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Abstract. For the equality-constrained optimization problem, we consider the case when the customary reg-
ularity of constraints can be violated. Under the assumptions substantially weaker than those previously used
in the literature, we develop a reasonably complete local sensitivity theory for this class of problems, including
upper and lower bounds for the rate of change of the optimal value function subject to parametric perturbations,
as well as the estimates and the description of asymptotic behavior of solutions of the perturbed problems.
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1. Introduction. The normal case

We present the sensitivity analysis for constrained optimization problems under the CQ-
type conditions substantially weaker than those previously used in the literature in this
context. Our approach is within the framework of directional perturbations, in the spirit
of [15], [7], [8]. Here, we consider a purely equality-constrained optimization problem
only, and we develop a reasonably complete local sensitivity theory for this class of
problems. Our results include the upper and lower bounds for the rate of change of
the optimal value function subject to parametric perturbations, as well as the estimates
and the description of asymptotic behavior of solutions of the perturbed problems. The
case of mixed constraints (or more general abstract constraints) will be discussed by
the authors elsewhere. The reason for this is twofold. First, the case of pure equality
constraints certainly deserves a special consideration, as this is a classical setting which
goes back to Lagrange and the foundations of nonlinear analysis and optimization. More
importantly, pure equality constraints have strong specific properties which are not pre-
served in the general case, and which cannot be established as particular cases of the
general theory. Roughly speaking, as will be shown below, some sensitivity properties
of the abnormal equality-constrained problems turn out to be much similar to those
available for the normal case. For general constraints, this is not at all the case (see the
forthcoming paper [5]).
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Let �, X and Y be (real) Banach spaces, and consider the problem

minimize f (σ, x)

subject to x ∈ D(σ)
(1)

with

D(σ) = {x ∈ X | F(σ, x) = 0},
where σ ∈ � is a parameter, f : �×X → R is a smooth function, and F : �×X → Y

is a smooth mapping.
Let σ̄ ∈ � be a fixed (base) parameter value, and x̄ ∈ X be a local solution of the

unperturbed problem

minimize f (σ̄ , x)

subject to x ∈ D(σ̄ ).
(2)

Then there exists a closed ball B = {x ∈ X | ‖x − x̄‖ ≤ r} with some r > 0, such that
x̄ is a global solution of the unperturbed problem restricted to B:

minimize f (σ̄ , x)

subject to x ∈ D(σ̄ ) ∩ B.
(3)

Consider the perturbed problem restricted to B:

minimize f (σ, x)

subject to x ∈ D(σ) ∩ B.
(4)

Define the (local) optimal value function of problem (1) as the optimal value function
of (4):

ω(σ) = inf
x∈D(σ)∩B

f (σ, x), σ ∈ �.

With this definition, ω(σ̄ ) = f (σ̄ , x̄), and if X is finite-dimensional (more precisely,
if B is compact), then, as is well known, ω is lower semicontinuous at σ̄ . On the other
hand, when X is infinite-dimensional, ω is not necessarily lower semicontinuous. A nice
example of such behavior is presented below. Note that, in this example, the violation
of lower semicontinuity of ω cannot be avoided by choosing r small enough.

Example 1. Let X = l2, Y = R2, � = R, f (σ, x) = −‖x−e1‖2, F1(σ, x) = ‖x‖2−1,
F2(σ, x) = (x1 − 1)(

∑∞
j=2 x2

j /j − σ), σ̄ = 0, x̄ = e1, where e1 = (1, 0, . . . ). It can
be easily seen that x̄ is an isolated point of D(σ̄ ), and if r < 2, then x̄ is a global solution
of (3). For such r , ω(σ̄ ) = ωr(σ̄ ) = 0.

At the same time, it can be directly verified that for every r <
√

2 and every i =
2, 3, . . ., the system of equations

‖x‖ = 1, ‖x − e1‖ = r (5)

has a solution of the form xj = (
√

1 − θ, 0, . . . , 0,
√

θ, 0, . . . ), where
√

θ is on j -th
place, and θ = θ(r) is the unique solution of the equation

(
√

1 − θ − 1)2 + θ = r2.
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Furthermore, the solution set of (5) is connected, and if σ ≤ θ/2, then F2(σ, x2) =
(
√

1 − θ − 1)(θ/2 − σ) ≤ 0, while F2(σ, xj ) = (
√

1 − θ − 1)(θ/j − σ) ≥ 0 for all j

large enough. We conclude that (5) has a solution x(σ ) such that F2(σ, x(σ )) = 0, and
in particular, x(σ ) ∈ D(σ). Obviously, x(σ ) is a global solution of (4), and ω(σ) =
f (σ, x(σ )) = −r2 ∀ σ ∈ (0, θ(r)/2).

Moreover, with a fixed r , it can even hold that ω(σ) = −∞ for σ ∈ � arbitrary
close to σ̄ . Indeed, if there exists a smooth function ϕ : X → R unbounded from below
on B, then take � = R, f (σ, x) = σϕ(x) and D(σ) = X. Then ω(0) = 0, while
ω(σ) = −∞ ∀ σ > 0.

On the other hand, even in the case of finite-dimensional X, further (and in particular,
quantitative) analysis of the properties of the optimal value function and solutions of the
perturbed problems requires further assumptions.

For every σ ∈ �, denote by S(σ) the solution set of (4), and define the Lagrangian
function

L(σ, x, λ) = f (σ, x) + 〈λ, F (σ, x)〉, σ ∈ �, x ∈ X, λ ∈ Y ∗,

where Y ∗ is the (topologically) dual space of Y , and 〈·, ·〉 stands for duality pairing. Let

�(σ̄ , x̄) =
{

λ ∈ Y ∗
∣
∣
∣
∣
∂L

∂x
(σ̄ , x̄, λ) = 0

}

be the set of (normal) Lagrange multipliers associated with x̄.
In our setting, we say that the point x̄ is normal, if

im
∂F

∂x
(σ̄ , x̄) = Y, (6)

where by im A we denote the image space (range) of a linear operator A, and abnormal
otherwise. Under the normality assumption (which is the natural constraint qualification
in this context), the following sensitivity results are well known:

– From the standard implicit function theorem, it follows that ω is upper semicontinu-
ous at σ̄ . If X is finite-dimensional, then ω is continuous at σ̄ , S(σ) 
= ∅ for all σ ∈ �

close enough to σ̄ , and

sup
x∈S(σ)

dist(x, S(σ̄ )) → 0 as σ → σ̄ , (7)

where dist(x, S) = infz∈S ‖x − z‖ stands for the distance from x ∈ X to S ⊂ X. In
particular, if x̄ is a strict local minimizer in (2), and B is chosen in such a way that x̄

is a unique solution of (3), then

sup
x∈S(σ)

‖x − x̄‖ → 0 as σ → σ̄ . (8)

This is the stability theorem; see, e.g., [15, Theorem 3.1 and Corollary 1].
– For σ ∈ �, the following linear upper bound holds:

ω(σ) ≤ ω(σ̄ ) + O(‖σ − σ̄‖); (9)

see, e.g., [15, Proposition 3.1].
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– For a given direction d ∈ �, bound (9) can be quantitatively sharpened in the fol-
lowing way: for t ≥ 0

ω(σ̄ + td) ≤ ω(σ̄ ) +
〈
∂L

∂σ
(σ̄ , x̄, λ̄), d

〉

t + o(t) (10)

with λ̄ ∈ �(σ̄ , x̄); see [15, Theorem 7.1], [7, Proposition 4.3].

Recall that in the normal case, the set of Lagrange multipliers is necessarily a singleton.
If x̄ is a unique solution of (3), then the directional upper bound (10) is exact, and

this fact can be expressed in the form of the equality

ω′(σ̄ ; d) =
〈
∂L

∂σ
(σ̄ , x̄, λ̄), d

〉

(11)

for the directional derivative of ω at σ̄ with respect to any direction d ∈ �; see [14], [7,
Theorem 4.5]. In particular, ω is Gâteaux differentiable at σ̄ .

However, in more general (including abnormal) settings, further assumptions are
needed in order to obtain sharp lower bounds on ω and bounds on solutions of the
perturbed problems. The most popular and natural in this context seems to be the qua-
dratic growth condition (QGC) which consists of saying that there exists γ > 0 and a
neighborhood V of x̄ such that

f (σ̄ , x) ≥ f (σ̄ , x̄) + γ ‖x − x̄‖2 ∀ x ∈ D(σ̄ ) ∩ V,

or some second order sufficient conditions guaranteeing QGC. Note that in the normal
case, the natural second order sufficient condition is the following: there exists γ > 0
such that

∂2L

∂x2 (σ̄ , x̄, λ̄)[ξ, ξ ] ≥ γ ‖ξ‖2 ∀ ξ ∈ ker
∂F

∂x
(σ̄ , x̄),

where by ker A we denote the null space of a linear operator A, and [·, ·] stands for
the arguments of a bilinear form (or, more generally, bilinear mapping). This condition
actually leads to the so-called strong stability for the Lagrange optimality system [7,
section 5], when the most complete answers to sensitivity questions are available via the
standard implicit function theorem. For the abnormal case, the situation is by far more
complex.

This paper contains further development of the preliminary results published in [4].
Here, we extend these results to the infinite-dimensional setting, and we complete our
theory with numerous important additional facts (in particular, for the case when x̄ is
an isolated feasible point of the unperturbed problem). We emphasize that our results
would be completely meaningful even in the finite-dimensional setting. In particular, we
discuss application of our theory to the so-called chain problem [7, section 8], which
is finite-dimensional. As an important example of possible infinite-dimensional appli-
cation, we mention optimal control problems with phase constraints. This application
requires an extensive discussion and will be the subject of our future work.
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2. Preliminaries

We now consider the case when possibly the point x̄ is abnormal, that is, normality
condition (6) is not assumed to be a priori satisfied.

2.1. Some facts from nonlinear analysis

In order to proceed with sensitivity analysis, we need the following two implicit func-
tion (stability) theorems and the error bound theorem relevant in the context of abnormal
problems. Let F be twice continuously differentiable near (σ̄ , x̄) and three times dif-
ferentiable at (σ̄ , x̄) with respect to x. In most of the results presented below, these
smoothness assumptions are extraneous, but we impose them throughout the paper just
to be not distracted by non-essential details.

Let x̄ ∈ D(σ̄ ) (in this section, x̄ is not necessarily a local solution of (2)). Assume
that Y1 = im ∂F

∂x
(σ̄ , x̄) is closed and has a closed complementary subspace Y2 in Y . Let

P be the projector onto Y2 parallel to Y1 in Y (P is continuous, by necessity). Define
the mapping

� : X → Y, �(ξ) = ∂F

∂x
(σ̄ , x̄)ξ + 1

2
P

∂2F

∂x2 (σ̄ , x̄)[ξ, ξ ].

