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We develop a new regularity concept, unifying metric regularity, Robinson’s constraint qualification, and directional regularity.
We present the directional stability theorem and the related concept of directional metric regularity. On one hand, our
directional stability theorem immediately implies Robinson’s stability theorem [Arutyunov, A. V. 2005. Covering of nonlinear
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1. Introduction. Throughout this paper, let X be a normed linear space, let Y = Rl, and let Q be a fixed
closed convex set in Y . Let F � X → Y be a smooth mapping (our smoothness hypotheses will be specified
below). Recall that the mapping F is called metrically regular with respect to Q at x̄ ∈ F −1�Q	 if the estimate

dist�x
 F −1�Q− y		=O�dist�F �x	+ y
Q		

holds for �x
 y	 ∈X×Y close to �x̄
0	 (Bonnans and Shapiro [6, p. 65]). This notion dates from Robinson [16]
(or even from the classical works (Lyusternik [12], Graves [9]); see also Dmitruk et al. [7]). For more
recent developments and extensions of the metric regularity theory, see Mordukhovich [13], Mordukhovich and
Shao [14], Mordukhovich and Wang [15], Ioffe [10], and references therein.
As is well known (see, e.g., Bonnans and Shapiro [6, Proposition 2.89]), metric regularity is equivalent to the

so-called Robinson’s constraint qualification (CQ) at x̄, which consists of saying that

0 ∈ int�F �x̄	+ im F ′�x̄	−Q	


The fact that Robinson’s CQ implies metric regularity is a consequence of the so-called Robinson’s stability
theorem [17] (see also Bonnans and Shapiro [6, Theorem 2.87]). To state the latter, let � be a topological space
(the space of parameters), let F � �×X → Y be a mapping satisfying the appropriate continuity and smoothness
requirements, and for each � ∈�, set

D��	= �x ∈X � F ��
x	 ∈Q�
 (1)

For a given (base) parameter value 
� ∈�, Robinson’s CQ at x̄ ∈D� 
�	 takes the form

0 ∈ int
(
F � 
�
 x̄	+ im �F

�x
� 
�
 x̄	−Q

)

 (2)

and this condition implies that the estimate

dist�x
D��		=O�dist�F ��
x	
Q		 (3)

holds for ��
x	 ∈�×X close to � 
�
 x̄	.
Another very useful regularity concept is the so-called directional regularity at x̄ with respect to a given

direction d ∈�, which becomes relevant when � is a normed linear space. This condition has the form

0 ∈ int
(
F � 
�
 x̄	+ im �F

�x
� 
�
 x̄	+ cone

{
�F

��
� 
�
 x̄	d

}
−Q

)

 (4)
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and it finds numerous applications, especially in sensitivity analysis for optimization problems (Bonnans and
Shapiro [6]). In the context of mathematical programming problems, directional regularity is known as Gollan’s
condition [8], and it was extended to the general setting in Bonnans and Cominetti [4].
In this paper, we present the directional stability theorem (with a quite simple and self-contained proof),

of which Robinson’s stability theorem [17] is a particular case. The significance of this result is in that it
enables unification of the diverse regularity concepts playing a crucial role in modern optimization theory and
variational analysis. Specifically, the results employing Robinson’s CQ and those employing the directional
regularity condition were previously derived separately (see, e.g., Bonnans and Shapiro [6]). For example, each
new result about the existence of a feasible arc of a needed given form under the directional regularity condition
required a new (and usually highly nontrivial) proof. Now, the results of this kind can be derived directly from
Theorem 4.1 presented below, and without any auxiliary technical tools, e.g., from the multifunctions theory.
In addition, our directional stability theorem suggests a new form of weakened (restricted) metric regularity,

which may be a meaningful concept for the cases when the usual metric regularity does not hold. We believe
that this concept may find multiple applications in the future, but of course, these applications could be mainly
expected in the field of nonsmooth problems.
It is important to stress that in our setting, Y is a finite-dimensional space. This is strongly related to the

method of proof being used, because it relies on (completely finite-dimensional) Brouwer’s fixed point theorem.
On the other hand, this setting (with finite-dimensional Y but possibly infinite-dimensional X) is rich enough
to cover many applications (e.g., in optimal control, not to mention mathematical programming, semidefinite
programming, semi-infinite programming, etc.).
This paper is organized as follows. In §2, we present some auxiliary lemmas. In §3, we prove our basic

stability theorem for constraint systems comprised by equality constraints and set constraints. Section 4 contains
the directional stability theorem, and in §5, we develop the related directional metric regularity concept. Section 6
deals with the case of directional regularity. Finally, in §7, we present some applications to sensitivity analysis
of optimization problems, in the cases of directionally regular constraints, Hölder stable solutions, and empty
sets of Lagrange multipliers.
Some comments on our (fairly standard) notation are in order. For a given normed linear space X, X∗ is its

(topologically) dual space, and B��x	= �� ∈ X � �� − x� ≤ �� is a ball centered at x ∈ X and of radius � > 0.
If K ⊂ X is a cone, K� = �l ∈ X∗ � �l
 �� ≤ 0 ∀� ∈ K� stands for its polar cone. For a given set S ⊂ X, int S
stands for its interior, clS stands for its closure, spanS stands for the linear space spanned by S (spanS is not
necessarily closed), convS (coneS, aff S) stands for its convex (conic, affine) hull, i.e., the smallest convex set
(cone, affine set) containing S, and S⊥ = �l ∈ X∗ � �l
 x� = 0 ∀x ∈ S� is the annihilator of S. Furthermore, if
0 ∈ S, then riS is the relative interior of S, i.e., its interior with respect to spanS. The convex hull of a finite set
will be referred to as a finitely generated set. Furthermore, dist�x
S	= inf�∈S ��−x� is the distance from x ∈X
to S, and if S is a closed convex set in a finite-dimensional X, �S�x	 stands for the projection of x onto S, i.e.,
the (uniquely defined) point � ∈ S such that �x−�� = dist�x
S	. For a given point x ∈ S, RS�x	= cone�S−x	,
is the so-called radial cone to S at x,

TS�x	= �h ∈X � ∃�tk�⊂R+\�0� such that �tk�→ 0
 dist�x+ tkh
 S	= o�tk	�

is the contingent cone to S at x, and NS�x	= �TS�x		
� is the normal cone to S at x (if x �∈ S, then NS�x	=�

by definition). Recall that for a convex S, TS�x	= clRS�x	.
If Y is another normed linear space, ��X
Y 	 stands for the space of continuous linear operators from X to Y .

For a given linear operator A� X → Y , imA stands for its range (image space).

2. Auxiliary lemmas. The proof of our basic stability theorem employs the following lemmas. Let Z be a
normed linear space.
The first lemma can be regarded as a far-reaching extension of some well-known results on the right inverse

mapping, to the case when a linear operator is considered only on a given convex cone in Z rather than on
the entire Z. In the case of infinite-dimensional Y , such results are closely related to the Banach open mapping
theorem and its generalizations (see Arutyunov [1]). Note also that here, we establish not only the “restricted”
covering property but the existence of a continuous inverse function as well.

