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Abstract. We propose a new algorithm for solving smooth nonlinear equations in the case where
their solutions can be singular. Compared to other techniques for computing singular solutions, a
distinctive feature of our approach is that we do not employ second derivatives of the equation map-
ping in the algorithm and we do not assume their existence in the convergence analysis. Important
examples of once but not twice differentiable equations whose solutions are inherently singular are
smooth equation-based reformulations of the nonlinear complementarity problems. Reformulations
of complementarity problems serve both as illustration of and motivation for our approach, and one of
them we consider in detail. We show that the proposed method possesses local superlinear/quadratic
convergence under reasonable assumptions. We further demonstrate that these assumptions are in
general not weaker and not stronger than regularity conditions employed in the context of other
superlinearly convergent Newton-type algorithms for solving complementarity problems, which are
typically based on nonsmooth reformulations. Therefore our approach appears to be an interesting
complement to the existing ones.
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1. Introduction. In this paper, we are interested in solving nonlinear equations
in the case where their solutions can be singular and smoothness requirements are
weaker than those usually assumed in this context. Our development is partially
motivated by the nonlinear complementarity problem, which we consider in detail,
and for which our method takes a particularly simple and readily implementable
form.

Let F : V → Rn be a given mapping, where V is a neighborhood of a point x̄ in
Rn, with x̄ being a solution of the system of equations

F (x) = 0.(1.1)

In the following, F is assumed to be once (but not necessarily twice) differentiable on
V . In this setting, x̄ is referred to as singular solution if the linear operator F ′(x̄) is
singular, i.e.,

detF ′(x̄) = 0,

or, equivalently,

corankF ′(x̄) = dimkerF ′(x̄) > 0.
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In other cases, x̄ is referred to as a regular solution.
Singularity gives rise to numerous difficulties. It is well known that for Newton-

type methods, at best one can guarantee linear convergence rate to a singular solution
[6, 7, 9]. Moreover, it is not sufficient to choose a starting point only close enough
to a solution (usually the set of appropriate starting points does not contain a full
neighborhood of the solution, although this set is normally rather “dense” [18]). We
refer the reader to the survey [19] and references therein. Another difficulty typical
in this context is related to possible instability of a singular solution with respect
to perturbations of F [27]. Certain special approaches to overcome those difficulties
have been developed in the last two decades, but they employ second derivatives of
F . Concerning methods for computing singular solutions, we cite [8, 20, 19, 43, 14, 1]
and the more recent proposals in [26, 22, 21, 2, 27, 4] (of course, this list does not
mention all contributions in this field).

One of the motivations for our new approach to solving singular equations lies in
applications to the classical nonlinear complementarity problem (NCP) [37, 12, 13],
which is to find an x ∈ Rn such that

g(x) ≥ 0, x ≥ 0, 〈g(x), x〉 = 0,(1.2)

where g : Rn → Rn is smooth. One of the most useful approaches to numerical and
theoretical treatment of the NCP consists of reformulating it as a system of smooth
or nonsmooth equations [35, 29, 46]. One possible choice of a smooth reformulation
is given by the following function (for other choices, see section 5.1):

F : Rn → Rn, Fi(x) = 2gi(x)xi − (min{0, gi(x) + xi})2, i = 1, . . . , n.(1.3)

It is easy to check that for this mapping the solution set of the system of equations
(1.1) coincides with the solution set of the NCP (1.2) [29, 47]. If x̄ is a solution of the
NCP, by direct computations (see section 3), we obtain that

F ′
i (x̄) = 2




0 if i ∈ I0,
x̄ig

′
i(x̄) if i ∈ I1,

gi(x̄)e
i if i ∈ I2,

(1.4)

where e1, . . . , en denotes the standard basis in Rn and the index sets I0, I1, and I2
are defined by

I0 := {i = 1, . . . , n | gi(x̄) = 0, x̄i = 0},
I1 := {i = 1, . . . , n | gi(x̄) = 0, x̄i > 0},
I2 := {i = 1, . . . , n | gi(x̄) > 0, x̄i = 0}.

It is immediately clear that F ′(x̄) cannot be nonsingular, unless the index set I0 is
empty. The latter strict complementarity assumption is regarded as rather restric-
tive. Therefore, smooth NCP reformulation provided by (1.3) gives rise to inherently
singular solutions of the corresponding system of equations. In fact, it is known that
any other smooth NCP reformulation has the same singularity properties [31] (see
also section 5.1). Furthermore, it is clear that F is once differentiable with Lipschitz-
continuous derivative (if g is twice continuously differentiable), but F is not twice
differentiable when I0 
= ∅. This is also a common property shared by all useful
smooth reformulations; e.g., see the collection [16]. Thus NCP reformulations pro-
vide an interesting example of once differentiable nonlinear equations whose solutions
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are inherently singular. As discussed above, application of standard numerical tech-
niques (e.g., Newton methods) in this context is prone to difficulties (and even failure)
because of singularity. On the other hand, known special approaches to computing
singular solutions are inapplicable, since these require second derivatives of F . This is
the apparent reason why superlinearly convergent Newton-type algorithms for solving
the NCP are typically based on nonsmooth equation reformulations and nonsmooth
Newton methods (see [13] for a discussion and some references). In this paper, we
show that it is, in fact, possible to devise superlinearly convergent algorithms based
on the smooth NCP reformulations. Specifically, we propose an alternative approach
based on computing singular solutions of the smooth reformulation stated above, and
show that conditions needed for convergence of our method are principally different
from those required for convergence of known nonsmooth algorithms. Thus the two
can be considered as a complement to each other.

We complete this section with some notation, which is fairly standard. We denote
by Ln the space of linear operators from Rn to Rn. For A ∈ Ln, let kerA = {x ∈
Rn | Ax = 0} stand for its kernel (null space), and imA = {Ax | x ∈ Rn} stand for
its image (range space). For a bilinear mapping B : Rn ×Rn → Rn and an element
p ∈ Rn, we define the linear operator B[p] ∈ Ln by B[p]ξ = B[p, ξ]. Recall that
symmetric bilinear mappings and linear operators of the form p → B[p] : Rn → Ln

are in isometrically isomorphic correspondence to each other, i.e., the correspondence
is one-to-one, linear, and it preserves the norm. Therefore, in what follows we shall
not be making a formal distinction between those objects. Given a set S in a vector
space, we denote by convS its convex hull and by spanS its linear hull. Finally, by
E we denote the identity operator in Rn.

2. A general approach to solving singular equations. We start with de-
scribing an approach to computing singular solutions of twice differentiable nonlinear
equations, which was developed in [26, 22, 27]. We then extend it to the setting of
once differentiable mappings, and in the next section show how it applies to solving
complementarity problems.

