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TWO.DIMENSIONAL TOMO GRAPI{Y
PROBLEMS AND THE THEORY

OF A.ANALYTIC FUNCTIONS

E. V. Arbuzoul A. L. Bukhgetmf* and S. G. Kazantseu:r'{'*

Abstract

We reduce the inverse problem of finding the right-hand side of the stationary

one-velocity transport equation to the boundary value problem for an elliptic

equation with operator coefficients on the plane. Particular cases of these inverse

problems are the problem of inverting the Radon transform in the-fan-beam

statement and the problem of emission tomography (the Radon problem with

absorption). We present the Cauchy- and Poisson-type integral formulas-for

solutilns b the corresponding boundary value problems; in the case of incomplete

data an analog of the Carleman-type formula is given.

Keg wonls anil phroses: inverse problems, emission tomography problem.

In the present article, we study the connection between the inverse prob-

lems of finding the right-hand side of the stationary one-velocity_ transport

equation and the theory of elliptic equations with operator coefficients on

thl plane. Particular cases of such inverse problems are the problem of in-

verting the Radon transform in the fan-beam statement and the emission to-

-og.uphy problem (the Radon problem with absorption). The productivity

"f th"-"ot"plex interpretation of the planar tomography problems was first

observed in tne monograph [4]. The systematic study of the tomography

problems from this viewpoint was initiated in [1,5-7]. In the present arti-

"1", *" expose some new results in this field. The article comprises fogr 99c-
tions. In Section 1, we describe reduction of the inverse problems of finding
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2 E. V. Arbuzoa,, A. L. Bukhgeim, anil S' G' Kazantsea

the right-hand side of the transport equation to the boundary value problems

for eltptic equations with operator coefficients. In particular, we show that

the difierential statement of the Radon problem reduces to the Cauchy problem

for the Beltrami-type operator equation

6nu=Du-ABu=0 .

Thus, the inversion formula for the Radon transform amounts to the A-ana-

log oi the Cauchy formula for the operator 04. If we know the integrals of

th"e sought function over all straight lines passing through. a given set llV/ then

we natu"rally arrive at using the operator analog of the Carleman-type formula.

It was demonstrated in [i] that the straight line tomography problem with

single reflection from the blundary reduces. to the Riemann-Hilbert boundary

""fi" problem and, in the case of a half-plane, to the Dirichlet problem for

the operator A4 = a&,fie whose solution is given by the A-analog of the Pois.

son formula. The corresponding Cauchy and Poisson formulas are presented

in Section 2. The Carleman-type formula is derived in Section 3' In Sec-

tion 4, using the analogs of the representation theorems' we prove that more

complicateJto*ogtuphy problems with variable absorption reduce to the cor-

responding problems without absorption.

1. Reduction of inverse Problems
to boundary value Problems

Let O be a simply connected open set in IR2 with smooth boundary do.

Consider the following stationary one-velocity transport equation in the do-

main O:

u ' (n ,y ,  g)  cos I  *  us(a,y ,g\s ing *  t t ( * ,g \u( ' ,g ,V)

-  
* [-1(, ,v,cos(e 

- v\)u( ' ,s,e\de' -  o( ' ,s\ ' (1 .1 )

As is well known, the transport equation has the following physical meaning:

the function u(r,y,g) is the density of particles at a point (a,y) movi"q i."

the direction ,/': {,*. p, sing}; the function o(a,g\ is the density of particle

sources in the domain h, and-the functions p(x,y) and'y(c,y,cosg) charac-

terize the absorption and scattering properties of the medium. The function

p(c,g) ) 0 is called the absorPtdon and the function 1(c,y,cos9), the ilisper-
'tion-;ido. 

If the source function o(c,y) is known then, to guarantee ulique-

ness of a solution to the direct problem, we need to know the incident flow

ul"_ =.f_,

where E :  0Ox [-r , r ] ,  E+ = {(" ,  y,p) eE :  (n,")  > 0)} ,  f , -  :  E\E1, n is

the outward unit normal of 0n, and (,) stands for the inner product in IR'z'
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In particular, the absence of the particle flow incident from the exterior of

the domain O means that /- : g.

The basic object of our study is the inverse problem of finding the right-

hand side a(n , y) , provided that we know the outgoing particle flow for the equa-
tion (1.1) in the domain O; i.e., the values of u(c, y,g) on the manifold Ea,

ul"* : "f+,

or some linear functionals of f+. Considering such a statement of the inverse
problem, we henceforth assume that we simply know the trace of the function u
on the whole boundary E,

ulr: f ,
or the corresponding functionals of /.

