

Journal of Alloys and Compounds 383 (2004) 239-241

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Crystal structure of the new ternary silicide CePt₃Si

A.I. Tursina^{a,*}, A.V. Gribanov^a, H. Noel^b, P. Rogl^c, Y.D. Seropegin^a, O.I. Bodak^d

^a Department of Chemistry, Moscow State University, Leninskie Gory, 119992 GSP-2 Moscow, Russia

^b Laboratoire de Chimie du Solide et Inorganique Moléculaire, Université de Rennes I, U.M.R.-C.N.R.S. 6511,

^c Institut für Physikalische Chemie der Universität Wien, Währingerstraße 42, A-1090 Wien, Austria

^d Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, UA-79005 Lviv, Ukraine

Abstract

The crystal structure of the new ternary silicide CePt₃Si [space group *P4mm*, a = 4.072(1)Å, c = 5.442(2)Å, Z = 1, V = 90.25(5)Å³, R = 0.0437 for 153 structure factors] was determined from single-crystal X-ray diffraction. The compound belongs to the CePt₃B structure type of intermetallic compounds.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Cerium platinum silicide; Crystal structure; CePt₃Si

1. Introduction

In the system Ce–Pt–Si four ternary compounds with different structure types are found: CePtSi₂ (CeNiSi₂ structure type, space group *Cmcm*) [1], CePt₂Si₂ (CaBe₂Ge₂ structure type, *P*4/*nmm*) [2], CePtSi (LaPtSi structure type, *I*4₁*md*) [3], and Ce₃Pt₂₃Si₁₁ (Ce₃Pt₂₃Si₁₁ structure type, *Fm*-3*m*) [4]. During our investigation of this phase diagram the existence of a new silicide has been established.

2. Experimental details

A ternary sample of the composition Ce:Pt:Si = 20:60:20 was synthesized by arc-melting of the constituent high purity elements under an argon atmosphere on a water-cooled copper hearth. The weight loss during arc-melting was less than 1%. The sample was wrapped in nickel foil, sealed in a double quartz ampoule, and annealed at 870 K for 30 days and then quenched in cold water to room temperature.

The sample was then examined by differential thermal analysis on a VDTA-8M2 device in an Al_2O_3 crucible with a W/(W80%–Re20%) thermocouple with heating and cooling rates of 2.5 °C/min and characterized by X-ray pow-

* Corresponding author.

0925-8388/\$ – see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2004.04.069

der diffraction using a Guinier–Huber diffractometer with monochromatic Cu K α_1 radiation.

A single crystal with the dimensions $0.06 \text{ mm} \times 0.06 \text{ mm} \times 0.06 \text{ mm} \times 0.06 \text{ mm}$ suitable for the X-ray measurements was isolated from the surface of the alloy. X-ray data were collected on a Nonius Kappa CCD diffractometer with monochromatized Mo K α radiation. The structure was solved in space group *P4mm* and refined by a full-matrix least-squares program [5]. No absorption correction was applied. Further details are listed in Table 1.

3. Results and discussion

Differential thermal analysis indicated only one thermal effect at $T = 1390 \pm 10$ °C, which corresponds to the final melting. X-ray powder diffraction data clearly showed that the sample contained the compound CePt₃Si as a single phase. The ternary compound CePt₃Si crystallizes with CePt₃B structure type (space group *P4mm*, *a* = 4.00433 Å, c = 5.07547 Å) [6]. Refined atomic coordinates, anisotropic displacement parameters, and interatomic distances for the structure are presented in Tables 2–4.

The crystal structure of CePt₃Si compound and the coordination polyhedra of the atoms are shown in Figs. 1 and 2, respectively. In the CePt₃Si structure, each cerium atom has 16 nearest neighbors—12 platinum and four silicon atoms [Pt₁₂Si₄] (Fig. 2a). Pt1 is in the center of distorted trigonal

^{263,} Avenue du Général Leclerc, F-35042 Rennes Cedex, France

E-mail address: grav@general.chem.msu.ru (A.I. Tursina).

Fig. 1. View of the structure of CePt₃Si. Large size circles indicate Ce atoms, Pt and Si atoms are marked by middle and small size circles, respectively.