A solution x̄ of (1.1) being regular is equivalent to saying that imF ′(x̄) = Rn,
while singularity means that imF ′(x̄) 
= Rn. In this situation, one possibility for
“regularizing” a singular solution x̄ is to add to the left-hand side of (1.1) another
term, which vanishes at x̄ (so that x̄ remains a solution), and such that its Jacobian
at x̄ “compensates” for the singularity of F ′(x̄) (so as to complement imF ′(x̄) in Rn).
It is natural to base this extra term on the information about the first derivative of
F .

To this end, define the mappings P : V → Ln, h : V → Rn, and

Φ : V → Rn, Φ(x) = F (x) + P (x)F ′(x)h(x),(2.1)

and consider the equation

Φ(x) = 0.(2.2)

Suppose that P (·) is defined in such a way that for P̄ = P (x̄) it holds that

imF ′(x̄) ⊂ ker P̄ .(2.3)

Then, by the structure of Φ, solution x̄ of (1.1) is also a solution for (2.2). Fur-
thermore, if F is sufficiently smooth (at least twice differentiable at x̄), then under
appropriate assumptions on the first two derivatives of F at x̄, and on P (·) and h(·),
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it is possible to ensure that Φ is differentiable at x̄, and x̄ is a regular solution of (2.2).
As these assumptions will not be used in this paper, we omit the details, referring the
reader to [26, 27]. The regular solution x̄ of (2.2) can be computed by means of effec-
tive special methods [26, 22, 27], or by conventional numerical techniques (the latter
would typically require stronger assumptions, in order to ensure differentiability of Φ
not only at x̄ but also in its neighborhood). There exist certain general techniques
to define P (·) and h(·) with necessary properties (see [26, 27]). However, when one
has additional information about the structure of singularity of F at x̄ (e.g., recall
(1.4) for the NCP reformulation), it can often be used to choose P (·) and h(·) in a
particularly simple and constructive way. One such application is precisely the NCP,
where the subspace imF ′(x̄) can be identified (locally, but without knowing x̄), and
so the two mappings can be chosen constant (see section 3).

In this paper, we shall focus exclusively on the case where it is possible to choose
P (·) ≡ P̄ on V , with some P̄ ∈ Ln satisfying (2.3). We emphasize that, of course,
P̄ should be determined without knowing the exact solution x̄. The simplest case
when this is possible is when we know that corankF ′(x̄) = n (i.e., F ′(x̄) = 0), or
when we are interested in determining a solution specifically with this particular type
of singularity. In that case, it is natural to take P̄ = E. In section 3, we show how
an appropriate P̄ for the NCP reformulation can be determined using information
available at any point close enough to a solution (but without knowing the solution
itself). In general, if P (·) is defined as a constant P̄ satisfying (2.3), one can also
usually take h(·) ≡ p, with p ∈ Rn \ {0} being an arbitrary element. Indeed, with
those choices the function defined by (2.1) takes the form

Φ(x) = Φp(x) := F (x) + P̄F ′(x)p, x ∈ V,(2.4)

and x̄ is still a solution of (2.2), due to (2.3). If F is twice differentiable at x̄, then it
is clear that Φ is differentiable at this point, and

Φ′(x̄) = F ′(x̄) + P̄F ′′(x̄)[p].(2.5)

Therefore, x̄ is a regular solution of (2.2) if the linear operator in the right-hand side
of (2.5) is nonsingular. This is possible under appropriate assumptions. Since the
case of twice differentiable F is not the subject of this paper, we shall not discuss
technical details. We only note that nonsingularity of (2.5) subsumes the condition

imF ′(x̄) + im P̄ = Rn.

Observe that the latter relation implies that (2.3) must hold as equality. Summarizing,
we obtain the following assumptions on the choice of P̄ :

ker P̄ = imF ′(x̄), Rn = imF ′(x̄)⊕ im P̄ .(2.6)

These assumptions clearly hold if, for example, P̄ is the projector onto some comple-
ment of imF ′(x̄) in Rn parallel to imF ′(x̄). With this choice, nonsingularity of (2.5)
formally coincides with the notion of 2-regularity of Φ at x̄ with respect to p ∈ Rn,
in the sense of [23, 3, 27]. We note, however, that this connection does not seem
conceptually important, and in fact, appears to be in some sense a coincidence. In-
deed, in the case of once differentiable mappings considered below, the nonsingularity
condition that would be required no longer has any direct relation to 2-regularity for
mappings with Lipschitzian derivatives, as defined in [24, 25].
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As a final note, we remark that it can be shown (by a simple argument; see
[26, 27]) that if there exists at least one element p ∈ Rn such that the operator (2.5)
is nonsingular, then it will be so for almost every p ∈ Rn.

We conclude the discussion of the twice differentiable case by the following ex-
ample, which is very simple but serves to illustrate the basic idea.

Example 2.1. Let n = 1 and F : V → R be twice continuously differentiable on
V , where V is a neighborhood of x̄ ∈ R which is a singular solution of (1.1). The
latter means here that F (x̄) = F ′(x̄) = 0. Taking P̄ = E and any p ∈ R \ {0}, we
obtain the following regularized equation: Φ(x) = F (x) + F ′(x)p = 0. Obviously,
Φ(x̄) = 0 and Φ′(x̄) = F ′′(x̄)p, which is distinct from zero for any p ∈ R \ {0},
provided F ′′(x̄) 
= 0. This shows that in this example, if F ′′(x̄) 
= 0, singularity can
be easily dealt with by using the second-order information.

In the approach outlined above, F is assumed to be twice differentiable. Suppose
now that F is once (but not twice) differentiable, and its first derivative is Lipschitz-
continuous on V . Then Φ defined by (2.4) is also Lipschitz-continuous on V , and it
is natural to try to apply to the corresponding equation (2.2) the generalized (non-
smooth) Newton method [32, 33, 41, 42, 40, 28]. We emphasize that we shall use
the nonsmooth Newton method to solve a (nonsmooth) regularization of a smooth
equation. In the context of NCP, this should be compared to the more traditional
approach of solving an inherently nonsmooth reformulation by the nonsmooth New-
ton method. As we shall show in section 4, the two different approaches lead to two
different regularity conditions, neither of which is weaker or stronger than the other.

