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ABSTRACT
Arsenic (As) and gold (Au) are closely associated in many gold deposits, both being hosted 

in Fe-sulfide minerals (pyrite, marcasite, and arsenopyrite), partly because As geochemistry 
controls Au accumulation. Yet, the partitioning behavior of As between pyrite, arsenopyrite, 
and hydrothermal fluids remains poorly understood. Here, we introduce solid-solution models 
for As in pyrite and As in arsenopyrite into a thermochemical model of fluid-rock interaction, 
and use it to evaluate the effects of temperature, redox state, and fluid-flow dynamics on As—
and Au by association—partitioning. We find that As concentrations in pyrite decrease with 
increasing temperature, despite the widening of the solid-solution composition range. This 
is related to the preferential partitioning of As into fluids at higher temperatures. Simula-
tions of infiltration of rock-buffered H2O-CO2-As fluids into low-As pyrite (As:S = 0.01) ores 
reveal a continuous enrichment of As in pyrite with increasing fluid:rock ratio. The model-
ing suggests that upgrading of early-formed low-grade ores by multistage hydrothermal 
events can generate large gold deposits. In this scenario, an anomalously Au-rich fluid is not 
needed, but instead, prolonged fluid-rock interaction enriches pyrite in As, which promotes 
gold sequestration.

INTRODUCTION
The association between Au and As in 

Fe(-As) sulfides (pyrite [FeS2], marcasite [FeS2], 
and arsenopyrite [FeAsS]) is a well-recognized 
characteristic of most Au deposits. Hence, 
the correlation between Au and As makes As 
in pyrite a good proxy for Au mineralization. 
This As-Au coupling also may reflect a partial 
control of Au accumulation by As geochemistry 
in hydrothermal gold systems (Deditius et al., 
2014). Yet, the behavior of As in fluid-rock sys-
tems remains poorly understood, due to limited 
understanding of the solid solution of As in iron-
sulfide minerals (Reich and Becker, 2006).

Thermodynamic reactive transport modeling 
is an important tool for understanding complex 
fluid-rock interactions, element mass transfer, 
and the potential of fluids to carry economic 
amounts of metals (Seward and Barnes, 1997). 
To date, our capacity to model As mobility under 
hydrothermal conditions has been severely 
limited by the absence of a thermodynamic 
model for As-in-pyrite and As-in-arsenopyrite 
solid solutions. Consequently, most available 

models overestimate As mobility in hydrother-
mal  fluids, because As remains in solution until 
an As-domi nant mineral such as arsenopyrite 
or löllingite precipitates (Zhong et al., 2015).

Here, we build a model of As solid solution 
in pyrite-marcasite and in arsenopyrite, and use 
it to calculate the partitioning of As between 
pyrite-marcasite, arsenopyrite, and fluids under 
conditions typical for Au deposition (Phillips 
and Evans, 2004). We find that the model pro-
vides important insights into the role of fluid-
rock interaction in Au mineralization. We show 
that the empirically well-established retrograde 
As solubility in pyrite with increasing tempera-
ture, T (Deditius et al., 2014), is a result of pro-
grade As solubility in fluids. We further show 
that recurring fluid flow can enrich As in pyrite 
and arsenopyrite through extensive fluid-mineral 
interactions, which results in gold incorporation, 
generating high-grade gold resources.

THERMODYNAMIC MODELING OF 
THE FeS2-FeAs2 BINARY

The FeS2-FeAs2 binary (Fig. 1) is modelled 
using three phases: pyrite-marcasite solid solu-
tion [Fe(S,As)2], arsenopyrite solid solution 

(FeAs1–xS1+x), and löllingite (FeAs2). Löllingite 
is assumed to be stoichiometric, in view of the 
limited S solubility in this mineral (Fleet and 
Mumin, 1997; Reich and Becker, 2006).