Note that

�′(h)ξ = ∂F

∂x
(σ̄ , x̄)ξ + P

∂2F

∂x2 (σ̄ , x̄)[h, ξ ] ∀ h, ξ ∈ X.

If Y is a Hilbert space, one can always take the orthogonal complement Y⊥
1 as Y2.

With this choice, P is the orthogonal projector onto Y⊥
1 in Y . Though, in any case, the

2-regularity property does not actually depend on the specific choice of Y2.

Definition 1. The mapping F is said to be 2-regular in x at the point (σ̄ , x̄) with respect
to a direction ξ ∈ X if

im �′(ξ) = Y.

The term “with respect to a direction” is justified by the observation that 2-regularity
with respect to ξ implies 2-regularity with respect to tξ for every t 
= 0.

Define the cone

T (σ̄ , x̄) = {ξ ∈ X | �(ξ) = 0}
=
{

ξ ∈ ker
∂F

∂x
(σ̄ , x̄)

∣
∣
∣
∣
∂2F

∂x2 (σ̄ , x̄)[ξ, ξ ] ∈ Y1

}

.

Theorem 1. Assume that the subspace Y1 is closed and has a closed complementary
subspace Y2 in Y , and the following hypothesis is satisfied:

(H1) There exists h ∈ T (σ̄ , x̄) such that F is 2-regular in x at (σ̄ , x̄) with respect to h.
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Then for all σ ∈ � close enough to σ̄ it holds that D(σ) 
= ∅, and

dist(x̄, D(σ)) = O

(

‖σ − σ̄‖ +
∥
∥
∥
∥P

∂F

∂σ
(σ̄ , x̄)(σ − σ̄ )

∥
∥
∥
∥

1/2
)

. (12)

This theorem was proved in [9] basing on the covering theorem obtained in [6]. For
an extensive discussion of 2-regularity and its applications in nonlinear analysis and
optimization see [12], [13], [3], [10], [11] and references therein.

Another concept appropriate for treating abnormal problems applies to the case when
codim Y1 < ∞. Define the cone F(σ̄ , x̄) in Y ∗ consisting of all elements λ ∈ Y⊥

1 \ {0}
possessing the following property: there exists a linear subspace � = �(λ) ⊂ X such
that

� ⊂ ker
∂F

∂x
(σ̄ , x̄), codim � ≤ codim Y1,

〈

λ,
∂2F

∂x2 (σ̄ , x̄)[ξ, ξ ]

〉

≥ 0 ∀ ξ ∈ �.

Here Y⊥
1 stands for the set of all λ ∈ Y ∗ such that 〈λ, y〉 = 0 ∀ y ∈ Y1, and codim � is

computed with respect to ker ∂F
∂x

(σ̄ , x̄) (not to the entire X!).

Theorem 2. Assume that the subspace Y1 is closed, and the following hypothesis is
satisfied:

(H2) There exists h ∈ ker ∂F
∂x

(σ̄ , x̄) such that

〈

λ,
∂2F

∂x2 (σ̄ , x̄)[h, h]

〉

< 0 ∀ λ ∈ F(σ̄ , x̄),

and either dim Y < ∞, or codim Y1 < ∞ and ker ∂F
∂x

(σ̄ , x̄) has a closed comple-
mentary subspace in X.

Then for all σ ∈ � close enough to σ̄ it holds that D(σ) 
= ∅, and (12) is satisfied.

Theorem 2 was proved in [1]. (We point out that, as a result of a misprint, assumption
codim ker ∂F

∂x
(σ̄ , x̄) < ∞ appeared in [1, Remark 1] instead of the correct assumption

consisting of saying that ker ∂F
∂x

(σ̄ , x̄) has a closed complementary subspace in X.)
Relation between hypotheses (H1) and (H2) is not completely clarified yet. It seems

quite likely that (H2) actually implies (H1), but by now, this conjecture is proved under
the additional assumptions only [3, section 4.4]. That is why we consider Theorems 1
and 2 as complementary with respect to each other.

We proceed with the error bound for the zero set of a (strongly) 2-regular mapping,
derived in [6].

Definition 2. The mapping F is said to be 2-regular in x at the point (σ̄ , x̄) if it is
2-regular at this point with respect to every direction ξ ∈ T (σ̄ , x̄) \ {0}.
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Definition 3. The mapping F is said to be strongly 2-regular in x at the point (σ̄ , x̄) if
there exists ν > 0 such that

sup
ξ∈Tν (σ̄ , x̄),

‖ξ‖=1

sup
y∈Y,

‖y‖=1

dist(0, (�′(ξ))−1(y)) < ∞,

where

Tν(σ̄ , x̄) =
{

ξ ∈ X

∣
∣
∣
∣

∥
∥
∥
∥
∂F

∂x
(σ̄ , x̄)ξ

∥
∥
∥
∥ ≤ ν,

∥
∥
∥
∥P

∂2F

∂x2 (σ̄ , x̄)[ξ, ξ ]

∥
∥
∥
∥ ≤ ν

}

.

Note that T0(σ̄ , x̄) = T (σ̄ , x̄), and if dim X < ∞, then strong 2-regularity is
equivalent to 2-regularity. Some criteria of strong 2-regularity were derived in [2].

Theorem 3. Assume that the subspace Y1 is closed and has a closed complementary
subspace Y2 in Y , and F is strongly 2-regular in x at (σ̄ , x̄).

Then for x ∈ X, x 
= x̄, it holds that

dist(x, D(σ̄ )) = O(‖(I − P)F(σ̄ , x)‖ + ‖PF(σ̄ , x)‖/‖x − x̄‖), (13)

where I : Y → Y is the identity mapping.

It is easy to see that hypotheses (H1) and (H2), as well as the strong 2-regularity con-
dition, are weaker requirements than normality condition (6). Moreover, in the normal
case, F is 2-regular in x at (σ̄ , x̄) with respect to any direction h ∈ X, including h = 0,
and both Theorems 1 and 2 reduce to the standard implicit function theorem, while
Theorem 3 reduces to the standard (linear) error bound (see, e.g., [7, Proposition 3.3]).

Now we consider the directional perturbations for a given direction d ∈ �, that
is, perturbations along the ray σ(t) = σ̄ + td , t ≥ 0. Consider the arc of the form
x(t) = x̄ + t1/2ξ + o(t1/2), ξ ∈ X. The form of the arc is suggested by the estimate
(12). If x(t) ∈ D(σ(t)) for all t ≥ 0 sufficiently small, then

0 = F(σ̄ + td, x(t))

= t1/2 ∂F

∂x
(σ̄ , x̄)ξ + o(t1/2),

0 = PF(σ̄ + td, x(t))

= tP

(
∂F

∂σ
(σ̄ , x̄)d + 1

2

∂2F

∂x2 (σ̄ , x̄)[ξ, ξ ]

)

+ o(t),

and it follows that necessarily ξ ∈ T (σ̄ , x̄; d), where

T (σ̄ , x̄; d) =
{

ξ ∈ X

∣
∣
∣
∣�(ξ) = −P

∂F

∂σ
(σ̄ , x̄)d

}

(14)

(clearly T (σ̄ , x̄; 0) = T (σ̄ , x̄)). Under the additional assumption of 2-regularity of F

in x at (σ̄ , x̄) with respect to ξ , the converse implication is established in the following
theorem.
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Theorem 4. Assume that the subspace Y1 is closed and has a closed complementary
subspace Y2 in Y , and for a given d ∈ �, F is 2-regular in x at (σ̄ , x̄) with respect to
ξ ∈ T (σ̄ , x̄; d).

Then there exist a neighborhood U of d and a mapping χ : U → X such that:

(i) For ζ ∈ U

χ(ζ ) ∈ T (σ̄ , x̄; ζ ), χ(ζ ) → ξ as ζ → d.

(ii) There exists a mapping r : R+ × U → X such that for t ≥ 0 and ζ ∈ U

x̄ + t1/2χ(ζ ) + r(t, ζ ) ∈ D(σ̄ + tζ ),

‖r(t, ζ )‖ = O(t) uniformly in ζ ∈ U . (15)

Proof. For a given ζ ∈ � consider the equation

�(χ) = −P
∂F

∂σ
(σ̄ , x̄)ζ

with respect to χ ∈ X. Assertion (i) follows by the application of the standard implicit
function theorem to this equation at χ = ξ with ζ = d.

Now consider the mapping G : R+ × U × X → Y defined as follows: for ζ ∈ U ,
r ∈ X and t > 0

G(t, ζ, x) = t−1/2(I − P)F(σ̄ + tζ, x̄ + t1/2(χ(ζ ) + x))

+t−1PF(σ̄ + tζ, x̄ + t1/2(χ(ζ ) + x)),

while for t = 0 we define G by the equality

G(0, ζ, x) = ∂F

∂x
(σ̄ , x̄)(χ(ζ ) + x)

+P

(
∂2F

∂x2 (σ̄ , x̄)[χ(ζ ), x] + 1

2

∂2F

∂x2 (σ̄ , x̄)[x, x]

)

.

It can be directly verified that if we take (t, ζ ) ∈ R+ × U as a parameter, the standard
implicit function theorem can be applied to G at (0, d, 0), and this results in (ii). ��

Concerning this “directional stability” theorem, it is worth mentioning that the related
results using the so-called directional regularity condition are available in the literature;
see [7, Proposition 3.4], [8, Theorem 4.9 and Lemma 4.10]. However, for pure equality
constraints, directional regularity coincides with normality, while the assumptions of
Theorem 4 are substantially weaker.

Lemma 1. Assume that the subspace Y1 is closed and has a closed complementary sub-
space Y2 in Y , and F is 2-regular in x at (σ̄ , x̄) with respect to at least one h ∈ T (σ̄ , x̄).