Let ∂Φ(x) denote the Clarke’s generalized Jacobian [5] of Φ at x ∈ V . That is,

∂Φ(x) = conv ∂BΦ(x),

where ∂BΦ(x) stands for the B-subdifferential [45] of Φ at x, which is the set

∂BΦ(x) = {H ∈ Ln | ∃{xk} ⊂ DΦ : xk → x and Φ′(xk) → H},
with DΦ ⊂ V being the set of points at which Φ is differentiable. With this notation,
the nonsmooth Newton method is the following iterative procedure:

xk+1 = xk − (H(xk))−1Φ(xk), H(xk) ∈ ∂Φ(xk), k = 0, 1, . . . .(2.7)

It is well known [42, 40, 28] that if
(i) Φ is semismooth [36] at x̄, and
(ii) all the linear operators comprising ∂Φ(x̄) are nonsingular,

then the process (2.7) is locally well defined and superlinearly convergent to x̄. More-
over, if Φ is strongly semismooth [36], then the rate of convergence is quadratic.
The regularity condition (ii) can be relaxed if a more specific rule of determining
H(xk) ∈ ∂Φ(xk) is employed. For example, if one chooses H(xk) ∈ ∂BΦ(xk), then it
is enough to assume BD-regularity, i.e., that all elements in ∂BΦ(x̄) are nonsingular
[41].

In applications, Φ usually has some special (tractable) structure, and at each
iterate xk we are interested in obtaining just one, preferably easily computable,
H(xk) ∈ ∂Φ(xk). This would be precisely the case here. The choice of an element
in ∂Φ(x) that we suggest to use in the nonsmooth Newton method for solving (2.2),
with Φ given by (2.4), is the following:

H(x) = Hp(x) := F ′(x) + (P̄F ′)′(x; p), x ∈ V,(2.8)



ALGORITHMS FOR SINGULAR EQUATIONS AND COMPLEMENTARITY 391

where (P̄F ′)′(x; p) denotes the usual directional derivative of the mapping P̄F ′(·)
at x ∈ V with respect to a direction p ∈ Rn. In section 3, we show that this
H(x) is explicitly and easily computable for the NCP reformulations. The validity
of the choice suggested in (2.8) for an element of ∂Φ(x) is actually not so obvious.
The possibility of choosing the directional derivative (P̄F ′)′(x; p) as an element in the
generalized Jacobian of P̄F ′(x)p is based on the following fact. At a point x ∈ V where
P̄F ′(·) is differentiable, its derivative is in fact the second derivative of P̄F (·). Due to
this, (P̄F ′)′(x) can be considered as a symmetric bilinear mapping. This symmetry
will be essential in the proof of Lemma 2.1 below. For a mapping x→ Q(x)p, where
p ∈ Rn and x→ Q(x) : Rn → Ln is an arbitrary Lipschitzian mapping, the inclusion
Q′(x; p) ∈ ∂(Q(x)p) can be in general invalid.

Lemma 2.1. Suppose that F : V → Rn has a Lipschitzian derivative on V , where
V is an open set in Rn. Assume that for some P̄ ∈ Ln the mapping P̄F ′ : V → Ln

is directionally differentiable at a point x ∈ V with respect to a direction p ∈ Rn.
Then H(x) ∈ ∂Φ(x), where H and Φ are defined in (2.8) and (2.4), respectively.
Proof. Since P̄F ′(·) is clearly Lipschitz-continuous, using further the assumption

that P̄F ′ is directionally differentiable at x with respect to p, it follows that there
exists a linear operator B ∈ ∂(P̄F ′)(x) (B : Rn → Ln) such that

(P̄F ′)′(x; p) = Bp.(2.9)

The above conclusion can be deduced from [42, Lemma 2.2(ii)] after identifying the
space Ln with the equivalent space Rm, m = n2, and using the equivalence of the
norms in finite-dimensional spaces.

By the definition of the generalized Jacobian, B ∈ ∂(P̄F ′)(x) means that there
exist an integer m, sequences {xi,k} ⊂ V , and numbers λi, i = 1, . . . ,m, with the
following properties: λi ≥ 0 ,

∑m
i=1 λi = 1, P̄F ′(·) is differentiable at each xi,k, and

x = lim
k→∞

xi,k, B =

m∑
i=1

λi lim
k→∞

(P̄F ′)′(xi,k),(2.10)

where the limits in the right-hand side of the second equality exist for each i =
1, . . . ,m.

Note that differentiability of P̄F ′(·) at each xi,k means that the mapping P̄F :
V → Rn is twice differentiable at these points. Taking into account the symmetry of
the bilinear mapping representing the second derivative, we conclude that

Φ′(xi,k) = F ′(xi,k) + (P̄F ′)′(xi,k)p.

Therefore,

m∑
i=1

λi lim
k→∞

Φ′(xi,k) = F ′(x) +

m∑
i=1

λi lim
k→∞

(P̄F ′)′(xi,k)p

= F ′(x) +Bp

= F ′(x) + (P̄F ′)′(x; p)
= H(x),

where the second equality follows from (2.10), and the third from (2.9). Using the
definition of the generalized Jacobian, we conclude that H(x) ∈ ∂Φ(x).
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Remark 2.1. There exists another way to construct the regularized equation
Φ(x) = 0, which can have advantages in certain situations over the one described
above. Specifically, the mapping Φ defined by (2.4) can be modified as follows:

Φ(x) := (E − P̄ )F (x) + P̄F ′(x)p, x ∈ V.(2.11)

It is clear that, with this definition, x̄ is still a solution of Φ(x) = 0. Modifying H
accordingly, we have

H(x) := (E − P̄ )F ′(x) + (P̄F ′)′(x; p), x ∈ V.(2.12)

Furthermore, it is clear that Lemma 2.1 is still valid with Φ and H defined by (2.11)
and (2.12). Finally, it is easy to see that since P̄F ′(x̄) = 0, the possible limits of H(x)
as x→ x̄ are the same, whether H is defined by (2.8) or (2.12). Hence, the regularity
condition at x̄ that would be needed for the superlinear convergence of our method
is again the same, whether the method is applied to one regularized equation or the
other.

The possible advantage of the modified equation is the following. If the singularity
of F ′(x̄) has a certain structure, then not all the components of F may need to be
computed in (2.11). Furthermore, (2.12) can also take a simpler form in that case.
For example, suppose that F ′(x̄) is such that P̄ satisfying (2.3) can be chosen as
the orthogonal projector onto the subspace span {ei , i ∈ I}, where e1, . . . , en is the
standard basis in Rn and I ⊂ {1, . . . , n}. Then E − P̄ is the orthogonal projector
onto span {ei , i ∈ {1, . . . , n} \ I}. It is easy to see that, in this case, (2.11) would not
require computing the function values Fi(x), i ∈ I. Furthermore, the derivatives of
Fi, i ∈ I, would not appear in (2.12), and so this part would also be simplified. This
feature would be further illustrated in the context of NCP in section 3.

Next, we shall also consider the following modification of the Newton algorithm
(2.7), which will be useful for solving the NCP reformulation in section 3:

xk+1 = xk − (H̃(xk))−1Φ(xk), ‖H̃(xk)−H(xk)‖ = O(‖xk − x̄‖), H(xk) ∈ ∂Φ(xk),

k = 0, 1, . . . .