Table 1 Crystallographic data and experimental conditions for the structure refinement of $CePt_3Si$

Space group	P4mm
a (Å)	4.072(1)
<i>c</i> (Å)	5.442(2)
Cell volume ($Å^3$)	90.25(5)
Ζ	1
$D_{\text{calc}} (\text{g cm}^{-3})$	13.864
Absorption coefficient (μ , mm ⁻¹)	128
Extinction coefficient	0.006(3)
Scan range (°)	$3.74 \le \theta \le 36.36$
Data collection (h, k, l)	0-6, 0-6, 0-9
Number of measured reflections	1426
Independent reflections	164
Reflections used in refinement $(F_0 > 2\sigma(F_0))$	153
Number of refined parameters	14
R(F)	0.044

prism with three additional atoms (two Pt and one Si atom), which cap the tetra-angular faces of the prism $[Ce_4Pt_4Si]$ (Fig. 2b). The Pt2 atom is coordinated by a distorted tetragonal prism of six platinum and two silicon atoms $[Pt_6Si_2]$

Fig. 2. Coordination polyhedra for Ce (a), Pt1 (b), Pt2 (c), and Si (d) atoms.

Table 2 Atomic coordinates and equivalent isotropic displacement parameters (Å^2) for CePt_3Si

Atom	x	у	z	$U_{ m eq}$
Ce	0	0	0	0.0048(5)
Pt1	1/2	1/2	0.1468(6)	0.0041(4)
Pt2	1/2	0	0.4964(6)	0.0034(4)
Si	1/2	1/2	0.735(3)	0.001(2)

Table	e 3
-------	-----

Anisotropic displacement parameters (Å²) for CePt₃Si

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	<i>U</i> ₁₂
Ce	0.0040(6)	0.0040(6)	0.0064(13)	0	0	0
Pt1	0.0045(5)	0.0045(5)	0.0032(7)	0	0	0
Pt2	0.0047(5)	0.0009(5)	0.0044(6)	0	0	0
Si	0.002(3)	0.002(3)	0.000(4)	0	0	0

Table 4

Interatomic distances (Å) in the structure of CePt₃Si

Atom1	Atom2	Distance	Atom1	Atom2	Distance
Ce	4 Pt1	2.988(1)	Pt2	2 Si	2.416(9)
	4 Si	3.219(8)		2 Pt1	2.787(2)
	4 Pt2	3.383(3)		4 Pt2	2.880(1)
	4 Pt2	3.414(3)		2 Ce	3.383(3)
Pt1	Si	2.24(2)		2 Ce	3.414(3)
	4 Pt2	2.787(2)	Si	Pt1	2.24(2)
	4 Ce	2.988(1)		4 Pt2	2.416(9)

Table 5

Unit-cell dimensions for REPt₃Si phases with CePt₃B structure type

REPt ₃ Si	a (Å)	c (Å)	V (Å ³)
LaPt ₃ Si	4.115(1)	5.438(2)	92.06(4)
NdPt ₃ Si	4.0485(9)	5.436(2)	89.10(2)
SmPt ₃ Si	4.034(3)	5.411(7)	88.06(9)

(Fig. 2c). The coordination polyhedron of Si atom is a tetragonal pyramid of five platinum atoms (Fig. 2d).

The CePt₃Si compound is the first example of a silicide of RE–T₃–Si composition (RE = rare earth, T = transition metal). Investigated earlier carbides and borides RET₃X (X = C, B) had perovskite type of structure [7] except the recently described compound CePt₃B [6].

The powder diagrams of the NdPt₃Si, LaPt₃Si, and SmPt₃Si compounds (Gunier–Huber diffractometer) could be indexed unambiguously assuming the compounds to be of the CePt₃B structure type [6]. The lattice parameters, given in Table 5, were obtained by least-squares refinement of the powder patterns with the aid of the STOE WinXPOW program [8].

Acknowledgements

This work is supported by INTAS (grant number 00234).

References

- [1] W.H. Lee, K.S. Kwan, P. Klavins, R.N. Shelton, Phys. Rev. 42B (1990) 6542.
- [2] A. Dommann, F. Hulliger, H.R. Ott, J. Less-Common Metals 110 (1985) 331.
- [3] K. Kleep, E. Parthé, Acta Crystallogr. B38 (1982) 1105.
- [4] A.I. Tursina, A.V. Gribanov, Y.D. Seropegin, K.V. Kuyukov, O.I. Bodak, J. Alloys Compd. 347 (2002) 121.
- [5] G.M. Sheldrick, SHELXS97 and SHELXL97, University of Göttingen, Göttingen, 1997.
- [6] O.L. Sologub, J.R. Hester, P.S. Salamakha, E. Leroy, C. Godart, J. Alloys Compd. 337 (2002) 10.
- [7] P. Villars, Pearson's Handbook, Desk Edition, Crystallographic Data for Intermetallic Phases, ASM International, 1997.
- [8] Stoe & Cie, STOE WinXPOW (Version 1.06), Stoe & Cie GmbH, Darmstadt, Germany, 1999.