We now turn to the complex interpretation of the problem (1.1)' (1.2).

To this end, we identify IR.2 with the complex plane C by putting z : r * iU,
i2 : -L. Passing to the complex variable z, we preserve the former notations
for functionsl i .e., we put a(z) : a(z,Z) : a(r,U), u(z,V) : u(x,y,g), etc.
Defining the operators

^  0 u  L ( 0 u  . d " \  6  0 u  L ( ? u , . d r \
ou :  * :  t \ . a ,  

- '  
a r ) '  i ) u :  E :  t \ a r  * '  au ) '

we rewrite the problem (1.1), (1.2) in the complex form

u2(2, g)e-;e + u"(2, v)"ie * p,(z)u(2, 9\
L f " ? '- 

; J_-tlz,cos(e 
- e)lu(',v')ds' : a(z), (1'3)

z e d l ,  g € l - r , r ] ;

, lr = f\,d.
Now, expanding the functions u, .f, and 7 in Fourier series in the variable I

and recalling that all functions are real-valued, we obtain

(1.2)

(1.4)

u(,,p) : uo(z)., *{E urQl"-ikv\,

f Q,v): fo("\- r*{E frk)"-,r,\,

7(z,cos v): to(r)- 
E 

*k)("-;kv a eihe),

(1.5)

(1.6)

(1.7)
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where uo(z), fo(z), and 73(z), fr:0,I,2r.. . ,  are real-valued functions. In-
serting the expansions (1.5)-(1.7) into (1.3) and making the corresponding
transformations, we obtain the following countable system of first-order differ-
ential equations in the Fourier coefficients {u1(z)}[o:

(u*)z + (ux+),  *  p(z)up11 :  ^tkqlup*r,  f r  :  0,  L,2, . . .  "

Moreover, the right-hand side a(z) is determined by the formula

a(z) : 2 Re{(u1), } + p1r1"s!) - n@)uo(z).

Make the so-obtained Fourier coefficients into the vectors

u(z) :  {uo(r),u{z), .  .  . } ,  f (z) -  { fo1r1, fr(r) , .  .  . I

which we consider, for definiteness, in the Hilbert space X : lzconstituted by
complex-valued vectors u = luorutr. . ,\, ui € C, with the norm

il'il'- i t,,,t'.
i=o

Consider the right shift U in the space X:

U :  {us r t t r t . . . }  -  { 0 ,  uo tu t r . . . } .

Then the adjoint operator [J* in 12 is the left shift

U* :  {us r r t r r t . . .  }  *  { r t ,  uz r . . . } .

Moreover, introduce the weighted left shift

l (z)  :  {us,  ur t  " . . }  -  hr r r , ,y2u2t , f tu t t . . . } .

Using the above notations, we can rewrite the system (1.s) in operator form

uz * U*U*u, * pU*u- t(z)u - 0.

Putting, for brevity

A: _IJ*(J*, 6n __E _ A0, Ao(r) = p(z)II* _ f(r),

we obtain the following generalized Beltrami-type equation with operator co-
efficients:

(  1.8)

(1.e)

?eu+ ,As (z )u :0 ,  zeQ.
The data (1.4) transform into the Cauchy data

(1.10)

(1"1  1)

L

ulan = f;
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consequently, to solve the original inverse problem (1.3)' (1.4), it suffices to
obtain an analog of the Cauchy formula for (1.10); afterwards, the right-hand
side o(z) is determined by (1.9).

The main result of the present article is the Cauchy formula for the opera-
tor in (1.10) with ,As(z) : p(z)B (the case [A, Bl: 0 is considered in Section 4

(Theorem 4.3) under the assumption that p(z\ e C'(n'), with O a strictly

convex domain with smooth boundary). fne main difficulty in studying (1.10)

is that, unlike the classical Beltrami equation, in our case the equality llAll : I
holds not only in the space lz but also in the whole scale of the spaces lf wifh
the norm

ll"ll3, : D(r + i)r^luil', m ) o.
j=o

It is well known (see, for instance, [t+]) that the resolvent ,B(]) : (A -

)f1-t of the operator A : (J*, as a bounded operator in lf for l)l > 1,

extends to the unit circle as a bounded operator from lf+l into lf; i.e.,

n(,\) € L(ttr*',lf) for l.\l :1 and rn > -rl2; moreover, n()) is strongly
continuous in ) for rn> ll2. In Sections 2-4,we use this property to study
the equation like (1.10) in the abstract situation by postulating the indicated
property of the resolvent of the operator .4 in an arbitrary discrete scale of
Banach spaces (Condition A). In the derivation of the Carleman formulas for
A-analytic funciions, we have to require that llAll ( 1. As regards the inverse
problem (1.3), (1.4), we can fulfill this condition by considering the operator
A : U* in the.space 12,, with the norm

ll" ll3: i "
i=o

-r i lui l r ,  s € (0,1).