(2.13)

This modification is essentially motivated by the idea of “truncating” elements of the
(generalized) Jacobian by omitting the terms which vanish at the solution x̄. These
terms typically involve some higher-order derivatives of the problem data (in the
context of NCP (1.2), the second derivatives of g), and so it can be advantageous not
to compute them, if possible.

Note that the regularity condition which is typically employed in nonsmooth
Newton methods consists of saying that every element in the generalized Jacobian
∂Φ(x̄) (or the B-subdifferential ∂BΦ(x̄)) is nonsingular (recall condition (ii) stated
above). This seems to be unnecessarily restrictive, because in most implementable
algorithms some specific rule to choose H(xk) ∈ ∂Φ(xk) is used. We shall therefore
replace the traditional condition by a weaker one. Specifically, we shall assume that
all the possible limits of H(xk) as xk → x̄ are nonsingular, where H(xk) is precisely
the element given by (2.8) (or by (2.12)). To this end, we shall define the set

∆Φp(x̄) := {H̄ ∈ Ln | ∃{xk} ⊂ V : xk → x̄, Hp(x
k) → H̄}.

Our regularity assumption would be that elements in ∆Φp(x̄) are nonsingular. We
remind the reader that this set is the same for both choices of H, i.e., (2.8) and
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(2.12). We point out that, unlike in the twice differentiable case, this regularity
condition cannot be related to the notion of 2-regularity [24, 25] of Φ at x̄.

With Lemma 2.1 in hand, convergence of algorithms (2.7) and (2.13), with the
data defined in (2.4) and (2.8) or (2.11) and (2.12), can be established similarly to
[41], but taking into account the modified nonsingularity assumption.

Theorem 2.2. Suppose F : V → Rn has a Lipschitz-continuous derivative on
V , where V is a neighborhood of a solution x̄ of (1.1). Let P̄ ∈ Ln satisfy (2.3).
Assume further that the mapping P̄F ′ : V → Ln is directionally differentiable with
respect to a direction p ∈ Rn at any point in V , and the mapping P̄F ′(·)p : V → Rn

is semismooth at x̄. Let Φ and H be defined by (2.4) and (2.8), or (2.11) and (2.12).
Assume further that all linear operators comprising ∆Φp(x̄) are nonsingular.

Then the iterates given by (2.7) or (2.13) are locally well defined and converge
to x̄ superlinearly. If, in addition, the mapping P̄F ′(·)p is strongly semismooth at x̄,
then the rate of convergence is quadratic.

Proof. It is easy to see that under our regularity assumption, (H(·))−1 is lo-
cally uniformly bounded. Indeed, assume the contrary, i.e., that there exists a se-
quence {xk} ⊂ V such that xk → x̄, and the sequence {(H(xk))−1} is unbounded
(this subsumes the possibility that some elements of the latter sequence are not even
well defined). Recall that the generalized Jacobian is locally bounded [5]. Since,
by Lemma 2.1, H(xk) ∈ ∂Φ(xk) for every k, it follows that the sequence {H(xk)} is
bounded. Hence, we can assume that {H(xk)} converges to some H̄ ∈ ∆Φp(x̄), where
the inclusion is by the very definition of the set ∆Φp(x̄). But then H̄ is nonsingular,
which is in contradiction with the earlier assumption that {(H(xk))−1} is unbounded.

Consider first algorithm (2.7), and suppose that the iterates are well defined up
to some index k ≥ 0. We have that

‖xk+1 − x̄‖ = ‖(H(xk))−1(Φ(xk)− Φ(x̄)−H(xk)(xk − x̄))‖
≤M‖Φ(xk)− Φ(x̄)−H(xk)(xk − x̄)‖,

where M > 0. Note that when P̄F ′(·)p is (strongly) semismooth, so is Φ(·). It is
known [40, Proposition 1] that semismoothness of Φ at x̄ implies that

sup
H∈∂Φ(x̄+ξ)

‖Φ(x̄+ ξ)− Φ(x̄)−Hξ‖ = o(‖ξ‖)

(the latter property was introduced in the context of the nonsmooth Newton methods
in [33]). Using Lemma 2.1 and combining the last two relations, well-definedness of
the whole sequence {xk} and its superlinear convergence to x̄ follow by a standard
argument.

In the strongly semismooth case, one has that

sup
H∈∂Φ(x̄+ξ)

‖Φ(x̄+ ξ)− Φ(x̄)−Hξ‖ = O(‖ξ‖2),

and so convergence is quadratic.
Consider now the iterates {xk} generated by (2.13). By our regularity assumption

and the classical results of linear analysis, the condition

‖H̃(xk)−H(xk)‖ = O(‖xk − x̄‖)
implies that

‖(H̃(xk))−1 − (H(xk))−1‖ = O(‖xk − x̄‖).



394 A. F. IZMAILOV AND M. V. SOLODOV

Hence,

‖(H̃(xk))−1Φ(xk)− (H(xk))−1Φ(xk)‖ ≤ ‖(H̃(xk))−1 − (H(xk))−1‖‖Φ(xk)− Φ(x̄)‖
= O(‖xk − x̄‖2),

where the Lipschitz-continuity of Φ was also used. It follows that the difference be-
tween the original and modified steps is of the second order. By the obvious argument,
it can now be easily seen that the modified algorithm has the same convergence rate
as the original one.

Note that, in principle, our regularity condition depends not only on the structure
of the singularity of F at x̄, but also on the choice of p. Implementation of this
approach presumes that there exists at least one p ∈ Rn for which this condition
is satisfied. Furthermore, a way to choose such p should be available. Fortunately,
a typical situation is the following. The existence of one suitable p can usually be
established under some reasonable regularity assumption. Then, given the existence
of one such p, it can further be proven that the set of appropriate elements is, in
fact, open and dense in the whole space. Hence, p can be chosen arbitrary, with the
understanding that almost any is suitable. We shall come back to this issue in section
4, where regularity conditions for NCP are discussed. In the computational experience
of [22, 26], where conceptually related methods for smooth operator equations are
considered, a random choice of p does the job. Even though this choice certainly
affects the rate and range of convergence, the differences between different choices are
usually not dramatic.

Finally, we remark that the development presented above can be extended to the
case when P (·) is not necessarily constant, but it is a Lipschitzian mapping satisfying
(2.6) with P̄ = P (x̄). In that case, we would have to provide a technique to define
such P (·) in the general setting. Such techniques are possible, but they go beyond the
scope of the present paper. Here we are mainly concerned with a specific application
of our approach to the NCP, which we consider next.

3. Algorithm for the NCP. Consider the NCP (1.2), and its reformulation as
a system of smooth equations (1.1), given by (1.3). For convenience, we restate the
associated function F , which is

F : Rn → Rn, Fi(x) = 2gi(x)xi − (min{0, gi(x) + xi})2, i = 1, . . . , n.