Lemma 2.1. Let K ⊂Z be a closed convex cone, and let Ā ∈��Z
Y 	.
If ȳ ∈ Y satisfies the inclusion ȳ ∈ int Ā�K	, then there exist �> 0 and c > 0 such that for each A ∈��X
Y 	

close enough to Ā, there exists a continuous mapping &A� coneB��ȳ	→K satisfying the following requirements:

A&A�y	= y
 �&A�y	� ≤ c�y� ∀y ∈ coneB��ȳ	
 (5)
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Proof. Let 'i = ȳ+ )ei, i= 1
 + + + 
 l, 'l+1 = ȳ− )
∑l

i=1 e
i, where e1
 + + + 
 el is a standard basis in Y =Rl,

with )> 0 being fixed. It is easy to see that ȳ ∈ int conv�'1
 + + + 
'l+1�; i.e., there exists �1 > 0 such that

B2�1�ȳ	⊂ conv�'1
 + + + 
'l+1�
 (6)

On the other hand, by the condition ȳ ∈ int Ā�K	, one can choose )> 0 small enough, so that '1
 + + + 
'l+1 ∈
Ā�K	; i.e., there exist �i ∈ K such that Ā�i = 'i, i = 1
 + + + 
 l+ 1. For each A ∈��X
Y 	 close enough to Ā,
the points 'i�A	=A�i are close to 'i, i= 1
 + + + 
 l+ 1, and hence, by (6), it can be easily derived that

B�1
�ȳ	⊂ S�A	
 (7)

where S�A	= conv�'1�A	
 + + + 
'l+1�A	�.
Furthermore, each point y ∈ S�A	 can be uniquely expanded as y =∑l+1

i=1 ,i'
i�A	, where ,i ≥ 0, i= 1
 + + + 
 l+1,∑l+1

i=1 ,i = 1. The numbers ,i = ,i�A- y	 are the so-called barycentric coordinates of y in the l-dimensional sim-
plex S�A	 (Ioffe and Tikhomirov [11, §3.5.2]). Fix some � ∈ �0
 �1. and define the mapping &A� coneB��ȳ	→K
as follows:

&A�0	= 0
 &A�y	=
�y�
/

l+1∑
i=1

,i

(
A-

/

�y�y
)
�i
 y ∈ �coneB��ȳ		\�0�


where

/ =


�ȳ�
 if ȳ �= 0


�
 if ȳ = 0


It can be easily seen that if � is taken small enough, then in any case, /y/�y� ∈ B�1
�ȳ	 ∀y ∈ �coneB��ȳ		\�0�,

and according to (7), this mapping is correctly defined. Moreover,

A&A�y	 =
�y�
/

l+1∑
i=1

,i

(
A-

/

�y�y
)
A�i

= �y�
/

l+1∑
i=1

,i

(
A-

/

�y�y
)
'i�A	

= �y�
/

/

�y�y
= y


�&A�y	� ≤ �y�
/

l+1∑
i=1

,i

(
A-

/

�y�y
)
��i�

≤ �y�
/

(
max

i=1
 + + + 
l+1
��i�

) l+1∑
i=1

,i

(
A-

/

�y�y
)

= 1
/

(
max

i=1
 + + + 
l+1
��i�

)
�y�-

i.e., (5) holds with c=maxi=1
 + + + 
l+1 ��i�//. Continuity of &A can be easily verified. �

Lemma 2.2. Let A ∈��Z
Y 	, and let P ⊂Z be a closed convex set.
If for some ȳ ∈ Y it holds that

ȳ ∈ intA�P	
 (8)

then there exist zi ∈ P , i= 1
 + + + 
 l+ 1 such that
ȳ ∈ intA�conv�z1
 + + + 
 zl+1�	
 (9)

Proof. According to (8), there exist 'i ∈ Y , i= 1
 + + + 
 l+ 1 such that, on one hand,
ȳ ∈ int conv�'1
 + + + 
'l+1�
 (10)
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and on the other hand, 'i ∈ A�P	 ∀ i = 1
 + + + 
 l + 1 (for instance, one can take 'i = ȳ + )ei, i = 1
 + + + 
 l,
'l+1 = ȳ − )

∑l
i=1 e

i, where e1
 + + + 
 el is a standard basis in Y = Rl, with ) > 0 being small enough). Then,
there exist zi ∈ P such that 'i =Azi ∀ i= 1
 + + + 
 l+ 1. It can be easily seen that

conv�'1
 + + + 
'l+1�⊂A�conv�z1
 + + + 
 zl+1�	


The latter relation combined with (10) implies (9). �

The role of Lemma 2.2 in the proof of Theorem 3.1 below can be characterized as follows: sometimes it
is possible to replace, without affecting the related regularity conditions, an arbitrary convex closed set in the
constraints by its finitely generated (and hence finite-dimensional) subset, which is more tractable.

Lemma 2.3. Let P ⊂ Z be a closed convex set, and let �P ⊂ Z be a finitely generated set. Assume that for a
given z̄ ∈ �P , it holds that �P\�z̄�⊂ int P .
Then, there exists )> 0 such that the inclusion

z+ �cone� �P − z̄		∩B)�0	⊂ P (11)

holds for each z ∈ P close enough to z̄.

Proof. It can be easily seen that there exists ) > 0 such that z̄+ �cone� �P − z̄		∩ �B)�0	\�0�	⊂ int P . We
next prove by a contradiction argument that this ) is the one we need. Indeed, suppose that there exist sequences
�zk�⊂ P and �3k�⊂ cone� �P − z̄	 such that �zk�→ z̄, �3k� ≤ ), and zk+ 3k �∈ P ∀k. Since P is convex, one may
suppose that �3k� = ) ∀k. Then, without loss of generality, one may suppose that the sequence �3k� converges
to some 3 ∈ cone� �P − z̄	 (recall that cone� �P − z̄	 is finitely generated, and hence finite dimensional and closed),
and moreover, �3� = ). Then, �zk + 3k�→ z̄+ 3 ; hence z̄+ 3 �∈ int P , which contradicts the choice of ). �

3. Basic stability theorem: Equality-type constraints and set constraints. In this section, we present our
basic stability result in the following setting. Let Z be a normed linear space, and let P be a fixed closed convex
set in Z. Let 4� �×Z→ Y be a given mapping, and assume that z̄ ∈5� 
�	, where for each � ∈�

5��	= �z ∈ P �4��
 z	= 0�
 (12)

We shall employ the following hypotheses (H):
(H1) The restriction of 4 to �×P is continuous at � 
�
 z̄	.
(H2) For each ��
 z	 ∈ �× P close enough to � 
�
 z̄	, there exists A�
z ∈ ��Z
Y 	 such that for z̃ ∈ P the

estimate
4��
 z̃	−4��
 z	−A�
z�z̃− z	= o��z̃− z�	

holds uniformly in ��
 z	, and the mapping ��
 z	 → A�
z is continuous at � 
�
 z̄	. Any selection of A�
z

satisfying these assumptions will be referred to as a derivative of 4 with respect to z at ��
 z	, and will be
denoted by ��4/�z	��
 z	.
For (H1) and (H2) to be satisfied, it suffices to assume that 4 is continuous at � 
�
 z̄	 and Fréchet differentiable

with respect to z near � 
�
 z̄	, and its derivative with respect to z is continuous at � 
�
 z̄	. In this case, the
derivative of 4 with respect to z is uniquely defined near ��
 z	. On the other hand, (H1) and (H2) may hold
even when 4 is defined only on �×P .

Theorem 3.1. Let z̄ ∈5� 
�	, and let 4 satisfy hypotheses (H1) and (H2). Assume that riP �= �.
If ȳ ∈ Y satisfies the inclusion

ȳ ∈ int �4
�z

� 
�
 z̄	�P − z̄	
 (13)

then there exists �> 0 such that the estimate

dist�z
5��		=O��4��
 z	�	 (14)

holds for ��
 z	 ∈�×P close to � 
�
 z̄	 and satisfying the inclusion

−4��
 z	 ∈ coneB��ȳ	
 (15)
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Proof. To begin with, without loss of generality, we may assume that int P �= �. Indeed, if int P =�, then
replace Z by �Z= span�P − z̄	, replace 4 by the mapping �4� �× �Z→ Y defined by

�4��
 z	=4��
 z̄+ z	


and for each � ∈� replace 5��	 by the set

5̃��	= �z ∈ P − z̄ � �4��
 z̄+ z	= 0�


Then 5��	= 5̃��	+ z̄, and it is evident that estimate (14) holds for ��
 z	 ∈�×P close to � 
�
 z̄	 and satisfying
the inclusion (15) if and only if the estimate

dist�z
 5̃��		=O���4��
 z	�	
holds for ��
 z	 ∈�× �P − z̄	 close to � 
�
0	 and satisfying the inclusion

−�4��
 z	 ∈ coneB��ȳ	


Furthermore, (13) is evidently equivalent to the inclusion

ȳ ∈ int � �4
�z

� 
�
0	�P − z̄	


On the other hand, the interior of the set P − z̄ with respect to spanZ = aff�P − z̄	 coincides with ri�P − z̄	,
which is assumed to be nonempty. Thus, throughout the rest of the proof, we suppose that int P �= �.
According to (13) and Lemma 2.2, there exist zi ∈ P , i= 1
 + + + 
 l+ 1 such that