Then for every d ∈ � there exists ξ ∈ T (σ̄ , x̄; d) such that F is 2-regular in x at
(σ̄ , x̄) with respect to ξ .
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Proof. For a given d ∈ � and a real number t consider the equation

�(χ) = −tP
∂F

∂σ
(σ̄ , x̄)ζ

with respect to χ ∈ X. Application of the standard implicit function theorem to this
equation at χ = h with t = 0 results in the following: for every t close enough to zero,
this equation has a solution χ(t) such that χ(t) → h as t → 0. Hence, if t > 0 is small
enough, then F is 2-regular in x at (σ̄ , x̄) with respect to χ(t). We complete the proof
by setting ξ = t−1/2χ(t). ��

2.2. Second-order sufficient optimality conditions

We next discuss some facts concerning unperturbed optimization problem (2). If the
local solution x̄ of this problem is an abnormal point, then �(σ̄ , x̄) can be empty. At
the same time, necessarily �0(σ̄ , x̄) 
= ∅, where

�0(σ̄ , x̄) =
{

(λ0, λ) ∈ (R+ × Y ∗)
∣
∣
∣
∣
∂L0

∂x
(σ̄ , x̄, λ0, λ) = 0, (λ0, λ) 
= 0

}

is the set of generalized Lagrange multipliers associated with x̄, and

L0(σ, x, λ0, λ) = λ0f (σ, x) + 〈λ, F (σ, x)〉, σ ∈ �, x ∈ X, λ0 ∈ R, λ ∈ Y ∗,

is the generalized Lagrangian function (recall that Y1 is supposed to be closed).
In the rest of this section, we are concerned with second-order sufficient optimality

conditions of the form

sup
(λ0, λ)∈�0(σ̄ , x̄),

λ0+‖λ‖=1

∂2L0

∂x2 (σ̄ , x̄, λ0, λ)[ξ, ξ ] ≥ γ ‖ξ‖2 ∀ ξ ∈ K (16)

and

sup
λ∈�(σ̄ , x̄),

‖λ‖≤M

∂2L

∂x2 (σ̄ , x̄, λ)[ξ, ξ ] ≥ γ ‖ξ‖2 ∀ ξ ∈ K, (17)

where K is some cone in X, M > 0 and γ > 0 are some real numbers.

Definition 4. The weak second-order sufficient condition (WSOSC) is said to hold at x̄

if there exists γ > 0 such that (16) holds with K = ker ∂F
∂x

(σ̄ , x̄).

If dim X < ∞, then WSOSC can be written in the form

∀ ξ ∈ ker
∂F

∂x
(σ̄ , x̄), ξ 
= 0,

∃ (λ0, λ) ∈ �0(σ̄ , x̄) such that
∂2L0

∂x2 (σ̄ , x̄, λ0, λ)[ξ, ξ ] > 0.
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Lemma 2. WSOSC is equivalent to either of the following two conditions:

(a) There exist ν > 0 and γ > 0 such that (16) holds with K ={ξ ∈ X | ‖ ∂F
∂x

(σ̄ , x̄)ξ‖ ≤
ν‖ξ‖}.

(b) There exist ν > 0 and γ > 0 such that (16) holds with K = {ξ ∈ X | ξ 
=
0, ξ/‖ξ‖ ∈ Tν(σ̄ , x̄)}.
If in addition F is strongly 2-regular in x at (σ̄ , x̄), or dim X < ∞, then these

conditions are further equivalent to the existence of γ > 0 such that (16) holds with
K = T (σ̄ , x̄). If dim X < ∞, then the latter condition can be written in the form

∀ ξ ∈ T (σ̄ , x̄), ξ 
= 0,

∃ (λ0, λ) ∈ �0(σ̄ , x̄) such that
∂2L0

∂x2 (σ̄ , x̄, λ0, λ)[ξ, ξ ] > 0.

Proof. The proof of the fact that WSOSC implies (a) can be obtained by the stan-
dard argument. The key observation is that for every sequence {ξk} ⊂ X such that
{ ∂F

∂x
(σ̄ , x̄)ξ k} → 0 as k → ∞, it follows from the Banach open mapping theorem

(recall that Y1 is assumed to be closed) that dist(ξk, ker ∂F
∂x

(σ̄ , x̄)) → 0 as k → ∞.
The fact that (a) implies WSOSC is evident.

Next, we prove that (b) implies (a) (the converse implication is evident in this case
too). Let ν > 0 and γ > 0 be taken from (b), and let ξ ∈ X be such that ‖ξ‖ = 1 and
‖ ∂F

∂x
(σ̄ , x̄)ξ‖ ≤ ν, while ‖P ∂2F

∂x2 (σ̄ , x̄)[ξ, ξ ]‖ ≥ ν. Set

η = P
∂2F

∂x2 (σ̄ , x̄)[ξ, ξ ]

/∥
∥
∥
∥P

∂2F

∂x2 (σ̄ , x̄)[ξ, ξ ]

∥
∥
∥
∥ .

With this choice, η ∈ Y2 and ‖η‖ = 1. We assert that there exists λ ∈ Y ∗ such that
λ ∈ Y⊥

1 , 〈λ, η〉 = 1 and ‖λ‖ ≤ ‖P ‖. (The similar assertion in a more general setting
can be found, for instance, in [16, Corollary 2, p. 139]. However, we provide the short
proof for the sake of completeness.)

Indeed, consider the subspace Ỹ = Y1+span{η} in Y , and define the linear functional
λ̃ ∈ Ỹ ∗ as follows: 〈λ̃, y + tη〉 = t , y ∈ Y1, t ∈ R. Then, obviously, ‖λ̃‖ ≤ ‖P ‖, and
according to the Hahn–Banach theorem, there exists λ ∈ Y ∗ such that 〈λ, y〉 = 〈λ̃, y〉
∀ y ∈ Ỹ and, moreover, ‖λ‖ = ‖λ̃‖ ≤ ‖P ‖. Clearly, λ possess all the properties required.

By the properties of λ, we have that (0, λ/‖λ‖) ∈ �0(σ̄ , x̄) and

∂2L0

∂x2 (σ̄ , x̄, 0, λ/‖λ‖)[ξ, ξ ] =
〈

λ

‖λ‖ ,
∂2F

∂x2 (σ̄ , x̄)[ξ, ξ ]

〉

=
〈

λ

‖λ‖ , P
∂2F

∂x2 (σ̄ , x̄)[ξ, ξ ]

〉

=
∥
∥
∥
∥P

∂2F

∂x2 (σ̄ , x̄)[ξ, ξ ]

∥
∥
∥
∥

〈λ, η〉
‖λ‖

≥ ν/‖P ‖.
Thus, in order to obtain (a), we need only to replace γ by min{γ, ν/‖P ‖}. This completes
the proof.
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Let now F be strongly 2-regular in x at (σ̄ , x̄), and let there exists γ > 0 such that
(16) holds with K = T (σ̄ , x̄). Let {ξk} ⊂ X be any sequence such that { ∂F

∂x
(σ̄ , x̄)ξ k} →

0, {P ∂2F
∂x2 (σ̄ , x̄)[ξk, ξk]} → 0 as k → ∞. Applying Theorem 3 to the mapping � at 0,

we find that that dist(ξk, T (σ̄ , x̄)) → 0 as k → ∞. By the standard argument we con-
clude that (b) holds. If dim X < ∞, then one should employ the compactness argument
instead of Theorem 3. ��
Lemma 3. If �(σ̄ , x̄) = ∅, then WSOSC is equivalent to the existence of ν > 0 such
that

{ξ ∈ Tν(σ̄ , x̄) | ‖ξ‖ = 1} = ∅. (18)

If dim X < ∞, then the latter condition is equivalent to the equality T (σ̄ , x̄) = {0}.
Proof. By Lemma 2, the existence of ν > 0 such that (18) holds implies WSOSC (even
when �(σ̄ , x̄) 
= ∅).

From the equality �(σ̄ , x̄) = ∅ it follows that

�0(σ̄ , x̄) =
{
(0, λ) ∈ (R+ × Y ∗)

∣
∣
∣ λ ∈ Y⊥

1 , λ 
= 0
}

.

Hence, if we assume that for every ν > 0, there exists ξ ∈ Tν(σ̄ , x̄) such that ‖ξ‖ = 1,
then for every (λ0, λ) ∈ �0(σ̄ , x̄) such that λ0 + ‖λ‖ = 1 it holds that

∂2L0

∂x2 (σ̄ , x̄, λ0, λ)[ξ, ξ ] =
〈

λ,
∂2F

∂x2 (σ̄ , x̄)[ξ, ξ ]

〉

=
〈

λ, P
∂2F

∂x2 (σ̄ , x̄)[ξ, ξ ]

〉

≤ ‖P ‖ν.

Taking into account Lemma 2, we arrive to a contradiction with WSOSC.
The last assertion is an easy exercise. ��
It can be easily seen that in the existence of ν > 0 such that (18) holds subsumes

that x̄ is an isolated feasible point of problem (2).
We now turn our attention to the case when �(σ̄ , x̄) 
= ∅. It is important to point

out that this case certainly deserves special consideration, even if normality condition
(6) is not necessarily satisfied. For instance, it is known that in the finite-dimensional
setting, �(σ̄ , x̄) 
= ∅ generically, provided dim X is large enough with respect to dim Y

[3, Theorem 10.2 in section 1.10].

Definition 5. The second-order sufficient condition (SOSC) is said to hold at x̄ if
�(σ̄ , x̄) 
= ∅ and there exist M > 0, ν > 0 and γ > 0 such that (17) holds with
K = ker ∂F

∂x
(σ̄ , x̄).

If dim X < ∞, then SOSC can be written in the form

∀ ξ ∈ ker
∂F

∂x
(σ̄ , x̄), ξ 
= 0, ∃ λ ∈ �(σ̄ , x̄) such that

∂2L

∂x2 (σ̄ , x̄, λ)[ξ, ξ ] > 0.
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Relation between WSOSC and SOSC is clarified by the following two lemmas.

Lemma 4. If �(σ̄ , x̄) 
= ∅, then for an arbitrary cone K in X, (16) holds with some
γ > 0 if and only if (17) holds with some M > 0 and γ > 0.

Proof. Let (16) holds with some γ > 0. Fix �̃(σ̄ , x̄) and set

C = sup
ξ∈K,
‖ξ‖=1

∣
∣
∣
∣
∂2L

∂x2 (σ̄ , x̄, λ̃)[ξ, ξ ]

∣
∣
∣
∣ , θ = γ

2C
.

By (16) for any ξ ∈ K we obtain

sup
(λ0, λ)∈�0(σ̄ , x̄),

λ0+‖λ‖=1

∂2L0

∂x2 (σ̄ , x̄, λ0 + θ, λ + θλ̃)[ξ, ξ ]

= sup
(λ0, λ)∈�0(σ̄ , x̄),

λ0+‖λ‖=1

(
∂2L0

∂x2 (σ̄ , x̄, λ0, λ)[ξ, ξ ] + θ
∂2L

∂x2 (σ̄ , x̄, λ̃)[ξ, ξ ]

)

≥ sup
(λ0, λ)∈�0(σ̄ , x̄),

λ0+‖λ‖=1

∂2L0

∂x2 (σ̄ , x̄, λ0, λ)[ξ, ξ ] − θC

≥ γ ‖ξ‖2 − γ

2
‖ξ‖2

= γ

2
‖ξ‖2.