In this case we have llAll, ( s ( 1.

2. The Cauchy and Poisson formulas

Suppose that X is a complex Banach space and we are given a chain
X : ym*r g X^ g X0 : X oL Banach spaces densely embedded into X,
where rn ) 0 is integer:

l ltllx- - llull- < lltll-+r for all u € X-*1; llullo : llull.
We state the following condition on the operator A:

Condition A. Suppose that A e E(X ) for each m ) 0, the oper-
ator Al.zs- has spectral radius p(Alx) equal to 1, and the resolvent n())
extends by strong continuity in Xm to the circle hl = L as an operator
in L(Xn+r,X*).
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Here 4(X) is the space of bounded linear operators_in X, L(X**tt{-)

is the space of bounded linear operators acting from Xdl into X-, and Al*^

is the restriction of the operator A onto the subspace X* '

The first part of Corriitioo A implies that the resolvent n()) : (A-.\E)-l

of the operator A belongs to the space L(X*) for ) > -1 
and is an analytic

operatoifunction outside-the unit disk. The second part of Condition A implies

"*irt"n"" of the following operator function for z f 0:

K(z): (f l-rn(-e2iv) : (z)-t(A+ ez;sE)-r : (zE * zA\-r, e: ar1(z),

with values in the space L(X^+r rX-).
The basic properties of the op"ruio, function K(z) are stated in the fol-

lowing theorem:

Theorem 2.1. suppose that the operator A satisfies condition A in

the discrete scale {X-}H=o. Then the following assertions arc valid:

I) K(z\ e L(X*+t,, X^) and llK(z)llt1x^*r,11^) < #, z * 0;

2) K(z)K("2): K(22)K(21) e L(X +t,X-),  zr + zzi

3) K(z)K(rz): K(r, - z)lK(z) - x(zz)), zt * zz;

4) the strongly continuous defivatives Ks and K, belong to L(X^+',X*)

forz f0and theequal i tY
K z - A K r - 0

.holds. Moreover, for z f 0, the highest-oilet defivatives have the form

K!") -(-1)"n!K"+1, Ky) = (-l)"n!A" 6n*L e E(X^+"+',X*).

Remark 1. we fulfill condition A for a given operator A by choosing
the corresponding scale {X-}H=o of Banach spaces. Once such a scale is

already found for the operator A, it is the same for the operator A21 ̂i'e',
the operator (zE + ZAi)-t € L(X*+\,X*) is defined. This follows from

assertion 2) of Theorem 2.1.
suppose that o is an open set in the complex plane c and a function

u: o -r-X with values in a complex Banach space X belongs to the class

Ct(O;X), where C*(O;X) is the space of fr times strongly continuously dif-

ferentiable functions with values in X.

Deftnition. A function u(z) e ct(o;X) is called A-analgtic in the do-

main O if the equalitY
(2.1)u ; - A u r = Q

is valid for all z € {t. Denote the set of all A-analytic functions u: O + X-

by the symbol A(O;X-).
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As an exampleof an A-analyticfunction in the domain A\{0} we may take

the function u(z) - K(z)h, where h is some fixed vector in the space ym*t

and K(z) is the operator function of Theorem 2.1.
From Theorem 2.1 and the Stokes formula we derive the following theo-

rem:

Theorem 2.2. Assume thatu(z) € Ct(O; Xn+r). Then,for aII ( € O,

1 t  l f
u(C) = 

;* JrK(, 
- O(dz + tutz)u(z) -; 

JrK(" 
- CX"z - Auz)dady.

This theorem yields an analog of the Cauchy-type integral formula for
A-analytic functions.

Theorem 2.3. Suppose that u(z) e C(0; Xrn+r) n A(O; X^). Then,

for aII C e O,
1 f

u(C) : t* 
JrK(" 

- 0@, + Adz)u(z).