ȳ ∈ int �4
�z

� 
�
 z̄	� �P − z̄	
 (16)

where

�P = conv�z1
 + + + 
 zl+1
 z̄�


Since int P �= �, by a small perturbation of the points zi ∈ P , it can be achieved that zi ∈ int P ∀ i= 1
 + + + 
 l+1
(and hence �P\�z̄�⊂ int P ) and the inclusion (16) will still be valid.
From (16), it evidently follows that

ȳ ∈ int �4
�z

� 
�
 z̄	�cone� �P − z̄		


Then, by (H2) and Lemma 2.1, there exist �1 > 0 and c > 0 such that for ��
 z	 close enough to � 
�
 z̄	, there
exists a continuous mapping &�
z� coneB�1

�ȳ	→ cone� �P − z̄	 satisfying the following requirements:

�4

�z
��
 z	&�
z�y	= y
 �&�
z�y	� ≤ c�y� ∀y ∈ coneB�1

�ȳ	
 (17)

Furthermore, by (17), by Lemma 2.3, and by (H2), one can choose �2 > 0 such that for any ��
 z	 close
enough to � 
�
 z̄	 and any y ∈ �coneB�1

�ȳ		∩B�2
�0	 it holds that z+&�
z�y	 ∈ P and

∥∥∥∥4��
 z+&�
z�y		−4��
 z	− �4

�z
��
 z	&�
z�y	

∥∥∥∥≤ /

2c
�&�
z�y	�
 (18)

where

/ =



min

{
�1
2�ȳ� 
1

}

 if ȳ �= 0


1
 if ȳ = 0


(19)

For such ��
 z	, define the mapping G�
z� �coneB�1
�ȳ		∩B�2

�0	→ Y ,

G�
z�y	= y−4��
 z+&�
z�y		




Arutyunov and Izmailov: Directional Stability Theorem and Directional Metric Regularity
Mathematics of Operations Research 31(3), pp. 526–543, © 2006 INFORMS 531

and for each y ∈ �coneB�1
�ȳ		∩B�2

�0	, set

7�
z�y	=−4��
 z	−G�
z�y	
 (20)

By (H2), G�
z is evidently continuous on its domain, and according to (17) and (18),

�7�
z�y	� =
∥∥∥∥4��
 z+&�
z�y		−4��
 z	− �4

�z
��
 z	&�
z�y	

∥∥∥∥
≤ /

2
�y� ∀y ∈ �coneB�1

�ȳ		∩B�2
�0	
 (21)

It can be easily seen that there exists � ∈ �0
 �1/2. possessing the following property: if ' ∈ coneB��ȳ	,
then ��ȳ�'/�'�− ȳ� ≤ �1/2. If 4��
 z	 �= 0 (the opposite case is trivial), set �2��
 z	= �4��
 z	�. According
to (H1), for ��
 z	 close enough to � 
�
 z̄	 and satisfying (15), and for any y ∈ �coneB�1

�ȳ		∩B2�2��
 z	�0	, we
then obtain: if ȳ �= 0, then according to (19), (21), it holds that

∥∥∥∥− �ȳ�
�4��
 z	�4��
 z	− �ȳ�

�4��
 z	�7�
z�y	− ȳ

∥∥∥∥ ≤
∥∥∥∥− �ȳ�

�4��
 z	�4��
 z	− ȳ

∥∥∥∥+ �ȳ�
�4��
 z	�

�1
4�ȳ��y�


≤ �1
2
+ �1
2

= �1


and hence taking into account (20),

G�
z�y	=
�4��
 z	�

�ȳ�
(
− �ȳ�
�4��
 z	�4��
 z	− �ȳ�

�4��
 z	�7�
z�y	

)
∈ coneB�1

�ȳ	


On the other hand, if ȳ = 0, then coneB�1
�ȳ	= Y , and the inclusion G�
z�y	 ∈ coneB�1

�ȳ	 holds trivially. Finally,
according to (20),

�G�
z�y	� ≤ �4��
 z	�+�7�
z�y	� ≤ �4��
 z	�+ 1
2�y� ≤ 2�2��
 z	


Therefore, for ��
 z	 close enough to � 
�
 z̄	, G�
z continuously maps the convex compact set �coneB�1
�ȳ		∩

B2�2��
 z	�0	 into itself. Thus, according to Brouwer’s theorem, this mapping has a fixed point in this set; that is,
there exists y = y��
 z	 ∈ �coneB�1

�ȳ		∩B2�2��
 z	�0	 such that y =G�
z�y	; i.e.,

4��
 z+&�
z�y		= 0


Moreover, according to (17),

�&�
z�y	� ≤ c�y� ≤ 2c�2��
 z	=O��4��
 z	�	
 (22)

and it remains to recall (12) and the inclusion z+&�
z�y	 ∈ P . �

Applying Theorem 3.1 with ȳ = 0, we obtain

Corollary 3.1. Under the assumptions of Theorem 3.1, if

0 ∈ int �4
�z

� 
�
 z̄	�P − z̄	


then the estimate (14) holds for ��
 z	 ∈�×P close to � 
�
 z̄	.
Remark 3.1. Theorem 3.1 has an evident directional flavor, since (13) can be replaced by the assumption

that there exists , ≥ 0 such that
,ȳ ∈ int �4

�z
� 
�
 z̄	�P − z̄	


It can be easily seen (e.g., using the separation argument) that in its turn, the latter condition can be presented
in the following homogeneous form:

ȳ ∈ int �4
�z

� 
�
 z̄	�RP �z̄		




Arutyunov and Izmailov: Directional Stability Theorem and Directional Metric Regularity
532 Mathematics of Operations Research 31(3), pp. 526–543, © 2006 INFORMS

4. Directional stability theorem. We now get back to the setting discussed in §1: for each � ∈�, let D��	
be defined according to (1).

Theorem 4.1. Let x̄ ∈D� 
�	, let F be continuous at � 
�
 x̄	 and Fréchet differentiable with respect to x near
� 
�
 x̄	, and let its derivative with respect to x be continuous at � 
�
 x̄	.
If ȳ ∈ Y satisfies the inclusion

ȳ ∈ int
(
F � 
�
 x̄	+ im �F

�x
� 
�
 x̄	−Q

)

 (23)

then there exists �> 0 such that the estimate

dist�x
D��		=O��F ��
x	− q�	 (24)

holds for ��
x
 q	 ∈�×X×Q close to � 
�
 x̄
 F � 
�
 x̄		 and satisfying the inclusion
− �F ��
x	− q	 ∈ coneB��ȳ	
 (25)

Proof. Set Z=X× Y , P =X×Q, and define the mapping 4� �×Z→ Y ,

4��
 z	= F ��
x	− y
 z= �x
 y	
 (26)

Set z̄ = �x̄
 F � 
�
 x̄		 ∈ P . Then, for an arbitrary triple ��
x
 q	 ∈ � × X × Q close to � 
�
 x̄
 F � 
�
 x̄		 and
satisfying (25), we have: z= �x
 q	 ∈ P , z is close to z̄, and (15) holds. Moreover, riP = X × riQ �= � (since
Q is a convex set in a finite-dimensional space Y = Rl), and hence, according to Theorem 3.1 and (12), there
exists r = r��
 z	= ��
'	 ∈Z such that

z+ r ∈ P
 4��
 z+ r	= 0
 �r� =O��4��
 z	�	

Then, from (26), we obtain

q+' ∈Q
 F ��
x+ �	− �q+'	= 0
 ���+�'� =O��F ��
x	− q�	

and hence

F ��
x+ �	 ∈Q
 ��� =O��F ��
x	− q�	

This implies (24). �

Note that with q = �Q�F ��
x		, the assertion of Theorem 4.1 takes the following form: if (23) holds, then
there exists �> 0 such that the estimate (3) holds for ��
x	 ∈�×X close to � 
�
 x̄	 and satisfying the inclusion

−�F ��
x	−�Q�F ��
x			 ∈ coneB��ȳ	


Among the immediate consequences of this fact is Robinson’s stability theorem (see Robinson [17], or Bonnans
and Shapiro [6, Theorem 2.87]). To obtain the latter, it suffices to apply the result above with ȳ = 0. Note that
our argument does not rely on any set-valued analysis, and in particular, the Robinson-Ursescu stability theorem
[18, 16] (see also Bonnans and Shapiro [6, Theorem 2.83]) is not employed here. However, we stress it again
that in our setting, Y is a finite-dimensional space. (Note, however, that X is not supposed to be complete!)