Hence, if we set M = 2C/γ + ‖λ̃‖, then

sup
λ∈�(σ̄ , x̄),

‖λ‖≤M

∂2L

∂x2 (σ̄ , x̄, λ)[ξ, ξ ]

≥ sup
(λ0, λ)∈�0(σ̄ , x̄),

λ0+‖λ‖=1

∂2L

∂x2

(

σ̄ , x̄,
λ + θλ̃

λ0 + θ

)

[ξ, ξ ]

= sup
(λ0, λ)∈�0(σ̄ , x̄),

λ0+‖λ‖=1

1

λ0 + θ

∂2L0

∂x2 (σ̄ , x̄, λ0 + θ, λ + θλ̃)[ξ, ξ ]

≥ γ

2(1 + 2C/γ ))
‖ξ‖2.

This proves (17) with γ replaced by the constant in the right-hand side of the last relation.
The proof of the converse assertion is straightforward. ��
The next lemma is a direct consequence of Lemmas 2 and 4.

Lemma 5. If �(σ̄ , x̄) 
= ∅, then WSOSC is equivalent to either of the following condi-
tions:

(a) SOSC.
(b) There exist M > 0, ν > 0 and γ > 0 such that (17) holds with K = {ξ ∈ X |

‖ ∂F
∂x

(σ̄ , x̄)ξ‖ ≤ ν‖ξ‖}.
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(c) There exist M > 0, ν > 0 and γ > 0 such that (17) holds with K = {ξ ∈ X | ξ 
=
0, ξ/‖ξ‖ ∈ Tν(σ̄ , x̄)}.
If in addition F is strongly 2-regular in x at (σ̄ , x̄), or dim X < ∞, then all these

conditions are further equivalent to the existence of M > 0 and γ > 0 such that (17)

holds with K = T (σ̄ , x̄). If dim X < ∞, then the latter condition can be written in the
form

∀ ξ ∈ T (σ̄ , x̄), ξ 
= 0, ∃ λ ∈ �(σ̄ , x̄) such that
∂2L

∂x2 (σ̄ , x̄, λ)[ξ, ξ ] > 0.

Theorem 5. WSOSC implies QGC. If �(σ̄ , x̄) 
= ∅ and F is strongly 2-regular in x at
(σ̄ , x̄), then the converse implication is also true. More precisely, under these assump-
tions, QGC implies that for every M > 0, there exist ν > 0 and γ > 0 such that (17)

holds with K = {ξ ∈ X | ξ 
= 0, ξ/‖ξ‖ ∈ Tν(σ̄ , x̄)}.

Proof. The first assertion is well known [7, Theorem 6.3], [3, Theorem 8.1 in section 1.8],
[8, Theorem 3.63].

Assume that QGC holds and F is strongly 2-regular in x at (σ̄ , x̄). For an arbitrary
ν > 0, consider an element ξ ∈ Tν(σ̄ , x̄) such that ‖ξ‖ = 1. Applying Theorem 3 with
x = x̄ + tξ , t ≥ 0, we establish the existence of a mapping r : R+ → X such that for
t ≥ 0 it holds that

x̄ + tξ + r(t) ∈ D(σ̄ ), ‖r(t)‖ ≤ νt + o(t).

For arbitrary M > 0 and λ ∈ �(σ̄ , x̄) such that ‖λ‖ ≤ M , from QGC it follows that
for t ≥ 0

γ t2 + o(t2) ≤ f (σ̄ , x̄ + tξ + r(t)) − f (σ̄ , x̄)

= f (σ̄ , x̄ + tξ + r(t)) + 〈λ, F (σ̄ , x̄ + tξ + r(t))〉
−f (σ̄ , x̄) − 〈λ, F (σ̄ , x̄)〉

= L(σ̄ , x̄ + tξ + r(t), λ) − L(σ̄ , x̄, λ)

= 1

2

∂2L

∂x2 (σ̄ , x̄, λ)[ξ, ξ ]t2 + (2ν + ν2)O(t2) + o(t2).

Hence, for every ε > 0,

∂2L

∂x2 (σ̄ , x̄, λ)[ξ, ξ ] ≥ 2(γ − ε)

provided ν is small enough. Taking into account Lemma 5, this completes the proof. ��

Without the additional assumptions such as the existence of a (normal) multiplier
and 2-regularity of F , QGC does not necessarily imply WSOSC; see Example 4 below.
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3. Upper bounds and the adjoint problems

We start with the following stability theorem.

Theorem 6. Assume that (at least) one of hypotheses (H1) or (H2) is satisfied.
Then ω is upper semicontinuous at σ̄ . If dim X < ∞, then ω is continuous at σ̄ ,

S(σ) 
= ∅ for all σ ∈ � close enough to σ̄ , and (7) holds. In particular, if x̄ is a unique
solution of (3), then (8) holds.

Proof. The first assertion is an immediate consequence of Theorems 1 and 2. The rest
can be proved by the standard argument (by contradiction). ��

Note that the assertion of this theorem is exactly the same as the assertion of the
stability theorem for the normal case (see, e.g., [15, Theorem 3.1 and Corollary 1]),
while hypotheses (H1) and (H2) are both substantially weaker than normality. Perhaps
more surprisingly, the same is true for the upper bound on ω, because of the specificity
of pure equality constraints: the upper bound in the next theorem is exactly the same as
for the normal case (see, e.g., [15, Proposition 3.1]).

Theorem 7. Assume that dim � < ∞ and hypothesis (H1) is satisfied.
Then (9) holds for σ ∈ �.

Proof. Consider an arbitrary d ∈ � satisfying the assumptions of Theorem 4. Then for
t ≥ 0 and ζ ∈ U

ω(σ̄ + tζ ) − ω(σ̄ ) ≤ f (σ̄ + tζ, x̄ + t1/2χ(ζ ) + r(t, ζ )) − f (σ̄ , x̄)

=
〈
∂f

∂x
(σ̄ , x̄), χ(ζ )

〉

t1/2 + O(t) uniformly in ζ ∈ U,

(19)

where all the objects are defined as in Theorem 4. Observe that, in Theorem 4, ξ and
χ(ζ ) can be always replaced by −ξ and −χ(ζ ), respectively. The signs can be chosen
in such a way that

〈
∂f

∂x
(σ̄ , x̄), χ(ζ )

〉

≤ 0.

Hence, from (19) we obtain

ω(σ̄ + tζ ) ≤ ω(σ̄ ) + O(t) uniformly in ζ ∈ U .

The needed assertion follows now from Lemma 1 and the assumption dim � < ∞ by
the compactness argument. ��

Under the additional assumption of the existence of a (normal) Lagrange multiplier,
estimate (9) can be derived even for infinite-dimensional �, and in a much simpler
way, directly from Theorems 1 and 2. Note that �(σ̄ , x̄) 
= ∅ holds automatically under
hypothesis (H2); see [3, Theorem 4.1 in section 1.4 and Theorem 11.4 in section 1.11] for
this fact and for some other conditions sufficient for the existence of a (normal) multiplier
(we emphasize that hypothesis (H1) does not possess this property; see Examples 2–4
below).
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Theorem 8. Assume that �(σ̄ , x̄) 
= ∅ and either hypothesis (H1), or hypothesis (H2)
is satisfied.

Then (9) holds for σ ∈ �.

Proof. According to Theorems 1 and 2, for every σ ∈ � close enough to σ̄ , there exists
x(σ ) ∈ D(σ) such that ‖x(σ ) − x̄‖ = O(‖σ − σ̄‖1/2). Then for any λ ∈ �(σ̄ , x̄)

ω(σ ) − ω(σ̄ ) ≤ f (σ, x(σ )) − f (σ̄ , x̄)

= f (σ, x(σ )) + 〈λ, F (σ, x(σ ))〉 − f (σ̄ , x̄) − 〈λ, F (σ̄ , x̄)〉
= L(σ, x(σ ), λ) − L(σ̄ , x̄, λ)

=
〈
∂L

∂σ
(σ̄ , x̄, λ), σ − σ̄

〉

+1

2

∂2L

∂x2 (σ̄ , x̄, λ)[x(σ ) − x̄, x(σ ) − x̄]

+o(‖σ − σ̄‖) + o(‖x(σ ) − x̄‖2)

= O(‖σ − σ̄‖).
��

Estimate (9) cannot be qualitatively improved, even in the normal case. In order to
improve it quantitatively, we turn our attention to directional perturbations. By Theo-
rem 4, we arrive at the following directional version of stability theorem.

Proposition 1. For a given d ∈ �, assume that there exists ξ ∈ T (σ̄ , x̄; d) such that
F is 2-regular in x at (σ̄ , x̄) with respect to ξ .

Then

lim sup
t→0+

ω(σ̄ + td) ≤ ω(σ̄ ).

If dim X < ∞, then

lim
t→0+

ω(σ̄ + td) = ω(σ̄ ),

S(σ̄ + td) 
= ∅ for all t ≥ 0 small enough, and

sup
x∈S(σ̄+td)

dist(x, S(σ̄ )) → 0 as t → 0 + .

In particular, if x̄ is a unique solution of (3), then

sup
x∈S(σ̄+td)

‖x − x̄‖ → 0 as t → 0 + .

Consider the so-called first adjoint problem

minimize
〈
∂f
∂x

(σ̄ , x̄), ξ
〉

subject to ξ ∈ T (σ̄ , x̄; d).
(20)
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Recall that

T (σ̄ , x̄; d) =
{

ξ ∈ ker
∂F

∂x
(σ̄ , x̄)

∣
∣
∣
∣
∂F

∂σ
(σ̄ , x̄)d + 1

2

∂2F

∂x2 (σ̄ , x̄)[ξ, ξ ] ∈ Y1

}

;

see (14). Auxiliary problem (20) can be found in the literature [7, problem (PSd)],
[8, Proposition 4.117], though it was previously used in the different context (not for
abnormal equality constraints). Let

ω1(d) = inf
ξ∈T (σ̄ , x̄; d)

〈
∂f

∂x
(σ̄ , x̄), ξ

〉

(21)

be the optimal value of problem (20).

Proposition 2. For a given d ∈ �, assume that F is 2-regular in x at (σ̄ , x̄) with respect
to a direction ξ ∈ T (σ̄ , x̄; d).

Then for t ≥ 0

ω(σ̄ + td) ≤ ω(σ̄ ) −
∣
∣
∣
∣

〈
∂f

∂x
(σ̄ , x̄), ξ

〉∣
∣
∣
∣ t

1/2 + O(t).