Arsenopyrite is modeled as a solid solution 
between the fictional end members FeS1.2As0.8 
and FeS0.8As1.2. Pyrite-marcasite is described as 
a solid solution between marcasite (FeS2) and 
a fictional (fic) löllingite (Lö, FeAs2), which is 
defined such that ΔfGLo

fic = ΔfGLo + 10 kJ/mol 
(where ΔfG is the Gibbs free energy of formation 
from the elements to the subscripted species) so 
that löllingite is the stable mineral on the As-rich 
side of the diagram. This pyrite-marcasite model 
assumes that As1– is substituting for sulfur in 
the disulfide anion, S2

2–, which is the predomi-
nant substitution mechanism in pyrite-marcasite 
(Qian et al., 2013). Due to the nature of As-S 
interactions, non-ideal contributions need to be 
incorporated for realistic modeling of the FeS2-
FeAs2 binary (Reich and Becker, 2006). Because 
of experimental difficulties (non-homogenous 
As distributions and nanoscale inclusions of 
As-rich phases), we use the theoretical ener-
gies of mixing derived from first principles by 
Reich and Becker (2006) to calibrate the excess 
free-energy models for pyrite-marcasite and 
arseno pyrite (Redlich-Kister formalism; Redlich 
and Kister, 1948). Reich and Becker (2006)’s 
calculations indicate that pyrite-marcasite can 
hold a maximum of ~6 wt% As in solid solution 
(Fig. 1); natural pyrite contains up to 19 wt% 
As, but many such As-rich pyrites have been 
shown to contain nanometer-size inclusions of 
As-rich phases (Deditius et al., 2014; Reich and 
Becker, 2006).

Thermodynamic calculations were con-
ducted using the HCh software (http:// www1 
.geol .msu .ru /deps /geochems /soft /index _e .html), 
which employs a Gibbs free-energy minimi-
zation algorithm (Shvarov, 1999, 2008). Fig-
ure 1 illustrates the good agreement between 
the HCh model and the theoretical phase 
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diagram. Details of the calculation procedure 
and thermo dynamic properties are provided in 
GSA Data Repository1.

ARSENIC SOLUBILITY IN PYRITE-
MARCASITE AND ARSENOPYRITE

Fluid-rock equilibria are calculated in the Fe-
As-S-Na-Cl-K-Al-Si-H-O system (25–600 °C, 
fixed pressure of 200 MPa) for two conditions: 
an oxidized system buffered by pyrite + hema-
tite, and a reduced system buffered by pyrite + 
pyrrhotite + magnetite. Fluid pH is buffered by 
K-feldspar + muscovite + quartz. Under these 
rock-buffered conditions, aqueous As concen-
trations increase with increasing temperature—
from parts per billion to thousands of parts per 
million in the case of hematite-bearing assem-
blages (Fig. 2A). In arsenopyrite-absent assem-
blages, for a given As content of the simulated 
system, pyrite composition is largely tempera-
ture independent up to ~200 °C for the oxidized 
system, and 400 °C for the reduced system 
(Figs. 2C and 2D). Then As concentrations in 
pyrite decrease rapidly with increasing tem-
perature, despite the fact that in the water-free 
system As solubility in pyrite increases slightly 
with temperature (Fig. 1).

The model predictions tally with the empirical 
observations that As contents of pyrite decrease 
as a function of increasing ore-formation 

temperature, from ~200 to ~500 °C (Deditius 
et al., 2014). To understand the cause of the 
retrograde As contents of hydrothermal pyrite, 
it is useful to express the equilibrium between 
pyrite and fluid in terms of the Nernst partition 
coefficient, Dpy/f = XAs(py) / XAs(f), where XAs(py) 
and XAs(f) are the mass fractions of As in pyrite 
and fluid, respectively. The hydrothermal fluids 
responsible for the world’s major gold produc-
tion (e.g., “orogenic gold”; Carlin-type gold; 
Witwatersrand goldfields) share common fea-
tures: T >200 °C, CO2-rich (0.05–0.25 mol%), 
S-bearing, and low salinity (Phillips and Evans, 
2004; Mikucki 1998). In these fluids, As exists 
predominantly in the form of [As3+(OH)3](aq) 
(James-Smith et al. 2010; Kokh et al. 2017), and 
As solubility controlled by pyrite is described by

 As(OH)3(aq) + ½FeS2(py) + 2.5H2(g) =  

 ½FeAs2(py) + HS− +H+ + 3H2O , (1)

where (aq) and (g) refer to aqueous and gaseous 
species, respectively.