Corollary 4.1. Under the assumptions of Theorem 4.1, if Robinson’s CQ (2) is satisfied, then the esti-
mate (3) holds for ��
x	 ∈�×X close to � 
�
 x̄	.
Of course, Corollary 4.1 can also be derived from Corollary 3.1.
Remark 4.1. Clearly, assumption (23) in Theorem 4.1 can be replaced by the assumption that there exists

, ≥ 0 such that
,ȳ ∈ int

(
F � 
�
 x̄	+ im �F

�x
� 
�
 x̄	−Q

)



and it can be easily seen that the latter condition can be presented in the following homogeneous form:

ȳ ∈ int
(
im

�F

�x
� 
�
 x̄	−RQ�F � 
�
 x̄		

)

 (27)



Arutyunov and Izmailov: Directional Stability Theorem and Directional Metric Regularity
Mathematics of Operations Research 31(3), pp. 526–543, © 2006 INFORMS 533

5. Directional metric regularity. In this section, we temporarily get back to the nonparametric case to
introduce and study the following concept.
Definition 5.1. We say that the mapping F � X → Y is metrically regular at x̄ ∈ F −1�Q	 with respect to Q

in a direction ȳ ∈ Y if there exists �> 0 such that the estimate

dist�x
 F −1�Q− y		=O��F �x	+ y− q�	

holds for �x
 y
 q	 ∈X× Y ×Q close to �x̄
0
 F �x̄		 and satisfying the inclusion

−�F �x	+ y− q	 ∈ coneB��ȳ	


Clearly, metric regularity in a direction ȳ = 0 is equivalent to the usual metric regularity (to prove that the
former implies the latter, it suffices to take q =�Q�F �x	+ y	).
By Theorem 4.1 and Remark 4.1, under the appropriate smoothness assumptions, condition

ȳ ∈ int(im F ′�x̄	−RQ�F �x̄		
)

(28)

(compare with (27)) implies metric regularity in a direction ȳ. The converse implication is at issue in our next
result.

Proposition 5.1. Let x̄ ∈ F −1�Q	, let F be Fréchet differentiable near x̄, and let its derivative be continuous
at x̄.
Then, F is metrically regular at x̄ with respect to Q in a direction ȳ ∈ Y if and only if condition (28) holds.

Proof. Suppose that F is metrically regular at x̄ with respect to Q in a direction ȳ ∈ Y , but (28) does not
hold. Then, by the separation argument, there exists : ∈ Y \�0� such that

�:
 ȳ� ≤ 0≤ �:
'� ∀' ∈ im F ′�x̄	−RQ�F �x̄		


which is equivalent to
�:
 ȳ� ≤ 0
 : ∈ �im F ′�x̄		⊥ ∩ �RQ�F �x̄			

�
 (29)

Set ,= �/�:�, where �> 0 is taken from Definition 5.1. Then, for x= x̄, q = F �x̄	, and y�t	=−t�ȳ− ,:	,
t > 0, it holds that

−�F �x	+ y�t	− q	= t�ȳ− ,:	 ∈ coneB��ȳ	


and hence, by Definition 5.1, the estimate

dist�x
 F −1�Q− y�t			 = O��F �x	+ y�t	− q�	
= O�t�ȳ− ,:�	
= O�t	

holds for t > 0. This means that for each t > 0 small enough, there exists x�t	 ∈X such that

F �x�t		 ∈Q− y�t	=Q+ t�ȳ− ,:	
 �x�t	− x̄� =O�t	


Then, by (29), we obtain
�:
F �x�t		− F �x̄	� ≤−,�:�2t


while on the other hand,

�:
F �x�t		− F �x̄	� = �:
F ′�x̄	�x�t	− x̄	�+ o��x�t	− x̄�	
= o�t	


which is a contradiction. �

Theorem 4.1 and Proposition 5.1 imply the following important property: under the assumptions of Propo-
sition 5.1, metric regularity in a given direction ȳ ∈ Y is stable subject to perturbations of F , such that the
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corresponding perturbation of F �x̄	 and F ′�x̄	 is small enough. Specifically, let F be metrically regular at x̄
with respect to Q in a direction ȳ. Then, by Proposition 5.1, condition (28) holds. Let the space � be comprised
by mappings �� X → Y , which are Fréchet differentiable near x̄, let 
� = F , and let a topology in � be defined
in such a way that ��x	→ F �x̄	, � ′�x	→ F ′�x̄	 as � → 
� and x→ x̄. Applying Theorem 4.1, we obtain the
following: For any mapping �F � X → Y Fréchet differentiable near x̄ and such that for x ∈X close enough to x̄,
�F �x	 and �F ′�x	 are close enough to F �x̄	 and F ′�x̄	, respectively, and for any x̃ ∈ �F −1�Q	 close enough to x̄,
�F is metrically regular at x̃ with respect to Q in a direction ȳ. Moreover, the following uniform version of this
statement is valid: there exist neighborhood � of �x̄
0
 F �x̄		 in X × Y × Y , � > 0 and c > 0 (all independent
of �F ) such that the estimate

dist�x
 �F −1�Q− y		≤ c� �F �x	+ y− q�
holds for �x
 y
 q	 ∈ � such that q ∈Q and

−� �F �x	+ y− q	 ∈ coneB��ȳ	


6. Applications: The case of directional regularity. Throughout the rest of this paper, let � be a normed
linear space. It can be easily seen that for any d ∈ �, the directional regularity condition (4) can be expressed
in the following equivalent form:

�F

��
� 
�
 x̄	d ∈ int

(
RQ�F � 
�
 x̄		− im

�F

�x
� 
�
 x̄	

)

 (30)

Indeed, suppose first that (4) holds while (30) is violated. Then, by the separation argument, there exists : ∈
Y ∗\�0� such that 〈

:

�F

��
� 
�
 x̄	d

〉
≤ 0≤ �:
'� ∀' ∈RQ�F � 
�
 x̄		− im

�F

�x
� 
�
 x̄	
 (31)

and hence 〈
:
F � 
�
 x̄	− q+ y+ ,

�F

��
� 
�
 x̄	d

〉
≤ 0 ∀q ∈Q
 ∀y ∈ im �F

�x
� 
�
 x̄	
 ∀, ≥ 0
 (32)

where the inclusion Q− F � 
�
 x̄	⊂RQ�F � 
�
 x̄		 was taken into account. Thus

�:
'� ≤ 0 ∀' ∈ F � 
�
 x̄	+ im �F

�x
� 
�
 x̄	+ cone

{
�F

��
� 
�
 x̄	d

}
−Q
 (33)

which contradicts (4).
Now, suppose that (30) holds while (4) is violated. Then, again by the separation argument, there exists

: ∈ Y ∗\�0� such that (33) holds, while the latter can be written in the form (32). From (32), it easily follows that
〈
:


�F

��
� 
�
 x̄	d

〉
≤ 0≤

〈
:

1
,
�q− F � 
�
 x̄		− y

〉
∀q ∈Q
 ∀y ∈ im �F

�x
� 
�
 x̄	
 ∀, > 0


while the latter evidently gives (31), which contradicts (30).
We next demonstrate how Theorem 4.1 can be used to easily prove the two lemmas playing the crucial role in

sensitivity analysis under the directional regularity condition. The first lemma essentially corresponds to Bonnans
and Shapiro [6, Lemma 4.10].

Lemma 6.1. Under the assumptions of Theorem 4.1, let F be Fréchet differentiable at � 
�
 x̄	.
If the directional regularity condition (4) holds at x̄ with respect to a direction d ∈�, then for any sequences

�tk�⊂R+\�0�, �;k�⊂� and �xk�⊂X such that �tk�→ 0, ;k = o�tk	, and

�xk − x̄� =O�tk	
 dist�F � 
� + tkd+;k
 xk	
Q	= o�tk	
 (34)

the estimate
dist�xk
D� 
� + tkd+;k		=O�dist�F � 
� + tkd+;k
 xk	
Q		 (35)

holds.