We choose a specific reformulation for the clarity of presentation. In section 5.1, we
show that our analysis is intrinsic and extends to other smooth reformulations.

Let x̄ ∈ Rn be a solution of NCP. Suppose that g is twice continuously differ-
entiable in some neighborhood V of x̄ in Rn. Then it is easy to see that F has a
Lipschitz-continuous derivative on V , which is given by

F ′
i (x) = 2(xig

′
i(x) + gi(x)e

i −min{0, gi(x) + xi}(g′i(x) + ei)),(3.1)

i = 1, . . . , n, x ∈ V,

where e1, . . . en is the standard basis in Rn. Recalling the three index sets

I0 := {i = 1, . . . , n | gi(x̄) = 0, x̄i = 0},
I1 := {i = 1, . . . , n | gi(x̄) = 0, x̄i > 0},
I2 := {i = 1, . . . , n | gi(x̄) > 0, x̄i = 0},



ALGORITHMS FOR SINGULAR EQUATIONS AND COMPLEMENTARITY 395

from (3.1) we immediately obtain that

F ′
i (x̄) = 2




0 if i ∈ I0,
x̄ig

′
i(x̄) if i ∈ I1,

gi(x̄)e
i if i ∈ I2.

(3.2)

As already discussed in section 1, the Jacobian F ′(x̄) is necessarily singular whenever
I0 
= ∅, the latter being the usual situation for complementarity problems of interest.
Furthermore, F is not twice differentiable. Hence, smooth NCP reformulations fall
precisely within the framework of section 2. Such equations cannot be effectively
solved by previously available methods, and so our approach comes into play. We
next show that in the setting of NCP, the general algorithm introduced in section 2
takes a simple implementable form.

Given the structure of F ′(x̄), we have that

imF ′(x̄) ⊂ span {ei , i ∈ I1 ∪ I2}.

Then the natural choice of P̄ satisfying imF ′(x̄) ⊂ ker P̄ (recall condition (2.3)) is
the operator with the matrix representation consisting of rows

P̄i =

{
ei if i ∈ I0,
0 if i ∈ I1 ∪ I2.(3.3)

At the end of this section, we shall show how to define P̄ without knowing the solu-
tion x̄ (clearly, this task reduces to identifying the index set I0). This is possible by
means of error bound analysis. A sufficient condition for our error bound is weaker
than b-regularity [39], which is currently the weakest assumption under which Newton
methods for nonsmooth NCP reformulations are known to be (superlinearly) conver-
gent [30, 34].

Once P̄ is defined according to (3.3), we fix p ∈ Rn \ {0} arbitrarily. Then the
function Φ defined by (2.4) takes the form

Φi(x) =

{
Fi(x) + 〈F ′

i (x), p〉 if i ∈ I0,
Fi(x) if i ∈ I1 ∪ I2, x ∈ V.(3.4)

According to section 2, x̄ is a solution of Φ(x) = 0, which is our “regularized” equation.
We proceed to derive explicit forms for iterations of algorithms (2.7) and (2.13), and
the regularity condition needed for their convergence.

First, by (2.8) and (3.3), the matrix representation of H(x), which is the element
of ∂Φ(x) employed in algorithm (2.7), consists of rows

Hi(x) =

{
F ′
i (x) + (F ′

i )
′(x; p) if i ∈ I0,

F ′
i (x) if i ∈ I1 ∪ I2, x ∈ V.(3.5)

Furthermore, the directional derivatives employed in (3.5) exist and can be obtained
explicitly from (3.1):

(F ′
i )

′(x; p) = 2(xig
′′
i (x)p+ pig

′
i(x) + 〈g′i(x), p〉ei

−min{0, gi(x) + xi}g′′i (x)p− γi(x, p)(g′i(x) + ei)),(3.6)

i = 1, . . . , n, x ∈ V,
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where

γi(x, p) =




〈g′i(x), p〉+ pi if gi(x) + xi < 0,
min{0, 〈g′i(x), p〉+ pi} if gi(x) + xi = 0,
0 if gi(x) + xi > 0,

(3.7)

i = 1, . . . , n, x ∈ V.
Note that, according to (3.5), one has to compute (F ′

i )
′(·; p) only for i ∈ I0. Another

useful observation which would suggest truncation of the Jacobian to be discussed
later is that for i ∈ I0 all the terms in (3.6) involving the second derivatives of g
vanish at x̄.

Furthermore, taking into account (3.5), (3.2), (3.6), and (3.7), we conclude that
the matrix representation of an arbitrary limit point H̄ of H(x) as x→ x̄ consists of
rows

H̄i = 2




−〈g′i(x̄), p〉g′i(x̄)− piei or pig
′
i(x̄) + 〈g′i(x̄), p〉ei if i ∈ I0,

x̄ig
′
i(x̄) if i ∈ I1,

gi(x̄)e
i if i ∈ I2.

Hence, we can state the following sufficient condition for nonsingularity of every linear
operator in ∆Φp(x̄). Denote by J the collection of pairs of index sets (J1, J2) such
that J1 ∪ J2 = I0, J1 ∩ J2 = ∅. Our regularity condition consists of saying that, for
every pair of index sets (J1, J2) ∈ J , it holds that

〈g′i(x̄), p〉g′i(x̄) + pie
i, i ∈ J1

pig
′
i(x̄) + 〈g′i(x̄), p〉ei, i ∈ J2

g′i(x̄), i ∈ I1
ei, i ∈ I2




are linearly independent in Rn.(3.8)

In section 4, we shall discuss the relation between this condition and other regularity
conditions for the NCP, as well as compare convergence results of our algorithm with
convergence results of other locally superlinearly convergent equation-based methods
for solving NCP.

Under our assumptions, semismoothness of P̄F ′(·)p follows readily from (3.1)
and standard calculus of semismooth mappings [36, Theorem 5]. Moreover, under
the additional assumption of Lipschitz-continuity of g′′(·) on V , P̄F ′(·)p is strongly
semismooth, which follows from results on the superposition of strongly semismooth
mappings [15, Theorem 19]. Hence, Φ(·) is (strongly) semismooth.

Note that all the elements involved in the iteration scheme (2.7) are computed in
this section by explicit formulas. In principle, computing H via (3.5)–(3.7) involves
second derivatives of g. However, as already noted above, the terms containing second
derivatives of g tend to zero as x→ x̄. This suggests the idea of modifying the process
by omitting these terms, which leads to the method represented by (2.13). We shall
also take into account the structure of P̄ and make use of Remark 2.1.