Writing the equilibrium constant (logKP,T, 
at fixed pressure [P] and temperature [T ]) and 
rearranging produces:
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where γ is activity coefficient; a is activity; 
and f is fugacity. Equation 2 indicates a strong 
dependence of the partitioning upon local fluid 

conditions, including pH, redox [ fH2(g)], and sulfur 
concentration, expressed as activity of the bisul-
fide ion, aHS−. The low As contents of pyrite at 
high temperature are due to low logDpy/f (Figs. 2C 
and 2D), which results mainly from the prograde 
S solubility (Fig. DR2 in the Data Repository) 
and prograde As solubility in fluids (encapsu-
lated by logKP,T in Equation 2). The strong redox 
dependence of As incorporation into pyrite is due 
to the fact that As3+ is the main oxidation state of 
As in aqueous fluids, whereas As1− is predominant 
in pyrite: the As fraction is higher in pyrite that 
formed under reduced conditions compared to 
oxidized conditions (Figs. 2C and 2D). The calcu-
lated As partitioning coefficients between pyrite 
and solution for oxidized conditions (Fig. DR3) 
correspond well with the experimental and natu-
ral data reported by Kusebauch et al. (2018).

The As content of arsenopyrite (FeAsS) has 
been proposed as a geothermometer in gold 
systems, based on phase diagrams in the water-
free Fe-As-S system (Kretschmar and Scott, 
1976; Sharp et al., 1985). Figure 2 shows that 
in As-undersaturated systems (i.e., native As 
absent, corresponding to the vast majority of Au 
 deposits), arsenopyrite coexisting with pyrite has 
decreasing As content with increasing tempera-
ture, although the composition change is small 
and not suitable for a geothermometer (Figs. 2C 
and 2D). In As-rich systems where arsenopyrite 
and löllingite coexist, the concentration of As 
in arsenopyrite increases with increasing tem-
perature and can be used as a geothermometer. 
Where arsenopyrite and pyrrhotite coexist, the 
main control on arsenopyrite composition is the 
bulk system composition.
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Figure 2. Results of mod-
eling in HCh software 
(http:// www1 .geol .msu 
.ru /deps /geochems /soft 
/index _e .html) of As in 
pyrite and arsenopyrite in 
oxidized (left) and reduced 
(right) fluids as function 
of temperature (°C, x-axis) 
and As fraction in the 
rocks. Simulations apply 
to rock-buffered systems, 
where pH is buffered by 
K-feldspar + muscovite + 
quartz, fugacities fO2(g) and 
fS2(g) (g—gaseous species) 
are controlled by Fe-min-
eral assemblage, and As 
solubility is controlled by 
Fe-As sulfides. A,B: Solu-
bility of As (in log parts 
per million) in fluids; 
thick solid lines repre-
sent phase bound aries 
for Fe-oxide minerals. 
C,D: Rock mineralogy 
(colored fields); yellow 
isolines represent As fraction in pyrite at equilibrium (XAs(py), in weight percent), red isolines 
represent As mass fraction in arsenopyrite (XAs(asp), in weight percent), and grey dotted isolines 
are calculated partitioning coefficient of As between pyrite and fluid (Dpy/f). Asp—arsenopyrite; 
Hm—hematite; Lö—löllingite; Mt—magnetite; Po—pyrrhotite; Py—pyrite.