Proof. Since directional regularity condition (4) is equivalent to (30), and by Remark 4.1, Theorem 4.1
is applicable with ȳ = −��F /��	� 
�
 x̄	d. Hence, there exists � > 0 such that the estimate (24) holds for
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��
x
 q	 ∈�×X×Q close to � 
�
 x̄
 F � 
�
 x̄		 and satisfying the inclusion
F ��
x	− q ∈ coneB�

(
�F

��
� 
�
 x̄	d

)

 (36)

For each k set <k = dist�F � 
� + tkd+ ;k
 xk	
Q	, and suppose that <k �= 0 (since the opposite case is trivial).
By taking / > 0 large enough, we can ensure the inclusion

/
�F

��
� 
�
 x̄	d+B1�0	⊂ coneB�

(
�F

��
� 
�
 x̄	d

)

 (37)

For each k set
,k = �/+ 1	<k

tk

 (38)

Note that according to the second relation in (34), ,k → 0 as k→�.
According to the first relation in (34), for each k, we have

F � 
� + tkd+;k
 xk	= F � 
�
 x̄	+ tk
�F

��
� 
�
 x̄	d+ �F

�x
� 
�
 x̄	�xk − x̄	+ o�tk	


and thus, by setting yk =�Q�F � 
�+ tkd+;k
 xk		 and taking into account the second relation in (34), we derive
the equality

�F

�x
� 
�
 x̄	�xk − x̄	= yk − F � 
�
 x̄	− tk

�F

��
� 
�
 x̄	d+ o�tk	


By this equality and the first relation in (34), for each k large enough,

F � 
� + tkd+;k
 xk − ,k�x
k − x̄		 = F � 
� + tkd+;k
 xk	− ,k

�F

�x
� 
� + tkd+;k
 xk	�xk − x̄	+ o�,k�xk − x̄�	

= F � 
� + tkd+;k
 xk	− ,k
�F

�x
� 
�
 x̄	�xk − x̄	+ o�,ktk	

= F � 
� + tkd+;k
 xk	− ,k�y
k − F � 
�
 x̄		+ ,ktk

�F

��
� 
�
 x̄	d+ o�,ktk	


and hence, taking into account (38), we obtain that

F � 
� + tkd+;k
 xk − ,k�x
k − x̄		− �yk − ,k�y

k − F � 
�
 x̄			
= F � 
� + tkd+;k
 xk	− yk + �/+ 1	<k

�F

��
� 
�
 x̄	d+ o�<k	

= <k

(
F � 
� + tkd+;k
 xk	− yk

�F � 
� + tkd+;k
 xk	− yk� +/
�F

��
� 
�
 x̄	d

)
+
(
<k
�F

��
� 
�
 x̄	d+ o�<k	

)



According to (37), the first term in the right-hand side belongs to coneB����F /��	� 
�
 x̄	d	. The second term
also belongs to coneB����F /��	� 
�
 x̄	d	 for all k large enough, and hence, for such k inclusion, (36) holds
with � = 
� + tkd+;k, x= xk − ,k�x

k − x̄	, q = yk − ,k�y
k − F � 
�
 x̄		.

Furthermore, employing the well-known fact that the projection operator �Q is Lipschitz continuous with
modulus 1, by the mean value theorem and the first relation in (34), we obtain

�yk − F � 
�
 x̄	� = ��Q�F � 
� + tkd+;k
 xk		−�Q�F � 
�
 x̄		�
≤ �F � 
� + tkd+;k
 xk	− F � 
�
 x̄	�
= O�tk	+O��xk − x̄�	
= O�tk	


Thus, from (24), the mean value theorem, the first relation in (34), and (38), it follows that

dist�xk
D� 
� + tkd+;k		 ≤ dist�xk − ,k�x
k − x̄	
D� 
� + tkd+;k		+ ,k�xk − x̄�

= O��F � 
� + tkd+;k
 xk − ,k�x
k − x̄		− �yk − ,k�y

k − F � 
�
 x̄			�	+ ,k�xk − x̄�
= O��F � 
� + tkd+;k
 xk	− yk�	+O�,k�xk − x̄�	+O�,k�yk − F � 
�
 x̄	�	
= O�dist�F � 
� + tkd+;k
 xk	
Q		+O�,ktk	

= O�dist�F � 
� + tkd+;k
 xk	
Q		


This gives (35). �
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The assertion in Bonnans and Shapiro [6, Lemma 4.10] is slightly stronger than in our Lemma 6.1, but the
assumptions are stronger too: F is supposed to have Lipschitz-continuous derivative near � 
�
 x̄	. However, it
seems that what is actually needed in sensitivity analysis is precisely our Lemma 6.1. Specifically, this lemma
can be immediately used to derive sufficient conditions for the existence (for given � ∈ X or �1
 �2 ∈ X)
of feasible arcs of the form x̄ + t� + o�t	, x̄ + t� + O�t2	 (see Bonnans and Shapiro [6, Lemma 4.57]), or
x̄ + t�1 + t2�2 + o�t2	, corresponding to the given arc 
� + td + o�t	 (or 
� + td + O�t2	) in the space of
parameters, t ≥ 0. Analysis along such arcs leads to the most sharp sensitivity results in the case when the
solution can be expected to possess Lipschitzian stability (see Bonnans and Shapiro [6, §§4.5 and 4.7]).
On the other hand, assuming that F has a Lipschitz-continuous derivative near � 
�
 x̄	, one can easily modify

the above proof of Lemma 6.1 to establish Bonnans and Shapiro [6, Lemma 4.10] in full generality.
Our next lemma essentially corresponds to Bonnans and Shapiro [6, Lemma 4.109].

Lemma 6.2. Under the assumptions of Theorem 4.1, let F be Fréchet differentiable at � 
�
 x̄	.
If the directional regularity condition (4) holds at x̄ with respect to a direction d ∈�, then there exists c > 0

possessing the following property: for any sequences �tk�⊂R+\�0�, �;k�⊂�, and �xk�⊂X such that �tk�→ 0,
;k = o�tk	, �x

k�→ x̄, and
dist�F � 
� + tkd+;k
 xk	
Q	= o�tk	
 (39)

and for any , > 0, the inequality

dist�xk
D� 
� + �1+ ,	tkd+;k		≤ c,tk (40)

holds for each k large enough.

Proof. By the same argument as in the proof of Lemma 6.1, we obtain the existence of �> 0 such that the
estimate (24) holds for ��
x
 q	 ∈�×X×Q close to � 
�
 x̄
 F � 
�
 x̄		 and satisfying the inclusion (36).
For each k, we have

F � 
� + �1+ ,	tkd+;k
 xk	= F � 
� + tkd+;k
 xk	+ ,tk
�F

��
� 
�
 x̄	d+ o�tk	


and thus, by setting yk = �Q�F � 
� + tkd+ ;k
 xk		 and taking into account (39), for each k large enough, we
obtain

F � 
� + �1+ ,	tkd+;k
 xk	− yk = ,tk
�F

��
� 
�
 x̄	d+ o�tk	

∈ coneB�

(
�F

��
� 
�
 x̄	d

)

 (41)

i.e., inclusion (36) holds with � = 
� + �1+ ,	tkd+;k, x= xk, q = yk.
From (24), it follows that

dist�xk
D� 
� + �1+ ,	tkd+;k		=O��F � 
� + �1+ ,	tkd+;k
 xk	− yk�	

and by the equality in (41), the needed estimate (40) with some c > 0 follows. �

Lemma 6.2 can be immediately used to derive sufficient conditions for the existence (for given �1
 �2 ∈ X)
of feasible arcs of the form x̄ + t1/2�1 + t�2 + o�t	, corresponding to the arc 
� + td + o�t	 in the space of
parameters, t ≥ 0. Known sensitivity results in the case when the solution can be expected to possess Hölder
stability only are based on the analysis along such arcs (see Bonnans and Shapiro [6, §§4.5 and 4.8]).