Detailed proofs of Theorems 2.2 and 2.3 are given in [5' 7].
To obtain analogs of the Poisson and Cauchy formulas in the half-plane

n: {Im, t 0}, we suppose, for simplicity that X is the complexification of
the real Hilbert space X'; i.e., X = Xt @ iX'. Respectivelg the scale {X-}
consists of Hilbert spaces tool moreover, alongside Condition A, we suppose
that the operator A is real; i.e., AX' C X!.

Definition. The vector-functions v(o,y) e C2(U;X) such that

Aav(c,  y) :  (E -  A)2 l , ,v( r ,g)  + (n + l )2aoyv(n,u)  :  0

are called A-harmonic in the half-plane. We denote the set of such functions
by ha(II;X).

Consider the operator function

PA, , ( t ) :  P ; .uc(n-  t ) :  
i *@ 

- ,q \Qr -  t ) - ' (P  -  A \ - t ,

where z = n * iy and p = 
m. Using this function, we define the A-har-

monic Poisson integral by the formula

v(z) :  
l ]*ro,r@- 

t)s(t)  d, t :  (Pn,s* sX') . (2.2)

The immediate calculations carried out in [5] show that Pn,r(t), with t € lR'
fixed, is an A-ha,rmonic function of. z in II. Moreover,

PA,,(t\ € L(X*+z,X^)
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llro,,1t;ellx- ( ffiil"il*^*,
for all e e X^*2. consequently, Pn,r(t) e -Lu(n', L(x^+z,x-)),1 ( q ( oo,

and v(z) : (P.q,c*SXc) e hn(I I ;X-)  for  g e 'Lo( lR, X^: ' \ ,1(p( oo' .  - .
The followi"g *r"tiions are valid for the A-harmonic Poisson integral (2.2):

Theorem 2.4. a) Suppose that 8,@) € tr"e(lR'; ym+z) and ao is.a point

of  cont inui tyof  g(a).  Then(Pn,o*gXo) -  g(ro) inX^ as z=a*iy lno'

b) Suppose that 8,@) € trp(R'; X^+2),1 ( p ( m' Then

llPo,o* s - gllr,o()R;xr 1 
-r I as y -+ o'

Remark 2. If the function g(r) is uniformly continuous and bounded

on IR then the convergence is uniform.

corollary. a) supp ose that a function g(n) with values in

bounded and uniformly continuous on IR' and

,  \  [ ( P e , s * e x c )  f o r Y > 0 ,
v \ n , U ) : l s ( r )  f o r  y - 0 .

Then v(a,y) e he(niX*) n C(tr;X-)'
b) If v(r,y) € hn(II; ym+z1n C(tr; X**')- thenv(r,9) is representable

as the A-harmonic Poisson integral of its boundary values

v(o, y) - [* Pt,y(n - t)v(t) dt.
J-oo

The following analog of Fatou's theorem holds for A-harmonic functions

in the upper half-Plane:

Theorem 2.5. Suppose that v(z\ € ha(tl; ym+2) and

f@
sup / llv(r + iv)llpx^*, d'n < a

!  J - a

ym*2 i,

for some p e [1, oo].
Then the following limit over nontangent

I € IR,:

directions exists fot almost all

l'$ v(z) : s(t) € ,r(R; X^+'),
zelo(t)

where fa(r) - {" 
-- , + iy I lt - tl < "(o)v}'

If p > I then v(z): (Pe,c * g)(r) and

l'31 ll"(' + iy) - s(')lL,o1n;x-) = o

f o r e v e r y l < p ( o o .
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If p - L then v(z) = (PLc * rxr), where w is the finite measure on lR

connecied with the boundary ialues of g(t) by the formula iil't : gU) d't + dv

and d,v is a measure taking values in the space ym*2 and concenttated on

a set of Lebesgue measure zeto,

The proofs of all the above assertions proceed by the same scheme as

in [9,10] in the classical case of. A:0. Moreover, if llAll ( 1 and the initial

funition v(z) is A-analytic then the Poisson formula is also valid in the case

p = l. A precise statement of this assertion is given b9l9w.
We say that a vector-function u(z) belongs to Hf,(il;X), 1 ( p < oo, if

u(z) e A(II;X) and

l l ' l l?, - sup /- ll,r(" +is)ll|xd,n l-o,.
' - A  

c  J - 6

The space flf (II;X) is defined to be the space of bounded A-analytic func-

tions in II with the norm

l l"l l- : 'to ll"(.+ iy)lL,_(n;x).