In particular, if the set of ξ ∈ T (σ̄ , x̄; d) such that F is 2-regular in x at (σ̄ , x̄) with
respect to ξ is dense in T (σ̄ , x̄; d), then

ω(σ̄ + td) ≤ ω(σ̄ ) + ω1(d)t1/2 + o(t1/2),

and ω1(d) ≤ 0 provided T (σ̄ , x̄; d) 
= ∅.

The proof follows the line of the proof of Theorem 7 for ζ = d. Note that if
−P ∂F

∂σ
(σ̄ , x̄)d is not a critical value for �, then F is 2-regular in x at (σ̄ , x̄) with

respect to every direction ξ ∈ T (σ̄ , x̄; d). On the other hand, according to the Sard
theorem, in the finite-dimensional setting the set of critical values of � is of measure
zero.

According to Lemma 1, hypothesis (H1) guarantees that T (σ̄ , x̄; d) 
= ∅ ∀ d ∈ �.
At the same time, without further assumptions, hypothesis (H1) does not guarantee the
last estimate in Proposition 2 (see Example 3). On the other hand, under the assumptions
of this proposition, this estimate cannot be sharpened (see Example 2).

The assertion of Proposition 2 is very close to that of [7, Theorem 7.5], [8, Proposi-
tion 4.117]. Recall, however, that for pure equality constraints, the latter references deal
with the normal case only, and hence, the assumptions of [7, Theorem 7.5], [8, Propo-
sition 4.117] just cannot be satisfied in this case. Indeed, the set of (normal) Lagrange
multipliers is necessarily nonempty under the normality condition.

If �(σ̄ , x̄) 
= ∅, then necessarily ω1(d) = 0 for every d ∈ � such that T (σ̄ , x̄; d) 
=
∅, but the estimates in Proposition 2 can be sharpened. For λ ∈ �(σ̄ , x̄), consider the
second adjoint problem

minimize
〈
∂L
∂σ

(σ̄ , x̄, λ), d
〉+ 1

2
∂2L
∂x2 (σ̄ , x̄, λ)[ξ, ξ ]

subject to ξ ∈ T (σ̄ , x̄; d),
(22)

with understanding that the values of the objective function of this problem at its feasible
points do not depend on the choice of λ ∈ �(σ̄ , x̄). This problem can also be found in
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the literature [7, problem (PLd) and its dual interpretation], [8, Proposition 4.113], but
also in the context of normal equality constraints only. Let

ω2(d) =
〈
∂L

∂σ
(σ̄ , x̄, λ), d

〉

+ 1

2
inf

ξ∈T (σ̄ , x̄; d)

∂2L

∂x2 (σ̄ , x̄, λ)[ξ, ξ ] (23)

be the optimal value of problem (22).

Proposition 3. Let �(σ̄ , x̄) 
= ∅. For a given d ∈ �, assume that F is 2-regular in x

at (σ̄ , x̄) with respect to a direction ξ ∈ T (σ̄ , x̄; d).
Then for t ≥ 0

ω(σ̄ + td) ≤ ω(σ̄ )

+
(〈

∂L

∂σ
(σ̄ , x̄, λ), d

〉

+ 1

2
inf

ξ∈T (σ̄ , x̄; d)

∂2L

∂x2 (σ̄ , x̄, λ)[ξ, ξ ]

)

t + o(t)

with any λ ∈ �(σ̄ , x̄). In particular, if the set of ξ ∈ T (σ̄ , x̄; d) such that F is 2-regular
in x at (σ̄ , x̄) with respect to ξ is dense in T (σ̄ , x̄; d), then

ω(σ̄ + td) ≤ ω(σ̄ ) + ω2(d)t + o(t). (24)

Proof. From Theorem 4 for ζ = d it follows that for t ≥ 0 and any λ ∈ �(σ̄ , x̄)

ω(σ̄ + td) − ω(σ̄ ) ≤ f (σ̄ + td, x̄ + t1/2ξ + r(t, d)) − f (σ̄ , x̄)

= f (σ̄ + td, x̄ + t1/2ξ + r(t, d))

+〈λ, F (σ̄ + td, x̄ + t1/2ξ + r(t, d))〉
−f (σ̄ , x̄) − 〈λ, F (σ̄ , x̄)〉

= L(σ̄ + td, x̄ + t1/2ξ + r(t, d), λ) − L(σ̄ , x̄, λ)

=
(〈

∂L

∂σ
(σ̄ , x̄, λ), d

〉

+ 1

2

∂2L

∂x2 (σ̄ , x̄, λ)[ξ, ξ ]

)

t + o(t).

This immediately implies the needed assertion. ��
Under the assumptions of Proposition 3, estimate (24) cannot be sharpened (see

Example 5). Hypothesis (H1) guarantees that ∀ d ∈ � T (σ̄ , x̄; d) 
= ∅, and hence,
ω2(d) < +∞.

In the normal case, Proposition 3 corresponds formally to [7, Theorem 7.3],
[8, Theorem 4.113]. However, in this case T (σ̄ , x̄; d) = ker ∂F

∂x
(σ̄ , x̄), and accord-

ing to the second-order necessary optimality condition

∂2L

∂x2 (σ̄ , x̄, λ̄)[ξ, ξ ] ≥ 0 ∀ ξ ∈ ker
∂F

∂x
(σ̄ , x̄),

for the Lagrange multiplier λ̄ it holds that

ω2(d) =
〈
∂L

∂σ
(σ̄ , x̄, λ̄), d

〉

+ 1

2
inf

ξ∈ker ∂F
∂x

(σ̄ , x̄)

∂2L

∂x2 (σ̄ , x̄, λ̄)[ξ, ξ ]

=
〈
∂L

∂σ
(σ̄ , x̄, λ̄), d

〉

.

Hence, estimate (24) takes the form (10). This is in agreement with [15, Theorem 7.1],
[7, Proposition 4.3].
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4. Lower bounds and asymptotic behavior of solutions

We start this section with the following lower bound on ω which was pointed out for us
by E. R. Avakov.

Theorem 9. Assume that hypothesis (H1) is satisfied and F is strongly 2-regular in x

at (σ̄ , x̄). Moreover, assume that x̄ is a unique solution of (3).
Then for σ ∈ � it holds that

ω(σ) ≥ ω(σ̄ ) + O(‖σ − σ̄‖ + (‖P ‖‖σ − σ̄‖)1/2).

Proof. Consider arbitrary sequences {σk} ⊂ � and {xk} ⊂ X such that {σk} → σ̄ ,
{xk} → x̄ as k → ∞, xk ∈ S(σ k), xk 
= x̄ ∀ k.

From Theorem 3 for every k we obtain the estimate

dist(xk, D(σ̄ )) = O(‖F(σ̄ , xk)‖ + ‖PF(σ̄ , xk)‖/‖xk − x̄‖)
= O(‖F(σk, xk) − F(σ̄ , xk)‖

+‖P(F(σ k, xk) − F(σ̄ , xk))‖/‖xk − x̄‖)
= O(‖σk − σ̄‖ + ‖P ‖‖σk − σ̄‖/‖xk − x̄‖).

Evidently, this leads to the estimate

dist(xk, D(σ̄ )) = O(‖σk − σ̄‖ + (‖P ‖‖σk − σ̄‖)1/2).

Define a sequence {x̃k} ⊂ X such that

‖xk − x̃k‖ = dist(xk, D(σ̄ )) + o(dist(xk, D(σ̄ ))).

Then {x̃k} → x̄ as k → ∞, and hence, x̃k ∈ B and f (σ̄ , x̃k) − f (σ̄ , x̄) ≥ 0 for all k

large enough. We now find that

ω(σk) − ω(σ̄ ) = f (σ k, xk) − f (σ̄ , x̄)

= f (σ̄ , x̃k) − f (σ̄ , x̄) + O(‖σk − σ̄‖ + (‖P ‖‖σk − σ̄‖)1/2),

and this gives the needed estimate. ��
We proceed with the estimates on solutions of the perturbed problem. The corre-

sponding lower bounds on ω will be derived next. To begin with, the following interesting
fact takes place.

Theorem 10. Assume that dim � < ∞, hypothesis (H1) is satisfied, and F is strongly
2-regular in x at (σ̄ , x̄). Moreover, assume that QGC holds.

Then there exists a neighborhood U of x̄ such that for σ ∈ �

‖x − x̄‖ = O

((

‖σ − σ̄‖ +
∥
∥
∥
∥P

∂F

∂σ
(σ̄ , x̄)(σ − σ̄ )

∥
∥
∥
∥ /‖x − x̄‖

)1/2
)

= O(‖σ − σ̄‖1/3) uniformly in x ∈ S(σ) ∩ U. (25)

In particular, if dim X < ∞ and x̄ is a unique solution of (3), then

sup
x∈S(σ)

‖x − x̄‖ = O(‖σ − σ̄‖1/3).
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We emphasize that in this theorem, we neither assert that S(σ) is nonempty for
σ ∈ � close to σ̄ , nor that this set tends to S(σ̄ ) as σ → σ̄ , unless dim X < ∞. The
same comment concerns all infinite-dimensional results in the rest of the paper.

Proof. Consider arbitrary sequences {σk} ⊂ � and {xk} ⊂ X such that {σk} → σ̄ ,
{xk} → x̄ as k → ∞, xk ∈ S(σ k), xk 
= x̄ ∀ k, and

‖σk − σ̄‖ = O(‖xk − x̄‖). (26)

(If sequences possessing these properties do not exist, much stronger estimate than (25)

holds, and we are done).
From Theorem 7 for every k we obtain the estimate

O(‖σk − σ̄‖) ≥ ω(σk) − ω(σ̄ )

= f (σ k, xk) − f (σ̄ , x̄)

= f (σ̄ , xk) − f (σ̄ , x̄) + O(‖σk − σ̄‖).

Hence,

f (σ̄ , xk) − f (σ̄ , x̄) ≤ O(‖σk − σ̄‖). (27)

Define a sequence {x̃k} ⊂ X such that

‖xk − x̃k‖ = dist(xk, D(σ̄ )) + o(dist(xk, D(σ̄ ))).