Note that for P̄ given by (3.3) we have that (E − P̄ ) is the orthogonal projector
onto span {ei , i ∈ I1 ∪ I2}. According to (2.11), we can therefore redefine

Φi(x) =

{ 〈F ′
i (x), p〉 if i ∈ I0,

Fi(x) if i ∈ I1 ∪ I2, x ∈ V.(3.9)

Taking into account (2.12) and omitting further the terms that vanish at x̄, we can
take
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H̃i(x) =

{
2(pig

′
i(x) + 〈g′i(x), p〉ei − γi(x, p)(g′i(x) + ei)) if i ∈ I0,

F ′
i (x) if i ∈ I1 ∪ I2, x ∈ V.

(3.10)

Comparing expressions (3.9) and (3.10) with (3.4) and (3.5), one can easily observe
that the former are simpler and require fewer computations.

Furthermore, under our smoothness assumptions, it is easy to see that

‖H̃(x)−H(x)‖ = O(‖x− x̄‖),
and so the modified Newton method given by (2.13) is applicable.

We next give a formal statement of the convergence result for our methods applied
to NCP, which is a corollary of Theorem 2.2.

Theorem 3.1. Let g : V → Rn be a twice continuously differentiable mapping on
V , V being a neighborhood of a solution x̄ of the NCP (1.2). Assume that for some
p ∈ Rn condition (3.8) is satisfied for every pair of index sets (J1, J2) ∈ J .

Then the iterates given by (2.7) or (2.13) (with all the objects as defined in this
section) converge to x̄ locally superlinearly. If, in addition, the second derivative of g
is Lipschitz-continuous on V , then the rate of convergence is quadratic.

We next show how to construct P̄ without knowing the solution x̄. Given the
structure of P̄ (see (3.3)), it is clear that this task reduces to correct identification of
the degenerate set I0. This can be done with the help of error bounds, as described
next (our approach is in the spirit of the technique developed in [10] for identification
of active constraints in nonlinear programming). To our knowledge, the weakest
condition under which a local error bound for NCP is currently available is the 2-
regularity of F given by (1.3) at the NCP solution x̄ [25]. Specifically, if F is 2-regular
at x̄, then there exist a neighborhood U of x̄ in Rn and a constant M1 > 0 such that

‖x− x̄‖ ≤M1‖F (x)‖1/2 ∀x ∈ U.(3.11)

We shall not introduce the notion of 2-regularity formally here, as this would require
an extensive discussion. We emphasize only that the bound (3.11) may hold when
the so-called natural residual min{x, g(x)} does not provide an error bound, and
always holds when it does (see [25], and in particular [25, Example 1]). Hence, the
2-regularity of F is a weaker assumption than the R0-type property or semistability,
which in the case of NCP are both equivalent to an error bound in terms of the natural
residual [38]. And it is further weaker than b-regularity; see [25].

We note that in Lemma 3.2 below we could also use other error bounds for
identifying I0. However, they would require either stronger local assumptions or
global assumptions.

Lemma 3.2. Suppose that x̄ is a solution of NCP, g is Lipschitz-continuous on
V , where V is a neighborhood of x̄. Suppose finally that the local error bound (3.11)
holds. Then for any α ∈ (0, 1) there exists a neighborhood U of x̄ such that

{i ∈ {1, . . . , n} | |max{gi(x), xi}| ≤ ‖F (x)‖α/2} = I0 ∀x ∈ U.(3.12)

Proof. It is easy to observe that there exist some M2 > 0 and some neighborhood
U of x̄ such that

for i ∈ I0, |max{gi(x), xi}| = |max{gi(x), xi} −max{gi(x̄), x̄i}| ≤M2‖x− x̄‖ ∀x ∈ U,
where the inequality follows from the Lipschitz-continuity of the functions involved.
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Therefore, by (3.11) (possibly adjusting the neighborhood U), for an arbitrary fixed
α ∈ (0, 1) we have that

for i ∈ I0, |max{gi(x), xi}| ≤M1M2‖F (x)‖1/2 ≤ ‖F (x)‖α/2 ∀x ∈ U.
In particular, the quantity in the left-hand side of the inequality above tends to zero
as x tends to x̄. On the other hand, it is clear that there exists ε > 0 such that

for i ∈ I1 ∪ I2, |max{gi(x), xi}| ≥ ε > 0 ∀x ∈ U
(U should be adjusted again, if necessary). Combining those facts, we obtain (3.12)
for U sufficiently small.

By Lemma 3.2, the index set I0, and hence the mapping P̄ , are correctly identified
by (3.12), provided one has a point close enough to the solution. We note that this
requirement of closeness to solution is completely consistent with the setting of the
paper, since the subjects under consideration are superlinearly convergent Newton-like
methods, which are local by nature.

Finally, we mention other considerations that can also be useful for identifying
I0. Sometimes the cardinality r of I0 may be known from a priori analysis of the
problem, or one can be interested in finding an NCP solution with a given cardinality
of I0. Then for any x ∈ Rn sufficiently close to x̄, the set I0 coincides with the set
of indices corresponding to the r smallest values of |max{gi(x), xi}|. In this case, no
error bound is needed to identify I0. We note that, in the present setting, cardinality
of I0 is closely related to corank of singularity. In the literature on numerical methods
for solving singular equations, the assumption that corank of singularity is known is
absolutely standard [20, 19, 43, 14, 1, 2]. In the complementarity literature, on the
other hand, assumptions about cardinality of I0 are not common, except possibly for
I0 = ∅.

4. Regularity conditions. In this section we compare our approach with other
Newton-type methods that solve one linear system at each iteration. The weakest
condition under which there exists a locally superlinearly convergent Newton-type
algorithm for solving a (nonsmooth) equation reformulation of the NCP is the b-
regularity assumption, which can be stated as follows: for every pair of index sets
(J1, J2) ∈ J , it holds that

g′i(x̄), i ∈ J1 ∪ I1
ei, i ∈ J2 ∪ I2

}
are linearly independent in Rn.

Under this assumption, the natural residual mapping x→ min{x, g(x)} : Rn → Rn,
is BD-regular at x̄. Furthermore, it is also (strongly) semismooth under standard
assumptions on g. Hence, the nonsmooth Newton method (2.7) based on it con-
verges locally superlinearly [30, 34]. Note that Newton methods applied to another
popular reformulation based on the Fischer–Burmeister function [17, 11] require for
convergence the stronger R-regularity [44] assumption; see [34].

In what follows, we compare our regularity condition (3.8) with b-regularity and
show that they are essentially different. In general, neither is weaker or stronger than
the other. This implies that our approach based on the smooth NCP reformulation
is a complement to nonsmooth reformulations, and vice versa, as each approach can
be successful in situations when the other is not.

The next result is important to obtaining an insight into the nature of our regu-
larity condition (3.8). We start with the following definition.
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Definition 4.1. A solution x̄ of the NCP (1.2) is referred to as quasi-regular if
for every pair of index sets (J1, J2) ∈ J there exists an element p = p(J1, J2) ∈ Rn

such that (3.8) is satisfied.
Proposition 4.2. Suppose that the solution x̄ of the NCP (1.2) is quasi-regular.