7. Applications: Sensitivity analysis in the cases of Hölder stability and empty sets of Lagrange multi-
pliers. The cases appearing in the title of this section were previously studied by means of square root-linear
feasible arcs mentioned at the very end of the previous section (see Bonnans and Shapiro [6, §4.8.3] or the
original works (Bonnans [3], Bonnans and Cominetti [5])). However, in these cases, it seems quite natural to
consider pure square root arcs; that is, x̄+ t1/2�+o�t1/2	, t ≥ 0, for a given � ∈X. This line of analysis is more
direct than those used earlier, and in particular, it does not appeal to any duality argument, and the resulting
theory (presented below) is quite complete and self-contained. Morever, we believe that short arcs do the job
in the case when there are no Lagrange multipliers, while longer ones should come into play when the set of
Lagrange multipliers is nonempty.
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Throughout the rest of this paper, let us assume that the set Q possesses the so-called conicity property
at F � 
�
 x̄	; that is, within some neighborhood of 0, the set Q − F � 
�
 x̄	 coincides with RQ�F � 
�
 x̄		 (the
same property can also be expressed by saying that RQ�F � 
�
 x̄		 is closed, or by the equality TQ�F � 
�
 x̄		=
RQ�F � 
�
 x̄		). Note that the conicity property is automatic when Q is a polyhedral set (and hence, in the case of
mathematical programming problems). Also, as was pointed out by the referee, conicity can actually be replaced
(with the appropriate changes in the analysis and statements) by a much weaker property of cone reducibility,
as defined in Bonnans and Shapiro [6, Definition 3.135]. This gives rise to a possibility of applications to
semidefinite programming problems (Bonnans and Shapiro [6, Example 3.140]).

Proposition 7.1. Let x̄ ∈D� 
�	, and let F be Fréchet differentiable at � 
�
 x̄	 and twice Fréchet differentiable
with respect to x at � 
�
 x̄	.
Then, for any d ∈�, the following assertions are valid:
(i) If for a given � ∈ X there exist sequences �tk�⊂ R+\�0� and �;k�⊂ � such that �tk�→ 0, ;k = o�tk	,

and
dist

(
x̄+ t

1/2
k �
D� 
� + tkd+;k	

)= o
(
t
1/2
k

)



then � ∈ ���F /�x	� 
�
 x̄		−1�TQ�F � 
�
 x̄			 and
�F

��
� 
�
 x̄	d+ 1

2
�2F

�x2
� 
�
 x̄	=�
 �. ∈ cl

(
RQ�F � 
�
 x̄		− im

�F

�x
� 
�
 x̄	

)

 (42)

(ii) Let F be Fréchet differentiable with respect to x near � 
�
 x̄	, and let its derivative with respect to x be
continuous at � 
�
 x̄	. Suppose that the set Q possesses the conicity property at F � 
�
 x̄	, and the directional reg-
ularity condition (4) holds at x̄ with respect to a direction d. Then, for any � ∈ ���F /�x	� 
�
 x̄		−1�TQ�F � 
�
 x̄			
satisfying (42), and for any mapping ;� R+ →� such that ;�t	= o�t	, the estimate

dist�x̄+ t1/2�
D� 
� + td+;�t			= o�t1/2	 (43)

holds for t ≥ 0.
Proof. We first prove (i). Fix a sequence �xk�⊂X such that xk = x̄+ t

1/2
k �+o�t

1/2
k 	 (note that by necessity

�xk�→ x̄) and xk ∈D� 
� + tkd+;k	 ∀k. Then,
Q � F � 
� + tkd+;k
 xk	

= F
( 
� + tkd+;k
 x̄+ t

1/2
k �+ o

(
t
1/2
k

))

= F � 
�
 x̄	+ t
1/2
k

�F

�x
� 
�
 x̄	�+ o

(
t
1/2
k

)

 (44)

Q− im �F

�x
� 
�
 x̄	 � F � 
� + tkd+;k
 xk	− �F

�x
� 
�
 x̄	�xk − x̄	

= F � 
�
 x̄	+ tk

(
�F

��
� 
�
 x̄	d+ 1

2
�2F

�x2
� 
�
 x̄	=�
 �.

)
+ o�tk	
 (45)

From (44), it follows that

t
1/2
k

�F

�x
� 
�
 x̄	�+ o

(
t
1/2
k

) ∈Q− F � 
�
 x̄	⊂RQ�F � 
�
 x̄		


Dividing the left- and right-hand sides of the latter relation by t1/2k , and passing onto the limit as k→�, we come
to the inclusion ��F /�x	� 
�
 x̄	� ∈ clRQ�F � 
�
 x̄		= TQ�F � 
�
 x̄		, i.e., � ∈ ���F /�x	� 
�
 x̄		−1�TQ�F � 
�
 x̄			.
Moreover, from (45), it follows that

tk

(
�F

��
� 
�
 x̄	d+ 1

2
�2F

�x2
� 
�
 x̄	=�
 �.

)
+ o�tk	 ∈ Q− F � 
�
 x̄	− im �F

�x
� 
�
 x̄	

⊂ RQ�F � 
�
 x̄		− im
�F

�x
� 
�
 x̄	


Dividing the left- and right-hand sides of the latter relation by tk, and passing onto the limit as k→�, we come
to the inclusion (42).
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We now prove (ii). For that purpose, we first show that the set of � ∈ X satisfying (43) is closed. We argue
by a contradiction. Suppose that there exists a sequence ��k�⊂X such that it converges to some �̄ ∈X, and for
each k, (43) holds with � = �k, but at the same time, there exist / > 0 and a sequence �tj�⊂R+\�0� such that
�tj�→ 0, and for each j ,

dist
(
x̄+ t

1/2
j �̄
D� 
� + tjd+;�tj		

)≥ /t
1/2
j 
 (46)

The latter means that ∀x ∈D� 
� + tjd+;�tj		,∥∥x̄+ t
1/2
j �̄− x

∥∥≥ /t
1/2
j 
 (47)

On the other hand, for each k large enough it holds that ��k − �̄� ≤ //2. Hence, according to (46) and (47),∥∥x̄+ t
1/2
j �k − x

∥∥ ≥ ∥∥x̄+ t
1/2
j �̄− x

∥∥− t
1/2
j ��k − �̄�

≥ /t
1/2
j − 1

2/t
1/2
j

= 1
2/t

1/2
j -

that is,
dist

(
x̄+ t

1/2
j �k
D� 
� + tjd+;�tj		

)≥ 1
2/t

1/2
j 


But this contradicts (43) with � = �k.
From (30) and (42), it follows that for each fixed , ∈ =0
1	, the following inclusion holds:

�F

��
� 
�
 x̄	d+ 1

2
,2

�2F

�x2
� 
�
 x̄	=�
 �. ∈ int

(
RQ�F � 
�
 x̄		− im

�F

�x
� 
�
 x̄	

)



By the same argument as in the proof of Lemma 6.1, it can now be shown that Theorem 4.1 is applicable with
ȳ = −��F /��	� 
�
 x̄	d − 1

2,
2��2F /�x2	� 
�
 x̄	=�
 �., and hence there exists � > 0 such that the estimate (24)

holds for ��
x
 q	 ∈�×X×Q close to � 
�
 x̄
 F � 
�
 x̄		 and satisfying the inclusion

F ��
x	− q ∈ coneB�

(
�F

��
� 
�
 x̄	d+ 1

2
�2F

�x2
� 
�
 x̄	=,�
 ,�.

)

 (48)

For each t > 0 small enough, by setting � = 
�+td+;�t	, x= x̄+t1/2,�, q = F � 
�
 x̄	+t1/2��F /�x	� 
�
 x̄	,�,
and taking into account the conicity property of Q at F � 
�
 x̄	 and the inclusion � ∈ ���F /�x	� 
�
 x̄		−1�TQ�F � 
�

x̄			, we obtain q ∈Q and

F ��
x	− q = t

(
�F

��
� 
�
 x̄	d+ 1

2
�2F

�x2
� 
�
 x̄	=,�
 ,�.

)
+ o�t	

∈ coneB�

(
�F

��
� 
�
 x̄	d+ 1

2
�2F

�x2
� 
�
 x̄	=,�
 ,�.