According to QGC and (27),

γ ‖x̃k − x̄‖2 ≤ f (σ̄ , x̃k) − f (σ̄ , x̄)

≤ f (σ̄ , x̃k) − f (σ̄ , xk) + f (σ̄ , xk) − f (σ̄ , x̄)

≤ O(‖x̃k − xk‖ + ‖σk − σ̄‖)
= O(dist(xk, D(σ̄ )) + ‖σk − σ̄‖). (28)

Furthermore, xk ∈ D(σk), hence by Theorem 3 it holds that

dist(xk, D(σ̄ )) = O(‖F(σ̄ , xk)‖ + ‖PF(σ̄ , xk)‖/‖xk − x̄‖)
= O(‖F(σk, xk) − F(σ̄ , xk)‖

+‖P(F(σ k, xk) − F(σ̄ , xk))‖/‖xk − x̄‖)
= O

(

‖σk − σ̄‖ +
∥
∥
∥
∥P

∂F

∂σ
(σ̄ , x̄)(σ k − σ̄ )

∥
∥
∥
∥ /‖xk − x̄‖

)

,

where (26) was taken into account. The last relation combined with (28) results in the
estimate

‖x̃k − x̄‖2 = O

(

‖σk − σ̄‖ +
∥
∥
∥
∥P

∂F

∂σ
(σ̄ , x̄)(σ k − σ̄ )

∥
∥
∥
∥ /‖xk − x̄‖

)

,
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and this further implies

‖xk − x̄‖ ≤ ‖xk − x̃k‖ + ‖x̃k − x̄‖

= O

((

‖σk − σ̄‖ +
∥
∥
∥
∥P

∂F

∂σ
(σ̄ , x̄)(σ k − σ̄ )

∥
∥
∥
∥ /‖xk − x̄‖

)1/2
)

= O

((
‖σk − σ̄‖/‖xk − x̄‖

)1/2
)

.

This gives (25).
The last assertion of the theorem follows from the first one, and from Theorem 6. ��
The question is open whether estimate (25) can be improved or not under the assump-

tions of Theorem 10 (when �(σ̄ , x̄) = ∅). On the other hand, 2-regularity condition or
QGC cannot be omitted in Theorem 10 (Examples 4, 6, 7).

As mentioned above, QGC can be replaced by stronger sufficient optimality condi-
tions. In particular, the passage from QGC to the condition of the existence of ν > 0 such
that (18) holds makes it possible to sharpen the bound (25). Recall that the latter condi-
tion is equivalent to WSOSC provided �(σ̄ , x̄) = ∅, and to the equality T (σ̄ , x̄) = {0}
provided dim X < ∞; see Lemma 3.

Theorem 11. Assume that there exists ν > 0 such that (18) holds.
Then there exists a neighborhood U of x̄ such that for σ ∈ �

‖x − x̄‖ = O(‖σ − σ̄‖1/2) uniformly in x ∈ D(σ) ∩ U.

Proof. The proof is by contradiction: suppose that there exist sequences {σk} ⊂ � and
{xk} ⊂ X such that {σk} → σ̄ , {xk} → x̄ as k → ∞, xk ∈ D(σk), xk 
= x̄ ∀ k, and

‖σk − σ̄‖1/2/‖xk − x̄‖ → 0 as k → ∞. (29)

For every k

0 = F(σk, xk)

= ∂F

∂x
(σ̄ , x̄)(xk − x̄) + O(‖σk − σ̄‖) + o(‖xk − x̄‖),

0 = PF(σk, xk)

= 1

2
P

∂2F

∂x2 (σ̄ , x̄)[xk − x̄, xk − x̄] + O(‖σk − σ̄‖) + o(‖xk − x̄‖2).

Hence, from (29), for ξk = (xk − x̄)/‖xk − x̄‖ we have

∂F

∂x
(σ̄ , x̄)ξ k → 0, P

∂2F

∂x2 (σ̄ , x̄)[ξk, ξk] → 0 as k → ∞.

Thus, for every ν > 0 it holds that ξk ∈ Tν(σ̄ , x̄) and ‖ξk‖ = 1 for all k large enough.
This contradicts (18). ��
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In the framework of directional perturbations, the following quantitative result takes
place.

Proposition 4. For a given d ∈ �, assume that there exists ξ ∈ T (σ̄ , x̄; d) such that
F is 2-regular in x at (σ̄ , x̄) with respect to ξ . Moreover, assume that T (σ̄ , x̄) = {0},
dim X < ∞, and x̄ is a unique solution of (3).

Then for t ≥ 0

sup
x∈S(σ̄+td)

‖x − x̄‖ = O(t1/2), (30)

ω(σ̄ + td) ≥ ω(σ̄ ) + ω1(d)t1/2 + o(t1/2). (31)

Moreover, if ξ̄ ∈ X is a solution of (20), and there exists ξ ∈ T (σ̄ , x̄; d) arbitrary close
to ξ̄ and such that F is 2-regular in x at (σ̄ , x̄) with respect to ξ , then, for σ = σ̄ + td ,
(4) has an o(t1/2)-solution of the form x̄ + t1/2ξ̄ + o(t1/2).

In addition, suppose that the set of ξ ∈ T (σ̄ , x̄; d) such that F is 2-regular in x at
(σ̄ , x̄) with respect to ξ is dense in T (σ̄ , x̄; d). Then

ω(σ̄ + td) = ω(σ̄ ) + ω1(d)t1/2 + o(t1/2), (32)

and the solution set of (20) coincides with the set consisting of ξ ∈ X such that, for
σ = σ̄ + td, (4) has an o(t1/2)-solution of the form x̄ + t1/2ξ + o(t1/2).

Here for every σ ∈ � and ε > 0, ε-solution of (4) is a point x ∈ D(σ) ∩ B such
that f (σ, x) ≤ ω(σ) + ε.

Proof. Estimate (30) follows from Proposition 1 and Theorem 11; in particular, S(σ̄ +
td) 
= ∅ if t is small enough.

Consider an arbitrary sequence {tk} of positive real numbers such that {tk} → 0 as
k → ∞, and an arbitrary sequence {xk} ⊂ X such that xk ∈ S(σ̄ + tkd) ∀ k. It follows
from (30) that for every k

0 = F(σ̄ + tkd, xk)

= ∂F

∂x
(σ̄ , x̄)(xk − x̄) + o(t

1/2
k ),

0 = PF(σ̄ + tkd, xk)

= P

(

tk
∂F

∂σ
(σ̄ , x̄)d + 1

2

∂2F

∂x2 (σ̄ , x̄)[xk − x̄, xk − x̄]

)

+ o(tk).

Set ξk = (xk − x̄)/t
1/2
k . According to (30), the sequence {ξk} us bounded, and from the

last two equalities it follows that every limit point of this sequence belongs to T (σ̄ , x̄; d).
Furthermore,

ω(σ̄ + tkd) − ω(σ̄ ) = f (σ̄ + tkd, xk) − f (σ̄ , x̄)

=
〈
∂f

∂x
(σ̄ , x̄), xk − x̄

〉

+ o(t
1/2
k )

=
〈
∂f

∂x
(σ̄ , x̄), ξ k

〉

t
1/2
k + o(t

1/2
k ),
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hence

lim inf
k→∞

(ω(σ̄ + tkd) − ω(σ̄ ))/t
1/2
k ≥ ω1(d).

This proves (31).
Let ξ̄ ∈ X be a solution of (20), let there exist a sequence {ξk} ⊂ T (σ̄ , x̄; d) such

that {ξk} → ξ̄ as k → ∞, and let F be 2-regular in x at (σ̄ , x̄) with respect to ξk ∀ k.
We next prove that there exists a mapping r : R+ → X such that for t ≥ 0 it holds that

x̄ + t1/2ξ̄ + r(t) ∈ D(σ̄ + td), ‖r(t)‖ = o(t1/2). (33)

Indeed, assume that there exist a sequence {tj } of positive real numbers such that {tj } →
0 as j → ∞, and a number δ > 0 such that for all j

‖x̄ + t
1/2
j ξ̄ − x‖ ≥ δt

1/2
j ∀ x ∈ D(σ̄ + tj d).

Fix k such that ‖ξk − ξ̄‖ ≤ δ/2. Then

‖x̄ + t
1/2
j ξ k − x‖ ≥ ‖x̄ + t

1/2
j ξ̄ − x‖ − t

1/2
j ‖ξk − ξ̄‖

≥ 1

2
δt

1/2
j ∀ x ∈ D(σ̄ + tj d).

But this is in contradiction with the fact that, according to Theorem 4, for t ≥ 0

dist(x̄ + t1/2ξk, D(σ̄ + td)) = o(t1/2).

From (31) and (33) it follows that for t ≥ 0

f (σ̄ + td, x̄ + t1/2ξ̄ + r(t)) = f (σ̄ , x̄) +
〈
∂f

∂x
(σ̄ , x̄), ξ̄

〉

t1/2 + o(t1/2)

= ω(σ̄ ) + ω1(d)t1/2 + o(t1/2)

≤ ω(σ̄ + td) + o(t1/2),

that is, x̄ + t1/2ξ̄ + r(t) is an o(t1/2)-solution of problem (4) with σ = σ̄ + td .
Finally, under the assumptions of the last assertion of the proposition, (32) follows

from Proposition 2 and (31). Suppose that, for some ξ ∈ X and for σ = σ̄ + td , t ≥ 0,
problem (4) has an o(t1/2)-solution of the form x̄+t1/2ξ +o(t1/2). Then according to the
discussion preceding Theorem 4, ξ ∈ T (σ̄ , x̄; d). Moreover, according to Proposition 2,

f (σ̄ + td, x̄ + t1/2ξ + o(t1/2)) ≤ ω(σ̄ + td) + o(t1/2)

≤ ω(σ̄ ) + ω1(d)t1/2 + o(t1/2).

At the same time

f (σ̄ + td, x̄ + t1/2ξ + o(t1/2)) = ω(σ̄ ) +
〈
∂f

∂x
(σ̄ , x̄), ξ

〉

t1/2 + o(t1/2),

and hence,
〈
∂f

∂x
(σ̄ , x̄), ξ

〉

≤ ω1(d),

that is, ξ is a solution of (20). ��
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The assertion of Proposition 4 is very close to that of [7, Theorem 7.6] (see also [8,
section 4.8.3]). However, the assumptions in the latter reference just cannot be satisfied
in this case; see our comments following Proposition 2.

If �(σ̄ , x̄) 
= ∅, the passage from QGC to SOSC in Theorem 10 makes it possible to
drop the strong 2-regularity condition, to sharpen the bound on solutions and establish
the unimprovable lower bound on ω.

Theorem 12. Assume that (at least) one of hypotheses (H1) or (H2) is satisfied. More-
over, assume that SOSC holds.