Figure 1. FeS2-FeAs2 phase diagram. Crosses 
represent theoretical diagram derived by 
Reich and Becker (2006) on basis of first-
principle quantum mechanical computations, 
and colored fields are phase diagram pre-
dicted from thermodynamic data derived in 
this study.
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1GSA Data Repository item 2019114, descrip-
tion of the fundamental assumptions for the thermo-
dynamic model of Fe-As-S minerals; details of the 
fitting procedure and Redlich-Kister formalism used, 
and the mixing parameters derived in this study; sup-
porting information for the thermodynamic model of 
fluid-rock interaction, including sulfur concentrations 
and partitioning coefficients of arsenic between pyrite 
and solution for simulations in Figure 2; and starting 
compositions for the model in Figure 3, is available 
online at http:// www .geosociety .org /datarepository 
/2019/, or on request from editing@ geosociety .org.
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ARSENIC ENRICHMENT BY MULTI-
STAGE HYDROTHERMAL FLUIDS

Several studies have highlighted the impor-
tance of multistage hydrothermal events and/or 
cyclic fluid flows to the formation and refine-
ment of gold deposits (Sibson et al., 1975; 
Brugger et al., 2000; Bateman and Hagemann, 
2004; Sung et al. 2009; Cockerton and Tomkins, 
2012; Meffre et al., 2016). This repeated infil-
tration provides the extremely high fluid:rock 
ratios apparently required to form high-grade 
ore zones (Meffre et al., 2016; Mikucki, 1998; 
Thébaud et al., 2008). Indeed, the concentrations 
of As and Au in ore-forming fluids are usually 
relatively low (1–100 ppb Au, 0.10–100 ppm 
As; Mikucki, 1998; James-Smith et al., 2010; 
Goldfarb and Groves, 2015). This contrasts with 
the fact that As-rich zones in arsenian pyrite can 
contain up to ~2400 ppm Au and 20 wt% As 
(Reich et al., 2005), which is hard to reconcile 
with a single mineralization step for each zone.

A key aspect of any multistage As enrich-
ment model is the efficiency of As scavenging 
from the fluid by reaction with the ores depos-
ited in earlier stages. Hence, we model the infil-
tration of H2O-CO2-As fluids into pyritic rocks 
using the step-flow-reactor technique with HCh 
(Shvarov, 1999), in a manner similar to that of 
the model of Phillips and Evans (2004). The 
ore fluid is first equilibrated with basalt, which 
results in an As concentration of ~20 ppm in 
the fluid. Next, each batch of the fluid is reacted 
with As-poor pyritic rocks (As:S = 0.01, which 
is ~0.6 wt% As) at 350 °C, 200 MPa. Details of 
the modeling and fluid and rock composition 
are in the Data Repository.

The modeled pyrite and arsenopyrite com-
positions are plotted as a function of fluid:rock 
ratio in Figure 3A. Arsenic concentrations 
in pyrite gradually increase with increasing 
fluid:rock ratio and reach a maximum value of 
5.7 wt% at a fluid:rock ratio of 80. Arsenopyrite 
forms when the fluid:rock ratio is >80, with As 
concentrations increasing steeply and reaching 
a maximum of 48.3 wt% at fluid:rock = 100.

DISCUSSION
The positive correlation between As and Au 

contents in arsenian pyrite has been well estab-
lished in many gold systems, including Carlin-
type (Cline, 2001; Reich et al., 2005), orogenic 
(Large et al., 2009; Morey et al., 2008), vol-
cano genic massive sulfide (Wagner et al., 2007), 
porphyry Cu-Au (Reich et al., 2013), and epi-
thermal deposits (Deditius et al., 2014). Hence, 
As in pyrite is a good proxy for Au in many 
deposits. Equilibrium thermodynamic model-
ling of Au coprecipitation with Fe sulfides is not 
practical because the scavenging mechanisms 
remain controversial and mostly involve local 
conditions: for example, arsenic may enhance 
Au chemisorption on the surface of Fe sulfides, 
or local dissolution of Fe-As-S minerals may 
cause ultra-local reducing conditions, leading to 
precipitation of Au1+ aqueous complexes at the 
mineral surface (Pokrovski et al., 2014). Fur-
thermore, Au concentrations in arsenian pyrite 
range across multiple orders of magnitude up 
to a solubility limit (Reich et al. 2005); this 
implies that most arsenian pyrites form from 
Au-undersaturated fluids. Indeed, in many gold 
deposits, native gold is a paragenetically late 

phase, resulting from recrystallisation of Fe-As 
sulfides (Fougerouse et al., 2016).