Theorem 2.6. a) Suppose thatu(z) e Hpa$I;X*+2),I < p ( oo. Then

the following limit over nontangent directions exists for almost all t g lR':

,tlg,"(') 
: f(') € 'De(lR'; Ym+21

and u(z) = (P,q,yx f)(c).  For p €(0, @), we have

l lu(o + iy) - f(c)ll.ro1n;x-; - 0

a s y + 0 .
b) suppose that u(z) e I{(JI; X) and llAll < l. Then the following limit

ovet nontangent directions exists for almost all t g lR':

,[T,"(') 
- f(t) € tr1(R';x)'

u(z):  (P,s,y*fXt),  and l lu(a +is)- f( t) l l r ,1p,4 - 0 as e +0.

Moreover, for such functions, we can also obtain an analog of the Cauchy

formula.
Theorem 2.7. a) Suppose that u(z) e H\(n;X'n+r) and I < p < oo.

Then

u(z) = 
* I*U 

+ A)K(t - z)u(t)dt,

o : /- (E + A)K(t - z)u(t) dt,
J - o

where K(z\ - (z * zA\-r.

(2.3)

(2.4)
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b) suppos e that u(z) e rl(II; X) and llAll < 1. Then formulas (2.3)

and (2.$ are valid.

3. The Carleman formulas

for ,A-analytic functions in the half-plane

suppose that u(z): E -r X is an A-analytic function and we know the val-

ues of "(r) o" ,ome ret M c 0II of positive Lebesgue measure. If ]lAll <-l

then we can obtain some formulas which enable us to find u(z) in the whole

half-plane II from its values on the set M. To this end, as in the classical case

A :'0 (see [2]), we construct a weight "quenching' function O(z) (in our case'

it is an operator function) whose norm is small on dfl \ M and is large on M '

Theorem 3.1. Suppose tfiat llAll 1L and

,be, A) : : I -ffi@ 
- A\(t, - A)-'(P - A)-L dt,

.  1  |  /  n - t  r n ,  t t 2 r . .  , r ' r - 1 / -  . . - r  t  \  , .
xe,A)= + J* l f f iW@+,+)2(p- 0-L@-A)- '  +@) dt,

o(z) : expfrl 'Q,A) +;v(z,t)1, (3.1)

where the operator exponential function is defined by the fotmula eU :

DLo h.Ur. Then the function O(z) e L(X) possesses the following prcp-

erfies:

\ A A a k ) - 0 i n I I ;
2) [o(z), o(O] = o;
a) [o(z), A] : o;
a) O-l(z) is a continuous linear operator fot aII z €IIi

5) llo-1(z)o(r)ll ( 1 for atl z €TI and t € AII \ M.

Using the analogs of the Cauchy and Poisson formulas obtained in The-

orems 2.6 and 2.7 ind, the above-constructed quenching function iD(z), we

obtain some Carleman-type formulas which yield a solution to the problem of

A-analytic continuation.

Theorem 3.2. Suppose that llAll < 1, u(z) e H\$;X)' t ( P ( oo,

and the function O(z) is defined by (3.1). Tlen

1 f
u(z) = Jg 2", J*@ 

+ A)K(t - z)lo-t(z)o(t)l"u(t) dt (3.2)

for all z €II,
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Theorem 3.3. Suppose that llAll < 1, u(z) e H\([;X), r ( p ( oo,
and the function O(z) is defined by (3.L). Then

1 lu(z):}xL"J"ffi@_A\(p_A)_'(p_A)-t[q-t(z)o(t)]"u(r)ctt
(3.3)

for aII z €lI.
The above results readily yield the following theorem which is an analog

of the second part of F. and M. Rieszs' theorem:

Theorem 3.4. Suppose that llAll < 1, u(z) e H\(n;X), t ( p ( m,

and u(t) : 0 on some set M C 0II of positive Lebesgue measute. Then
u ( z )  : 0 .

The Carleman-type formulas (3.2) and (3-3) enable us to obtain a condi-
tional stability estimate for the problem of .A-analytic continuation from a part
of the boundary.

Theorem 3.5. Suppose tnat ll,all : I ( I, M c dII is a set of positive

Lebesgue measure, u(z) e nX{f,J;X), 1 ( p ( oo, and l(u) : lltllz,r1an1,y,x1.
Then

l l"(r)llx ( et(u) + c(e)llullr" (M;x)

for al: z: s+iy eII and al le >0,,wherec(e) = "(",,r(y)) ' l ' t rr-r lr cr,e(y)

is a constant (depending on s, p? A), md 1 : + Iu 64)p 
at.