Then there exists a universal p ∈ Rn which satisfies (3.8) for every pair (J1, J2) ∈ J .
Moreover, the set of such p is open and dense in Rn.

Proof. Fix a pair (J1, J2) ∈ J , and consider the determinant of the system
of vectors in (3.8) as a function of p. This function is a polynomial on Rn, and this
polynomial is not everywhere zero, since it is not zero at p(J1, J2) (see Definition 4.1).
But then the set where the polynomial is not zero is obviously open and dense in Rn.
Moreover, the intersection of such sets corresponding to pairs (J1, J2) ∈ J is also
open and dense, since it is a finite intersection of open and dense sets.

It follows that if x̄ is a quasi-regular solution of NCP in the sense of Definition 4.1,
then even picking a random p ∈ Rn, one is extremely unlikely to pick a “wrong” p (as
the set of wrong elements is “thin”). Hence, under the assumption of quasiregularity,
for the implementation of the algorithm described in section 3 we can choose p ∈ Rn \
{0} arbitrarily, with the understanding that almost every p ∈ Rn is appropriate. In
particular, for all practical purposes, we can think of quasiregularity as the regularity
condition needed for superlinear convergence of our algorithm. We next investigate
the relationship between quasiregularity and b-regularity.

First, we show that if the cardinality of I0 is equal to one, then quasiregularity is
in fact weaker than b-regularity.

Proposition 4.3. Suppose that x̄ is a b-regular solution of the NCP, and the
cardinality of I0 is equal to one. Then x̄ is quasi-regular.

Proof. Let I0 = {i0} and denote L = span{g′i(x̄), i ∈ I1, e
i, i ∈ I2}. In this

setting, b-regularity clearly means that

g′i0(x̄) 
∈ L, ei0 
∈ L,
corresponding to the two possible choices of (J1, J2) ∈ J . It follows that

∀ q ∈ L⊥ \ {0}, 〈g′i0(x̄), q〉 
= 0, qi0 
= 0.(4.1)

Assume for a contradiction that x̄ is not quasi-regular. Then by Definition 4.1, there
exists a pair (J1, J2) ∈ J such that for every p ∈ Rn condition (3.8) is violated. This
means that either

〈g′i0(x̄), p〉g′i0(x̄) + pi0e
i0 ∈ L

or

pi0g
′
i0(x̄) + 〈g′i0(x̄), p〉ei0 ∈ L.

Taking any q ∈ L⊥ \ {0}, we deduce that for every p ∈ Rn either

〈g′i0(x̄), q〉〈g′i0(x̄), p〉+ qi0pi0 = 0

or

〈g′i0(x̄), q〉pi0 + qi0〈g′i0(x̄), p〉 = 0.

Setting p = q, we then obtain that either

〈g′i0(x̄), q〉2 + q2i0 = 0



400 A. F. IZMAILOV AND M. V. SOLODOV

or

〈g′i0(x̄), q〉qi0 = 0,

which contradicts b-regularity, because of (4.1).
It is easy to see that in the setting of Proposition 4.3, the quasiregularity condition

can be satisfied without b-regularity. For example, let g′i0(x̄) ∈ L, but ei0 
∈ L. Then
b-regularity is violated. On the other hand, quasiregularity here is equivalent to saying
that there exist elements p1, p2 ∈ Rn (corresponding to the two possible choices of
(J1, J2) ∈ J ) such that

p1i0 
= 0, 〈g′i0(x̄), p2〉 
= 0,

which is satisfied for almost any p1 and p2, provided g′i0(x̄) 
= 0. It is also quite clear
that just choosing p1 and p2 randomly should do the job.

In general, i.e., in the cases of higher cardinality of I0, b-regularity and quasireg-
ularity become different, not directly related conditions. In particular, neither is
stronger or weaker than the other, as illustrated by the following examples.

Example 4.1. Let n = 2, I0 = {1, 2}, and

g′1(x̄) = (1,
√

2), g′2(x̄) = (
√

2, 1).

Then b-regularity is obvious, but

〈g′i(x̄), p〉g′i(x̄) + pie
i = (2p1 +

√
2p2,

√
2p1 + 2p2) ∀ i = 1, 2, ∀ p ∈ R2.

This means that for J1 = I0, J2 = ∅, (3.8) does not hold for any p, and so the
quasiregularity condition is not satisfied.

Example 4.2. Let n = 2, I0 = {1, 2}, and

g′1(x̄) = e2, g′2(x̄) 
∈ span{e1}.
Then b-regularity does not hold (the linear independence condition is violated for J1 =
{1}, J2 = {2}), but quasiregularity is satisfied, which can be shown by straightforward
computations. We omit the details, as they do not provide any further insight.

We complete our discussion with a sufficient condition for quasiregularity of x̄,
which is meaningful when the cardinality of I0 is not greater than n/2, half dimen-
sionality of the space. Specifically, suppose that

g′i(x̄), e
i, i ∈ I0, are linearly independent in Rn(4.2)

and

∃ (J̄1, J̄2) ∈ J s.t.
g′i(x̄), i ∈ J̄1 ∪ I1
ei, i ∈ J̄2 ∪ I2

}
are linearly independent in Rn.(4.3)

It is clear that (4.3) is subsumed by b-regularity (where it must hold for all partitions
of I0). It is also not difficult to see that (4.3) is necessary for quasiregularity of x̄.
Hence, this assumption does not introduce any additional restrictions with respect
to the regularity conditions under consideration. Furthermore, for nonpathological
problems the cardinality of I0 should not be too large compared to the dimensionality
of the space, and so condition (4.2) should not be difficult to satisfy. Therefore, (4.2)
and (4.3) appear to be not restrictive.
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Proposition 4.4. Suppose that (4.2) and (4.3) hold. Then x̄ is a quasi-regular
solution of NCP.

Proof. Take any pair of index sets (J1, J2) ∈ J , and consider the system of (twice
the cardinality of I0) linear equations




〈g′i(x̄), p〉 = 1, pi = 0, i ∈ J1 ∩ J̄1,
〈g′i(x̄), p〉 = 0, pi = 1, i ∈ J1 ∩ J̄2,
〈g′i(x̄), p〉 = 0, pi = 1, i ∈ J2 ∩ J̄1,
〈g′i(x̄), p〉 = 1, pi = 0, i ∈ J2 ∩ J̄2

in the variable p ∈ Rn. Under the assumption (4.2), this system has a solution
p = p(J1, J2). Observe further that substituting this p into (3.8) reduces the system
of vectors appearing in (3.8) precisely to the system of vectors appearing in (4.3),
which is linearly independent by the hypothesis.