)
- (49)

i.e., (48) holds. Hence, by (24) and the equality in (49), we obtain the estimate

dist�x̄+ t1/2,�
D� 
� + td+;�t			=O��F ��
x	− q�	=O�t	


It remains to note that ,�→ � as ,→ 1, and to employ the above-proved fact that the set of � ∈X satisfying
(43) is closed. �

Let f � �×X →R be a smooth function, and for each � ∈�, consider the optimization problem

minimize f ��
x	

subject to x ∈D��	

(50)

Let x̄ be a local solution of problem (50) with � = 
� and define the critical cone

C� 
�
 x̄	=
{
� ∈

(
�F

�x
� 
�
 x̄	

)−1
�TQ�F � 
�
 x̄			

∣∣∣∣
〈
�f

�x
� 
�
 x̄	
 �

〉
≤ 0

}
(51)

and the following second-order tightened critical cone

C2� 
�
 x̄	=
{
� ∈C� 
�
 x̄	

∣∣∣∣ �
2F

�x2
� 
�
 x̄	=�
 �. ∈ cl

(
RQ�F � 
�
 x̄		− im

�F

�x
� 
�
 x̄	

)}
(52)
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of this problem at x̄. Furthermore, define the set

A� 
�
 x̄	=
{
B ∈NQ�F � 
�
 x̄		

∣∣∣∣ �L�x � 
�
 x̄
B	= 0
}

(53)

of Lagrange multipliers associated with x̄, where L� �×X× Y ∗ →R,

L��
x
B	= f ��
x	+�B
F ��
x	�
is the Lagrangian of problem (50).
Let � > 0 be fixed small enough, so that x̄ is a global solution of problem (50) with � = 
� and with the

additional constraint x ∈ B��x̄	. Define the local optimal value function of problem (50) as follows: v� �→R,

v��	= inf
x∈D��	∩B��x̄	

f ��
x	


With this definition, v� 
�	= f � 
�
 x̄	. Of course, v depends on the choice of �, but such optimal value function
is a completely relevant object for local (asymptotic) analysis.
For each d ∈�, consider the following auxiliary optimization problem:

minimize
〈
�f

�x
� 
�
 x̄	
 �

〉

subject to � ∈E1/2� 
�
 x̄-d	

(54)

where

E1/2� 
�
 x̄-d	=
{
� ∈C� 
�
 x̄	

∣∣∣∣ �F�� � 
�
 x̄	d+ 1
2
�2F

�x2
� 
�
 x̄	=�
 �. ∈ cl

(
RQ�F � 
�
 x̄		− im

�F

�x
� 
�
 x̄	

)}

 (55)

and let v1/2� 
�
 x̄-d	 be the optimal value of problem (54):

v1/2� 
�
 x̄-d	= inf
�∈E1/2� 
�
 x̄-d	

〈
�f

�x
� 
�
 x̄	
 �

〉

 (56)

Recall that the directional regularity condition (4) with respect to a direction d ∈� is equivalent to (30), and
hence, an arbitrary � ∈C� 
�
 x̄	 close enough to 0 satisfies (42), and from (55) it follows that such � belongs to
E1/2� 
�
 x̄-d	. In particular,

0 ∈E1/2� 
�
 x̄-d	
 (57)

and from (56), it immediately follows that

v1/2� 
�
 x̄-d	≤ 0
 (58)

Theorem 7.1. Under the assumptions of Theorem 4.1, let F be Fréchet differentiable at � 
�
 x̄	 and twice
Fréchet differentiable with respect to x at � 
�
 x̄	. Let f be Fréchet differentiable with respect to x at � 
�
 x̄	.
Furthermore, let x̄ be a local solution of problem (50) with � = 
� , let the set Q possess the conicity property
at F � 
�
 x̄	, and let the directional regularity condition (4) hold at x̄ with respect to a direction d ∈�.
Then, for any mapping ;� R+ →� such that ;�t	= o�t	, the estimate

lim sup
t→0+

v� 
� + td+;�t		− v� 
�	
t1/2

≤ v1/2� 
�
 x̄-d	 (59)

holds. Moreover, the � = 0 is a feasible point of problem (54), and in particular, (58) holds.

If v1/2� 
�
 x̄-d	 is finite, the estimate (59) can be written in the form of inequality

v� 
� + td+;�t		≤ v� 
�	+ v1/2� 
�
 x̄-d	t1/2+ o�t1/2	 (60)

for t ≥ 0.
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Proof. According to (51) and (55), from Assertion (ii) of Proposition 7.1, it follows that for any element
� ∈E1/2� 
�
 x̄-d	 (recall that E1/2� 
�
 x̄-d	 �= �; see (57)), there exists a mapping r� R+ →X such that r�t	=
o�t1/2	 and

x̄+ t1/2�+ r�t	 ∈D� 
� + td+;�t		

for each t ≥ 0 small enough. Then, for such t, it holds that

v� 
� + td+;�t		− v� 
�	 ≤ f � 
� + td+;�t	
 x̄+ t1/2�+ r�t		− f � 
�
 x̄	
=

〈
�f

�x
� 
�
 x̄	
 �

〉
t1/2+ o�t1/2	


and since � is an arbitrary element in E1/2� 
�
 x̄-d	, (56) implies (59). �

Theorem 7.1 is closely related to Bonnans and Shapiro [6, Proposition 4.117], where, however, the upper
bound was expressed in terms of the optimal value of the auxiliary problem

minimize
〈
�f

�x
� 
�
 x̄	
 �

〉

subject to � ∈ �E1/2� 
�
 x̄-d	

(61)

where, under the conicity assumption,

�E1/2� 
�
 x̄-d	=
{
� ∈C� 
�
 x̄	

∣∣∣∣ �F�� � 
�
 x̄	d+ 1
2
�2F

�x2
� 
�
 x̄	=�
 �.

∈ cl
(
RQ�F � 
�
 x̄		+ span

{
�F

�x
� 
�
 x̄	�

})
− im �F

�x
� 
�
 x̄	

}
(62)

(see problem ���3	 in Bonnans and Shapiro [6, p. 359]). It can be easily seen from (55), (62) that the set
�E1/2� 
�
 x̄-d	 is, in general, smaller than E1/2� 
�
 x̄-d	, and in particular, the set appearing in the constraints
defining �E1/2� 
�
 x̄-d	 is not necessarily closed. Note, however, that our auxiliary problem (54) corresponds to
problem ���3
R∗ 	 in Bonnans and Shapiro [6, p. 361], and according to Bonnans and Shapiro [6, Lemma 4.118],
the optimal values of problems (54) and (61) are actually the same. (These can be shown via the chain of
auxiliary subproblems, by employing the duality argument.)
If A� 
�
x̄	 �=�, then under the assumptions of Theorem 7.1, v1/2� 
�
x̄-d	=0. This follows from (51), (55), and

the following observation: according to (53), for any B∈A� 
�
x̄	 and any �∈���F /�x	� 
�
x̄		−1�TQ�F � 
�
x̄			, it
holds that 〈

�f

�x
� 
�
 x̄	
 �

〉
= −

〈(
�F

�x
� 
�
 x̄	

)∗
B
�

〉

= −
〈
B


�F

�x
� 
�
 x̄	�

〉

≥ 0


In this case, estimate (59) does not make much sense, since the stronger estimates are available (see, e.g.,
Bonnans and Shapiro [6, Propositions 4.21, 4.22]).
On the other hand, if A� 
�
 x̄	=�, estimate (59) may be meaningful. For instance, if Q is a polyhedral set,

then under the assumptions of Theorem 7.1, v1/2� 
�
 x̄-d	 < 0. Indeed, if we suppose that

−�f

�x
� 
�
 x̄	 ∈

((
�F

�x
� 
�
 x̄	

)−1
�TQ�F � 
�
 x̄			

)�



then from the Farkas lemma (Bonnans and Shapiro [6, Proposition 2.42]) and (53), it follows that A� 
�
 x̄	
cannot be empty. Thus, there exists � ∈ ���F /�x	� 
�
 x̄		−1�TQ�F � 
�
 x̄			 such that ���f /�x	� 
�
 x̄	
 ��< 0, and
according to the discussion above, ,� ∈E1/2� 
�
 x̄-d	, for all , > 0 small enough.
The next example demonstrates that under the assumptions of Theorem 7.1, v1/2� 
�
 x̄-d	 can be equal to −�.