Complex As-Au zoning in pyrites character-
ized by both oscillatory zoning and secondary 
dissolution, reprecipitation, and recrystallisation 
textures is common in, and indeed characteristic 
of, Au deposits (Large et al., 2009). These varia-
tions are usually interpreted in terms of changing 
fluid sources or temperatures. For example, the 
As:Au ratio of As-Au–rich hydrothermal rims in 
pyrite is widely used to indicate fluid source, and 
further used to distinguish different stages of ore 
fluids (Thomas et al., 2011; Morishita et al., 2018). 
Pyrites from the Bendigo gold deposit (Aus tralia) 
share similar As:Au ratios, suggesting that As-Au 
may be leached and transported together from the 
diagenetic and recrystallized metamorphic pyrite 
in the sediments (Thomas et al., 2011). However, 
thermodynamic constraints on the partitioning of 
As between hydrothermal fluid and pyrite indicates 
that the formation of these As-Au–rich rims via 
direct precipitation from the parent hydrothermal 
fluid requires fluids that are extremely enriched in 
As, which are unlikely to be found in nature. In par-
ticular, such fluid cannot be produced by leaching 
or by pyrite-to-pyrrhotite conversion of diagenetic 
and recrystallized metamorphic pyrite, which is sig-
nificantly lower in As and Au (Thomas et al., 2011).

Mikucki (1998) estimated that high fluid:rock 
ratios (>100–1000) are required to form lode-
gold deposits, assuming that Au is precipitated 
from fluids with Au concentration of 1–100 ppb 
at T <400 °C. Our modeling shows that  fluids 
with relatively low As concentrations at T 
<300 °C are able to produce As-rich pyrite via 
protracted fluid flows. The upgrading model in 
Figure 3 indicates that As (and Au) enrichment 
in arsenian pyrite likely results from a refinement 
process; low-As fluids can effectively enrich As 
in pyrite through ongoing hydrothermal altera-
tion. This mechanism may also explain the ele-
vated As-Au content in pyrite associated with 
quartz veins at Bendigo, compared to diagenetic 
pyrite and metamorphic hydrothermal pyrite 
(Thomas et al., 2011), due to the higher local 
fluid:rock ratio required to form quartz veins and 
reefs. This progressive enrichment of As in pyrite 
is accompanied by a decrease in pyrite volume 
(Fig. DR4), which we suggest would serve to 
generate porosity in individual pyrite crystals and 
enhance Au sequestration (see Fig. 3).

In conclusion, our results show that the As 
concentration in pyrite is controlled by tem-
perature, fluid composition, and redox, in addi-
tion to the As concentration in the parent fluid. 
Fluids with low As concentrations are able to 
form high-As arsenian pyrite and arsenopyrite 
through extensive hydrothermal alteration, thus 
forming the As(-Au) enrichment in ores. Exter-
nally derived As(-Au)–rich fluids are not neces-
sarily required for forming high-grade pyritic 
gold ores. Instead, our thermodynamic model 
shows that dilute fluids can drive remobilization 
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and reprecipitation of As, forming As enrichment 
in localized high-grade domains, which would 
further facilitate Au accumulation. This is con-
sistent with the evidence for high fluid:rock ratio 
and complex growth and/or dissolution and/or 
recrystallization textures of pyrite in gold ore 
zones. The solid-solution model for As in pyrite 
and arsenopyrite presented here makes it possible 
to precisely predict As solubility in pyrite and 
arsenopyrite under temperature- and redox-con-
trolled conditions, which is an important tool for 
understanding and quantifying Au mobilization 
and enrichment in hydrothermal gold systems.
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