural satellites which aremassive

enough to have achieved hydrostatic equilibrium have been
considered. Twenty-two of suchmidsized natural satellites for
planets of Solar System, including Earth’s Moon, are known;
see Table 1.

The elegant derivation of a key parameter 𝜉 that deter-
mines the character of the moving of the moon relative to the
planet has been proposed.

We also obtain that the equations of motion R3BP should
describe the relative mutual motion of the centre of mass of
2nd giant-body𝑚

2
(planet) and the centre ofmass of 3rd body

(moon) with additional effective mass 𝜉 ⋅ 𝑚
2
placed in that

centre of mass (𝜉 ⋅ 𝑚
2
+ 𝑚
3
), where 𝜉 is the dimensionless

dynamical parameter (nonconstant, but negligible). Thus,
they should be rotating around their common centre of
masses onKepler’s elliptic orbits. So, the case R3BPof “3-body
problem” for the moon’s orbit was elegantly reduced to the
case R2BP of “2-body problem” (the last one is known to be
stable for the relative motion of “planet-satellite” pairs [3, 4]).



6 Advances in Astronomy

x

y

1

10

−1

−1

(a)

x

y

2

4

6

8

10

12

−2

−4

−6

−8

−10

−12

0 2 4 6 8 10 12−2−4−6−8−10−12

(b)

150100500

x

y

−50−100−150

150

125

100

75

50

25

−25

−50

−75

−100

−125

−150

(c)

Figure 1: Orbits of the moon, schematically imagined.

For negligible effective mass (𝜉 ⋅ 𝑚
2
+ 𝑚
3
) it gives equa-

tions of motion which should describe a quasi-elliptic orbit
of 3rd body (moon) around the 2nd body 𝑚

2
(planet) for

most of the moons of the planets in Solar System. But the
orbit of Earth’s Moon should be considered as nonconstant
ellipticmotion for the effective mass 0.0178 ⋅𝑚

2
placed in the

centre of mass for the 3rd body (moon).The position of their
common centre of masses should obviously differ for the real
mass 𝑚

3
= 0.0123 ⋅ 𝑚

2
and for the effective mass (0.0055 +

0.0123) ⋅ 𝑚
2
placed in the centre of mass of the moon.
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