In such cases, estimate (59) means that the rate of decrease of v� 
� + td+ ;�t		 as t grows from 0 is higher
than that of −t1/2.
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Example 7.1. Let s = 1, n = 3, l = 2, f ��
x	 = x1, F ��
x	 = �F1��
x	
 F2��
x		 = �x1 − x3 − x33
 x
2
1 +

x22 − x23 −�	, Q= ��0
 y2	 ∈R2 � y2 ≤ 0�. It is easy to see that D� 
�	= �0�, and in particular, x̄= 0 is a solution
of problem (50) with � = 
� . Moreover, ��F1/��	� 
�
 x̄	 �= 0, F2� 
�
 x̄	= 0, and for any d > 0 and any �̄ ∈ R3

such that �̄1 = �̄3 it holds that

�F1
��

� 
�
 x̄	d+ �F1
�x

� 
�
 x̄	�̄ = �̄1− �̄3

= 0


�F2
��

� 
�
 x̄	d+ �F2
�x

� 
�
 x̄	�̄ = −d

< 0


This means that Gollan’s condition (see Bonnans and Shapiro [6, (4.21)]) holds, and, as mentioned in §1, the
latter is equivalent to the directional regularity condition (4).
Take d = 1. It is easy to see that E1/2� 
�
 x̄-d	= �� ∈ R3 � �1− �3 = 0
 �21 + �22 − �23 ≤ 1�, and, e.g., the � =

�,
±d1/2
 ,	 are feasible points of problem (54), (55) for each , ∈R. At the same time, for such �,

〈
�f

�x
� 
�
 x̄	
 �

〉
= �1

= ,→−� as ,→−�


Note that in this example, C2� 
�
 x̄	= �� ∈R3 � �1 = �3
 �2 = 0
 �1 ≤ 0� �= �0�.
For any ) > 0 and any � ∈ �, point x ∈ X is called )-solution of problem (50) if x ∈D��	 and f ��
x	≤

v��	+ ).

Proposition 7.2. Under the assumptions of Theorem 7.1, for any sequences �tk�⊂R+\�0�, �;k�⊂�, and
�xk� ⊂ X such that �tk� → 0, ;k = o�tk	, �x

k� → x̄, and for each k the point xk is an o�t
1/2
k 	-solution of

problem (50) with � = 
� + tkd + ;k, any accumulation point of the sequence ��xk − x̄	/t
1/2
k � is a solution of

problem (54).

Proof. Without loss of generality, let us suppose that the entire sequence ��xk − x̄	/t
1/2
k � converges to

some �̄ ∈ X. Then xk = x̄+ t
1/2
k �̄ + o�t

1/2
k 	, and since xk ∈ D� 
� + tkd + ;k	 for each k, from Assertion (i) of

Proposition 7.1, it follows that �̄ ∈ ���F /�x	� 
�
 x̄		−1�TQ�F � 
�
 x̄			, and (42) holds.
Furthermore, by the estimate (59), we obtain

lim sup
k→�

f � 
� + tkd+;k
 xk	− f � 
�
 x̄	
t
1/2
k

= lim sup
k→�

v� 
� + tkd+;k	− v� 
�	
t
1/2
k

≤ v1/2� 
�
 x̄-d	


On the other hand,

f � 
� + tkd+;k
 xk	= f � 
�
 x̄	+
〈
�f

�x
� 
�
 x̄	
 �̄

〉
t
1/2
k + o

(
t
1/2
k

)



and hence 〈
�f

�x
� 
�
 x̄	
 �̄

〉
≤ v1/2� 
�
 x̄-d	


Thus, by (55) and (58), we obtain that �̄ ∈ E1/2� 
�
 x̄-d	, and moreover, according to (56), �̄ is a solution of
problem (54). �

Throughout the rest of this section, we assume for simplicity that dimX <�. From (51), (52), (55), and (56),
it then easily follows that if

C2� 
�
 x̄	= �0�
 (63)

then v1/2� 
�
 x̄-d	 >−� (compare with Example 7.1).
In Arutyunov and Izmailov [2], it was shown that condition (63) implies the standard second-order sufficient

optimality condition (e.g., Bonnans and Shapiro [6, (3.137)]), and moreover, if A� 
�
 x̄	 = �, then the two
conditions are equivalent.
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Theorem 7.2. Under the assumptions of Theorem 7.1, let dimX <�, and let (63) hold.
Then, for any mapping ;� R+ →� such that ;�t	= o�t	, equality

v� 
� + td+;�t		= v� 
�	+ v1/2� 
�
 x̄-d	t1/2+ o�t1/2	
 (64)

holds for t ≥ 0, and moreover, for any solution �̄ of problem (54), problem (50) with � = 
� + td+;�t	 has an
o�t1/2	-solution of the form x̄+ t1/2�̄+ o�t1/2	.

Proof. Since the upper estimate (60) is already established in Theorem 7.1 (recall that under the assumption
(63), it holds that v1/2� 
�
 x̄-d	 >−�) to establish (64), it remains to derive the lower estimate

v� 
� + td+;�t		≥ v� 
�	+ v1/2� 
�
 x̄-d	t1/2+ o�t1/2	


for t ≥ 0. We argue by a contradiction. Suppose that there exist a sequence �tk�⊂R+\�0� and ) > 0 such that
�tk�→ 0 and ∀k,

v� 
� + tkd+;�tk		− v� 
�	
t
1/2
k

≤ v1/2� 
�
 x̄-d	− )
 (65)

Consider an arbitrary sequence �xk�⊂ B��x̄	 such that x
k ∈ D� 
� + tkd+ ;�tk		 and f � 
� + tkd+ ;�tk	
 x

k	=
v� 
� + tkd+;�tk		 ∀k (evidently, such sequence exists since dimX <�, and hence B��x̄	 is compact).
For each k set �k = �xk − x̄	/t

1/2
k . Recall that (63) implies the second-order sufficient optimality condition.

Thus, from Bonnans and Shapiro [6, Theorem 4.53], it follows that the sequence ��k� is bounded, and without
loss of generality, we may suppose that this sequence converges to some �̄ ∈X, and according to Proposition 7.2,
�̄ must be a solution of problem (54).
Furthermore,

v� 
� + tkd+;�tk		− v� 
�	 = f � 
� + tkd+;�tk	
 x
k	− f � 
�
 x̄	

=
〈
�f

�x
� 
�
 x̄	
 �̄

〉
t
1/2
k + o

(
t
1/2
k

)



and since �̄ is a solution of problem (54), it follows that

lim
k→�

v� 
� + tkd+;�tk		− v� 
�	
t
1/2
k

=
〈
�f

�x
� 
�
 x̄	
 �̄

〉

= v1/2� 
�
 x̄-d	

This contradicts (65), and this contradiction completes the proof of (64).
Let now �̄ be an arbitrary solution of problem (54). By Assertion (ii) of Proposition 7.1, there exists a mapping

r� R+ →X such that r�t	= o�t1/2	 and

x̄+ t1/2�̄+ r�t	 ∈D� 
� + td+;�t		


for all t ≥ 0 small enough. Then, according to (64), for such t, we obtain

f � 
� + td+;�t	
 x̄+ t1/2�̄+ r�t		 = f � 
�
 x̄	+
〈
�f

�x
� 
�
 x̄	
 �̄

〉
t1/2+ o�t1/2	

= v� 
�	+ v1/2� 
�
 x̄-d	t1/2+ o�t1/2	

≤ v� 
� + td+;�t		+ o�t1/2	


i.e., x̄+ t1/2�+ r�t	 is an o�t1/2	-solution of problem (50) with � = 
� + td+;�t	. �

Proposition 7.2 and Theorem 7.2 are strongly related to Bonnans and Shapiro [6, Theorem 4.120]. Note,
however, that in the latter reference, the directional expansion of the optimal value function and the result similar
to that of Proposition 7.2 are derived in terms of the auxiliary problem (54) rather than (61) used for the upper
bound. At the same time, our analysis relies solely on auxiliary problem (54). Finally, Bonnans and Shapiro [6,
Theorem 4.120] does not contain the last assertion of Theorem 7.2, which is an important characterization of
solution sensitivity. Recall that the proof of this assertion relies on Proposition 7.1, which we believe to be new.
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