Then there exists a neighborhood U of x̄ such that for σ ∈ �

‖x − x̄‖ = O(‖σ − σ̄‖1/2) uniformly in x ∈ S(σ) ∩ U. (34)

In particular, if dim X < ∞ and x̄ is a unique solution of (3), then

sup
x∈S(σ)

‖x − x̄‖ = O(‖σ − σ̄‖1/2), (35)

ω(σ) = ω(σ̄ ) + O(‖σ − σ̄‖). (36)

Proof. Consider arbitrary sequences {σk} ⊂ � and {xk} ⊂ X such that {σk} → σ̄ ,
{xk} → x̄ as k → ∞, and xk ∈ S(σ k), xk 
= x̄ ∀ k. We argue by contradiction. Assume
that (29) holds. Set ξk = (xk − x̄)/‖xk − x̄‖, i.e., ‖ξk‖ = 1. Following the line of the
proof of Theorem 11, we conclude that for all k sufficiently large, ξk ∈ Tν(σ̄ , x̄), where
ν > 0 is chosen as in condition (c) of Lemma 5. Hence, there exist M > 0 and γ > 0
such that, for every sufficiently large k, there is λk ∈ �(σ̄ , x̄) satisfying ‖λk‖ ≤ M and

∂2L

∂x2 (σ̄ , x̄, λk)[ξk, ξk] ≥ γ. (37)

From Theorem 8 we obtain the estimate

O(‖σk − σ̄‖) ≥ ω(σk) − ω(σ̄ )

= f (σ k, xk) − f (σ̄ , x̄)

= f (σ k, xk) + 〈λk, F (σ k, xk)〉 − f (σ̄ , x̄) − 〈λk, F (σ̄ , x̄)〉
= L(σk, xk, λk) − L(σ̄ , x̄, λk)

= 1

2

∂2L

∂x2 (σ̄ , x̄, λk)[xk − x̄, xk − x̄]

+O(‖σk − σ̄‖) + o(‖xk − x̄‖2). (38)

By (37), it follows that for every ε > 0

O(‖σk − σ̄‖) ≥ (γ − ε)‖xk − x̄‖2

for all k large enough. But this contradicts (29), and (34) is proved.
Under the assumption that dim X < ∞ and x̄ is a unique solution of (3), estimate

(35) follows from (34) and Theorem 6. Estimate (36) is by (35) and the intermediate
relations in (38). ��
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In the normal case, Theorem 10 reduces to Theorem 12, and both correspond to
[7, Proposition 6.4].

The following directional version of Theorem 12 holds:

Proposition 5. For a given d ∈ �, assume that there exists ξ ∈ T (σ̄ , x̄; d) such that
F is 2-regular in x at (σ̄ , x̄) with respect to ξ . Moreover, assume that SOSC holds.

Then there exists a neighborhood U of x̄ such that for t ≥ 0

‖x − x̄‖ = O(t1/2) uniformly in x ∈ S(σ̄ + td) ∩ U.

In particular, if dim X < ∞ and x̄ is a unique solution of (3), then (30) holds.

The proof follows the line of the proof of Theorem 12. The difference is that we
should refer to Proposition 1 instead of Theorem 6, and to Proposition 3 instead of
Theorem 8.

Finally, the following quantitative result takes place.

Proposition 6. For a given d ∈ �, assume that there exists ξ ∈ T (σ̄ , x̄; d) such that
F is 2-regular in x at (σ̄ , x̄) with respect to ξ . Moreover, assume that SOSC holds,
dim X < ∞, and x̄ is a unique solution of (3).

Then for t ≥ 0

ω(σ̄ + td) ≥ ω(σ̄ ) + ω2(d)t + o(t). (39)

Moreover, if ξ̄ ∈ X is a solution of (22), and there exists ξ ∈ T (σ̄ , x̄; d) arbitrary close
to ξ̄ and such that F is 2-regular in x at (σ̄ , x̄) with respect to ξ , then, for σ = σ̄ + td ,
(4) has an o(t)-solution of the form x̄ + t1/2ξ̄ + o(t1/2).

In addition, suppose that the set of ξ ∈ T (σ̄ , x̄; d) such that F is 2-regular in x at
(σ̄ , x̄) with respect to ξ is dense in T (σ̄ , x̄; d). Then

ω(σ̄ + td) = ω(σ̄ ) + ω2(d)t + o(t), (40)

and the solution set of (22) coincides with the set consisting of ξ ∈ X such that (4) with
σ = σ̄ + td has an o(t)-solution of the form x̄ + t1/2ξ + o(t1/2).

Proof. Consider an arbitrary sequence {tk} of positive real numbers such that {tk} → 0
as k → ∞, and an arbitrary sequence {xk} ⊂ X such that xk ∈ S(σ̄ + tkd) ∀ k. For
every k set ξk = (xk − x̄)/t

1/2
k . In the proof of Proposition 4 it was derived from (30)

that every limit point of the sequence {ξk} belongs to T (σ̄ , x̄; d). Furthermore, for an
arbitrary fixed λ ∈ �(σ̄ , x̄)

ω(σ̄ + tkd) − ω(σ̄ ) = f (σ̄ + tkd, xk) − f (σ̄ , x̄)

= f (σ̄ + tkd, xk) + 〈λ, F (σ̄ + tkd, xk)〉
−f (σ̄ , x̄) − 〈λ, F (σ̄ , x̄)〉

= L(σ̄ + tkd, xk, λ) − L(σ̄ , x̄, λ)

=
(〈

∂L

∂σ
(σ̄ , x̄, λ), d

〉

+ 1

2

∂2L

∂x2 (σ̄ , x̄, λ)[ξk, ξk]

)

tk

+o(tk),



Abnormal equality-constrained optimization problems: sensitivity theory 25

hence

lim inf
k→∞

(ω(σ̄ + tkd) − ω(σ̄ ))/tk ≥ ω2(d).

This proves (39).
The rest of the proof follows the line of the proof of Proposition 4. The difference

is that instead of Proposition 2 and (31), one should refer to Proposition 3 and (39),
respectively. ��

Hypotheses (H1) or (H2) combined with SOSC imply that ∀ d ∈ � (22) has a
solution, and in particular, −∞ < ω2(d) < +∞. The estimate (40) means that ω is
directionally differentiable at σ̄ with respect to a direction d, and ω′(σ̄ ; d) = ω2(d).

The estimates in Theorem 12 and Proposition 5 cannot be sharpened (Example 5,
which also illustrates the equality (40) in Proposition 6). Moreover, SOSC cannot be
dropped in these results (Examples 6, 7).

In the normal case, Proposition 6 formally corresponds to [7, Theorem 7.4] (see also
[8, section 4.8.2]). Note, however, that according to our discussion above, in the normal
case equality (40) reduces to (11).

5. Examples

In this section, we illustrate the results obtained above by some finite-dimensional exam-
ples. Set � = Rs , X = Rn, and Y = Rl , where the dimensions s, n, and l, will be
specified for each example below.

Example 2. Let s = 1, n = 3, l = 2, f (σ, x) = x1, F1(σ, x) = x2
1 + x2

2 − x2
3 ,

F2(σ, x) = x1x3 − σ , σ̄ = 0, x̄ = 0. The mapping F is 2-regular in x at (σ̄ , x̄) with
respect to every direction in T (σ̄ , x̄; d) ∀ d ∈ �, d 
= 0.

The first adjoint problem (20) coincides with the original problem when d = σ , and,
for example, d > 0 implies ω1(d) = −d1/2, ω(σ̄ + td) = −d1/2t1/2 ∀ t ≥ 0 for any
choice of B. (Recall that ω1(d) is defined in (21).)

Example 2 illustrates that the last estimate in Proposition 2 cannot be sharpened.

Example 3. Let s = 1, n = 4, l = 3, f (σ, x) = x1, F1(σ, x) = x2
1 + x2

2 − x2
3 ,

F2(σ, x) = x1(x1 − x3 − x3
3), F3(σ, x) = x3x4 − σ , σ̄ = 0, x̄ = 0. The mapping F is

2-regular in x at (σ̄ , x̄), for instance, with respect to h = (0, 1, 1, 0) ∈ T (σ̄ , x̄).
At the same time, ω1(d) = −∞ ∀ d ∈ �, d 
= 0, but ω(σ) = 0 ∀ σ ∈ � for any

choice of B.

Example 3 demonstrates that hypothesis (H1) does not guarantee the last estimate
in Proposition 2.

Example 4. Let s = 1, n = 3, l = 2, f (σ, x) = x1 +x2
2 , F1(σ, x) = x2

1 +x2
2 −x2

3 −σ ,
F2(σ, x) = x1(x1 −x3 −x

p
3 ), p ≥ 3 is an odd integer, σ̄ = 0, x̄ = 0. Here D(σ̄ ) = {x ∈

X | x1 = 0, x2
2 = x2

3 }, and it is easy to see that the mapping F is 2-regular in x at (σ̄ , x̄)

with respect to some h ∈ T (σ̄ , x̄), and QGC holds. At the same time, 2-regularity of F

in x at (σ̄ , x̄) is violated, for example, with respect to h = (1, 0, 1) ∈ T (σ̄ , x̄).
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It can be shown that for any choice of B and any σ > 0 small enough the set S(σ)

is a singleton {(x1, 0, x3)}, where

x1 = −(σ/2)1/(p+1) + o((σ/2)1/(p+1)), x3 = −(σ/2)1/(p+1) + o((σ/2)1/(p+1)),

ω(σ ) = −(σ/2)1/(p+1) + o((σ/2)1/(p+1)).

Example 4 illustrates that QGC does not necessarily imply WSOSC, and that 2-reg-
ularity condition cannot be omitted in Theorem 10. Moreover, Examples 2–4 show that
hypothesis (H1) does not imply that �(σ̄ , x̄) 
= ∅.

Example 5. Let s = 1, n = 2, l = 1, α be a fixed real, f (σ, x) = (x2
1 +2αx1x2 +x2

2 )/2,
F(σ, x) = x1x2 − σ , σ̄ = 0, x̄ = 0. All the assumptions of Theorem 12 are satisfied
here, and moreover, F is 2-regular in x at (σ̄ , x̄) with respect to every direction ξ ∈ X

such that ξ 
= 0, and hence, with respect to every direction in T (σ̄ , x̄; d) ∀ d ∈ �,
d 
= 0.

It is easy to see that for any choice of B and any σ ∈ � close enough to zero, for
every point x ∈ S(σ) it holds that

|x1| = |x2| = |σ |1/2.

The second adjoint problem (22) coincides with the original problem when d = σ , and
ω(σ̄ + td) = ω2(td) = ω2(d)t ∀ d ∈ �, ∀ t ≥ 0. (Recall that ω2(d) is defined in (23).)
Moreover, if |α| 
= 0 and d 
= 0, then ω2(d) 
= 0. Note that if |α| > 1, then ω2(d) can
take both positive and negative values, depending on the signs of α and d. Hence, ω(σ)

can grow, as well as decrease, under the perturbations of σ ∈ �.