Again, it is easy to see that the latter sufficient condition for quasiregularity of
x̄ can hold without b-regularity. On the other hand, in general it is not implied by
b-regularity. In particular, b-regularity need not imply (4.2).

Summarizing the preceding discussion, we conclude that the regularity assump-
tion required for the algorithm proposed in section 3 for solving the NCP is differ-
ent from b-regularity, which is the typical assumption in the context of nonsmooth
Newton-type methods for solving nonsmooth NCP reformulations. In fact, the two
assumptions are of a rather distinct nature. This is not surprising, considering that
they result from approaches which are also quite different.

5. Some further applications. The general approach presented in section 2
can also be useful in other problems where complementarity is present. Below we
outline applications to another class of smooth reformulations of NCP (different from
(1.3)) and to the mixed complementarity problems. We limit this discussion to ex-
hibiting the structure of singularity associated with the smooth equation reformula-
tions of those problems. Deriving the resulting regularity conditions and comparing
them to known ones requires too much space. Without going into detail, we claim
that regularity assumptions needed for our approach would again be different from
assumptions of Newton methods for nonsmooth equations.

5.1. Other NCP reformulations. The analysis presented in sections 3 and 4
for NCP is intrinsic in the sense that it is also applicable to smooth reformulations
other than the one given by (1.3). Indeed, following [35], consider the family of
functions

F : Rn → Rn, Fi(x) = θ(gi(x)) + θ(xi)− θ(|gi(x)− xi|) , i = 1, . . . , n,

where θ : R → R is any strictly increasing function such that θ(0) = 0. It can be
checked that the NCP solution set coincides with zeros of F . As an aside, note that
reformulation (1.3) cannot be written in the form stated above, so the two are really
different.

Suppose further that θ is differentiable on R with θ′(0) = 0 and θ′(t) > 0 for
t > 0. For example, we could take

θ(t) = t|t| .

Let x̄ be some solution of NCP, and V be its neighborhood. If g is twice continuously
differentiable on V and θ′ is Lipschitz-continuous, then the derivative of F is Lipschitz-
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continuous near x̄, and it is given by

F ′
i (x) = θ′(gi(x))g′i(x) + θ′(xi)ei − sign(gi(x)− xi)θ′(|gi(x)− xi|)(g′i(x)− ei),

i = 1, . . . , n, x ∈ V.

As is easy to see,

F ′
i (x̄) =




0 if i ∈ I0,
θ′(x̄i)g′i(x̄) if i ∈ I1,
θ′(gi(x̄))ei if i ∈ I2.

Since θ′(t) > 0 for any t > 0, we conclude that the structure of singularity here is
absolutely identical to that for F given by (1.3) (recall (1.4)). In particular,

imF ′(x̄) ⊂ span {ei , i ∈ I1 ∪ I2},

and all the objects and the analysis in sections 3 and 4 can be derived in a similar
fashion.

5.2. Mixed complementarity problems. The mixed complementarity prob-
lem (MCP) is a variational inequality on a (generalized) box B = {x ∈ Rn | l ≤ x ≤
u}, where li ∈ [−∞,+∞) and ui ∈ (−∞,+∞] are such that li < ui, i = 1, . . . , n.
Specifically, the problem is to find

x ∈ B such that 〈g(x), y − x〉 ≥ 0 ∀y ∈ B,

where g : Rn → Rn. It can be seen that this is equivalent to x ∈ Rn satisfying the
following conditions: for every i = 1, . . . , n,

if gi(x) > 0, then xi = li;
if gi(x) < 0, then xi = ui;
if gi(x) = 0, then li ≤ xi ≤ ui.

NCP is a special case of MCP corresponding to li = 0, ui = +∞, i = 1, . . . , n. Define

ψ : R2 → R, ψ(a, b) = 2ab− (min{0, a+ b})2.

We claim that solutions of MCP coincide with zeros of the function F : Rn → Rn

whose components are given by

Fi(x) =




ψ(gi(x), xi − li), i ∈ Il := {i | li > −∞, ui = +∞},
ψ(−gi(x), ui − xi), i ∈ Iu := {i | li = −∞, ui < +∞},
gi(x), i ∈ Ig := {i | li = −∞, ui = +∞},
ψ(−ψ(−gi(x), ui − xi), xi − li), i ∈ Ilu := {i | li > −∞, ui < +∞}.

We omit the proof, which can be carried out by direct verification. Let x̄ be some
solution of MCP, and V be its neighborhood. If g is twice continuously differentiable
on V , then the derivative of F is Lipschitz-continuous near x̄. Defining

I0 := {i = 1, . . . , n | gi(x̄) = 0} ∩ {i = 1, . . . , n | x̄i = li or x̄i = ui},
I1 := {i = 1, . . . , n | gi(x̄) = 0} \ I0,
I2 := {i = 1, . . . , n | gi(x̄) 
= 0},
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it can be verified that

F ′
i (x̄) =




0 if i ∈ I0,
ρig

′
i(x̄) if i ∈ I1,

νie
i if i ∈ I2,

where

ρi =




2(x̄i − li), i ∈ {i ∈ Il | gi(x̄) = 0, x̄i > li},
−2(ui − x̄i), i ∈ {i ∈ Iu | gi(x̄) = 0, x̄i < ui},
1, i ∈ Ig,
4(x̄i − li)(ui − x̄i), i ∈ {i ∈ Ilu | gi(x̄) = 0, li < x̄i < ui},

νi =



gi(x̄), i ∈ {i ∈ Il ∪ Iu | gi(x̄) 
= 0},
−4gi(x̄)(ui − li), i ∈ {i ∈ Ilu | gi(x̄) < 0, x̄i = ui},
4gi(x̄)(ui − li) + 2(min{0, ui − li − gi(x̄)})2, i ∈ {i ∈ Ilu | gi(x̄) > 0, x̄i = li}.

In particular, ρi 
= 0, i ∈ I1, and νi 
= 0, i ∈ I2. Observing the structure of F ′(x̄),
further analysis can now follow the ideas of sections 3 and 4.

6. Concluding remarks. We have presented a new approach to solving smooth
singular equations. Unlike previously available algorithms, our method is applicable
when the equation mapping is not necessarily twice differentiable. Important examples
of once differentiable singular equations are reformulations of the NCPs, which we
have studied in detail. In particular, we have demonstrated that in the case of NCP
our method takes a readily implementable simple form. Furthermore, the structure
of singularity can be completely identified by means of local error bound analysis,
without knowing the solution itself. It was further shown that the regularity condition
required for the superlinear convergence of the presented algorithm is different from
conditions needed for the nonsmooth Newton methods applied to nonsmooth NCP
reformulations. Thus the two approaches should be regarded as complementing each
other. Finally, it was demonstrated that the main ideas of this paper should also be
applicable to other problems where complementarity structures are present.
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