Example 5 demonstrates that estimate (24) in Proposition 3, as well as the estimates
in Theorem 12 and Proposition 5 cannot be sharpened.

Example 6. Let s = l = 1, n = 2, f (σ, x) = |x1|p/p + |x2|q/q, p, q ≥ 2 be fixed
integers, constraints be the same as in Example 5, σ̄ = 0, x̄ = 0. All the assumptions of
Theorem 12 are satisfied here, except SOSC, which is violated when max{p, q} > 2.

It is easy to see that for any choice of B, any σ ∈ � and any x ∈ S(σ) sufficiently
close to zero it holds that

|x1| = |σ |q/(p+q), |x2| = |σ |p/(p+q), ω(σ ) = (1/p + 1/q)|σ |pq/(p+q).

In particular, if p > 2, q = 2, then estimate (35) does not hold. At the same time,
estimate (36) holds for every p, q ≥ 2.

Example 7. Let s = 1, n = 3, l = 2, f (σ, x) = −αx2
1 + x2

2 + x2
3 , α > 1 be a fixed

real, constraints be the same as in Example 4, σ̄ = 0, x̄ = 0.
All the assumptions of Theorem 12 are satisfied here, except SOSC. It can be shown

that for any choice of B both estimates (35) and (36) fail to hold here.

Examples 6, 7 demonstrate that QGC cannot be omitted in Theorem 10, and SOSC
cannot be omitted in Theorem 12 and Proposition 5.
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6. The chain problem

Consider the so-called chain problem (for the discussion of the underlying problem in
statics see [7, section 2]). Let s = 2, n = 2m, l = m+2, m ≥ 2, and for (σ, x) ∈ �×X

f (σ, x) = 1

2

m∑

i=1




i∑

j=1

vj +
i−1∑

j=1

vj



 =
m∑

i=1

αivi,

where αi = m − i + 1/2, i = 1, . . . , m;

F(σ, x) = (f1(x), . . . , fm(x), g1(σ1, u), g2(σ2, v)),

fi(x) = u2
i + v2

i − 1, i = 1, . . . , m,

g1(σ1, u) =
m∑

i=1

ui − σ1, g2(σ2, v) =
m∑

i=1

vi − σ2.

Here x = (u, v), u, v ∈ Rm (it is convenient to consider X as Rm × Rm).
For σ̄ 1 = (m, 0), we have D(σ̄ 1) = {x̄1}, where x̄1 = ((1, . . . , 1), 0) corre-

sponds to the horizontal position of the chain. Another important parameter value is
σ̄ 2 = (0, m). With this value, D(σ̄ 2) = {x̄2}, where x̄2 = (0, (1, . . . , 1)) corresponds
to the vertical position of the chain.

Define the Lagrangian function

L(σ, x, λ, µ1, µ2) =
m∑

i=1

αivi +
m∑

i=1

λi(u
2
i + v2

i − 1) + µ1

(
m∑

i=1

ui − σ1

)

+µ2

(
m∑

i=1

vi − σ2

)

, λ ∈ Rm, µ1, µ2 ∈ R.

For the horizontal position, by direct computations we obtain:

�(σ̄ 1, x̄1) =




(λ, µ1, µ2) ∈ Rm × R × R

∣
∣
∣
∣
∣
∣

2λi + µ1 = 0,

αi + µ2 = 0,

i = 1, . . . , m





= ∅,

ker
∂F

∂x
(σ̄ 1, x̄1) =

{

ξ = (0, ν) ∈ Rm × Rm

∣
∣
∣
∣
∣

m∑

i=1

νi = 0

}

,

rank
∂F

∂x
(σ̄ 1, x̄1) = l − 1,

im
∂F

∂x
(σ̄ 1, x̄1) =

{

y = (η, ζ1, ζ2) ∈ Rm × R × R

∣
∣
∣
∣
∣

1

2

m∑

i=1

ηi = ζ1

}

,
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(

im
∂F

∂x
(σ̄ 1, x̄1)

)⊥
=
{

y = (η, ζ1, 0) ∈ Rm × R × R

∣
∣
∣
∣

2ηi + ζ1 = 0,

i = 1, . . . , m

}

,

Py = (m/4 + 1)−1(p/2, . . . , p/2, −p, 0),

p = p(η, ζ1) = 1

2

m∑

i=1

ηi − ζ1, y = (η, ζ1, ζ2) ∈ Rm × R × R.

Furthermore, for an arbitrary d ∈ �

T (σ̄ 1, x̄1; d) =
{

ξ = (0, ν) ∈ Rm × Rm

∣
∣
∣
∣
∣

m∑

i=1

νi = 0, d1 + 1

2

m∑

i=1

ν2
i = 0

}

,

and in particular T (σ̄ 1, x̄1) = T (σ̄ 1, x̄1; 0) = {0}. Moreover, 2-regularity of F in
x at (σ̄ 1, x̄1) with respect to ξ ∈ Rm × Rm consists of saying that the linear map
x → P ∂2F

∂x2 (σ̄ 1, x̄1)[ξ, x] : ker ∂F
∂x

(σ̄ 1, x̄1) → (im ∂F
∂x

(σ̄ 1, x̄1))⊥ is onto. For ξ =
(0, ν), the latter reduces to the following condition: there exists v ∈ Rm such that∑m

i=1 vi = 0, but
∑m

i=1 νivi 
= 0, which is always satisfied with e.g. v = ν provided
d1 < 0 and ξ ∈ T (σ̄ 1, x̄1; d). Summarizing, we have:

– If d1 < 0, then T (σ̄ 1, x̄1; d) 
= ∅, and F is 2-regular in x at (σ̄ 1, x̄1) with respect
to every ξ ∈ T (σ̄ 1, x̄1; d).

– If d1 ≥ 0, d 
= 0, then T (σ̄ 1, x̄1; d) = ∅.

Take d1 = −1. The first adjoint problem (20) takes the form

minimize
∑m

i=1 αiνi

subject to ξ = (0, ν) ∈ Rm × Rm :
∑m

i=1 νi = 0, 1
2

∑m
i=1 ν2

i = 1.

It can be easily seen that this problem has a unique solution ξ̄ = (0, ν̄) ∈ Rm × Rm,
and ω1(d) < 0. According to Proposition 4, for t ≥ 0

ω(σ̄ 1 + td) = ω(σ̄ 1) + ω1(d)t1/2 + o(t1/2),

and, for σ = σ̄ 1 + td, (4) has an o(t1/2)-solution of the form x̄ + t1/2ξ + o(t1/2) if and
only if ξ = ξ̄ .

Next, we consider the vertical position of the chain:

�(σ̄ 2, x̄2) =




(λ, µ1, µ2) ∈ Rm × R × R

∣
∣
∣
∣
∣
∣

µ1 = 0,

αi + 2λi + µ2 = 0,

i = 1, . . . , m






= ∅,

ker
∂F

∂x
(σ̄ 2, x̄2) =

{

ξ = (ν, 0) ∈ Rm × Rm

∣
∣
∣
∣
∣

m∑

i=1

νi = 0

}

,

rank
∂F

∂x
(σ̄ 2, x̄2) = l − 1,
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im
∂F

∂x
(σ̄ 2, x̄2) =

{

y = (η, ζ1, ζ2) ∈ Rm × R × R

∣
∣
∣
∣
∣

1

2

m∑

i=1

ηi = ζ2

}

,

(

im
∂F

∂x
(σ̄ 2, x̄2)

)⊥
=
{

y = (η, 0, ζ2) ∈ Rm × R × R

∣
∣
∣
∣

2ηi + ζ2 = 0,

i = 1, . . . , m

}

,

Py = (m/4 + 1)−1(p/2, . . . , p/2, 0, −p),

p = p(η, ζ2) = 1

2

m∑

i=1

ηi − ζ2, y = (η, ζ1, ζ2) ∈ Rm × R × R.

For an arbitrary d ∈ �

T (σ̄ 2, x̄2; d) =
{

ξ = (ν, 0) ∈ Rm × Rm

∣
∣
∣
∣
∣

m∑

i=1

νi = 0, d2 + 1

2

m∑

i=1

ν2
i = 0

}

,

and in particular T (σ̄ 2, x̄2) = T (σ̄ 2, x̄2; 0) = {0}. It can be seen that:

– If d2 < 0, then T (σ̄ 2, x̄2; d) 
= ∅, and F is 2-regular in x at (σ̄ 2, x̄2) with respect
to every ξ ∈ T (σ̄ 2, x̄2; d).

– If d2 ≥ 0, d 
= 0, then T (σ̄ 2, x̄2; d) = ∅.

Take d2 = −1. After some manipulations, we come to the following form of the
second adjoint problem (22):

minimize − 1
2

∑m
i=1 αiν

2
i

subject to ξ = (ν, 0) ∈ Rm × Rm :
∑m

i=1 νi = 0, 1
2

∑m
i=1 ν2

i = 1.

It can be shown that this problem has two symmetric solutions ±ξ̄ , ξ̄ = (ν̄, 0) ∈
Rm × Rm, and ω2(d) < 0. According to Proposition 6, for t ≥ 0

ω(σ̄ 2 + td) = ω(σ̄ 2) + ω2(d)t + o(t),

and, for σ = σ̄ 2 + td , (4) has an o(t)-solution of the form x̄ + t1/2ξ + o(t1/2) if and
only if ξ = ±ξ̄ .

Our conclusions about the sensitivity properties of the chain problem are the same
as in [7]. The advantage is that our approach makes it possible to treat this problem
directly, without any preliminary transformation of constraints.
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7. Concluding remarks

We presented the local sensitivity theory for abnormal equality-constrained optimiza-
tion problems. In this section, we complete our discussion with some comments on the
results obtained above.

The question is open if it is possible to obtain a quantitative directional lower bound
on ω without QGC or stronger conditions. It is known that in the normal case, the answer
is positive [14]. Closely related is the problem of stability of Lagrange multipliers in
abnormal problems.

Very promising (though not obvious) is the possibility to extend the results on lower
bounds and solution estimates to the case when �(σ̄ , x̄) = ∅ using second-order suffi-
cient conditions based on 2-regularity theory [13], [3].

The assumption that F is three times differentiable in x at (σ̄ , x̄) is essential in
Theorems 4, 7 and Proposition 2 only. In the rest of the paper, it suffices to assume
that F is twice continuously differentiable in x near (σ̄ , x̄). Moreover, in some of the
results above, smoothness assumptions can be further relaxed. In particular, in the case
of finite-dimensional Y , it would be enough to assume that f and F are smooth with
respect to the so-called finite topology in X, and the second-order sufficient conditions
can also be relaxed accordingly (see [3, pp. 13–15]).
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