A.P.'ioldatov [2] demonstrated that the Bitsadze representation [17] for
solutions to second-order elliptic systems with constant coefficients

,A7,"V (r, g\ + B 0"oV (r, y) + CilosV (n,y) : 0,

with V : (Vtr.. . ,Vr), can be written as V(c,U): ReOu(z), where u(z)
is an A-analytic function and O and A are matrices expressible in terms of
the coefficients of the system. Thus, formulas (3.2) and (3.3) may also be
applied for solving the Cauchy problems for second-order elliptic systems in
a half-plane. As an example, we consider the Cauchy problem for the Lam6
system of equations,

p,LV * () + /r) grad div V : 0,

Vla:  G( ' ) ,
TaVlu - H(s),

where .l and p ate positive constants, V = (VtrV2) is the displacement vector,
?6 is the stress operator defined by the equality

(3.4)

(3.5)

(3.6)

ru: ((t+^l;)n f:il r. * (ii? 6li'ry,,) a,,
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and v = (q,22) is the outward unit normal'

The following theorem is valid:

Theorem 3.6. Supp ose that afunctionV(r,y) e C2(n;R'2)n0r(tr;lR'2)

is a solution to the problem (3.4)-(3.6) and possesses t.he propetty

^ f ,
V(n,0) e .Lo(arl;lR2), 

J, {ruv)tt,o)dt e Ip(aII;lR'2).

Then V(a,g) is determined by the formula

I/ = ReOu,

wherc
/  ;  ;  \  , \ * 3 p"  :  ( _ ,  2 , " - r  )  ,  , : .  ̂ f i ,

andu(z)  is  a funct ionof  thec lass H\( I I ;R '2) ,  wi t .h  A:  ( :  
- l ) ,1(p(  

oo,

which takes the values*lr, : f : 8*ih on the set M, with the functions g(')

and h(t) determined by the telations

Re o(s + ihxr) - G(t)'

Reo'(g + ihxr) : [ '  Hft)d,r, o' : (] '- ' \
J t t  

' ) u "  "  - \ i  - i x  
) '

The values of the function u(z), z = n * iy € Il, are detetmined by

the following C arleman-type formulas:

u(z) : *"gg n'or'lo,'offi(l -"o't 4+zgni$)t,,, dt (3.7)

f o r l ( p ( m a n d

u(z):#"t* e-nee) [ ,#(f  
-"eo(1+2*) t1, la (4.8)

f o r l ( p ( o o , w h e r e

vk):*€- rbm), o=arctan ffi*arctan ffi:.,.+.,z,
9o(z) : -?"'1o'-o2) sin o'
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I. E. Niezov [13] obtained a solution to the Cauchy problem for the Lam6
system of equations in domains of special shape by means of some other

Carleman functions. The above results represent another approach to solution
of this problem.

Using (3.7) and (3.8), we can obtain estimates which characterize condi-
tional stability of the Cauchy problem for the Lam6 system. The following
inequality is valid for the quenching function O(z) in (3.7) and (3.8):

| | ( o -, 1. I o (, ) ) " | | - { ::: ; il ty;i:i},?,,,2{n r,,
and lcp6(z)l < *. Therefore,

l l ' ( , ) l l  <  " - "# (n lvo(" ) l -  r )  l l , [ , ,  6 fur ( t )  d t l l

1 s'(r- r) (nlpo(,)l- r) ll I. 5=f, *,r(,) dt ll
< z4(il"-"* (t - ;) llr1L,,1an1,,,6,1

+ zg(y)e"('-#) (1 - ;) llrlL,o1,u,q,1 , i : r,2.

ttere c}(v) = ll?hll L{ih)for (3.?) and c2o@): ll}llr,1r", for (3.8), }+} : t.
We can standardly demonstrate that the inequality

2ct-e-o|( t  *  3)  . ,'  \  r /

is valid for arbitrary € > 0 and

n)-  n": :* , r  r "#".
Therefore, the following conditional stability estimate holds for the problem of

A-analytic continuation in the half-plane with the operator A = (: 
-l 

)t

l l"(r)ll ( el(u) + c(a)llrllro (M;@tt

where l(u) - lltl[,r1an1,u;Cz) and c(e) - co,oel-t'l.*.
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4. The Cauchy-type integral formulas
for generalized A-analytic functions

In this section, we study the generalized Beltrami-type equation

Feu * p,(z)Bu:0,

where B is a perturbing oPerator.
We consider the theory of generalized A-analytic functions and their con-

nection with A-analytic functions (the representation theorem). Various ver-

sions of the represenlation theorem yield inversion formulas and, consequentlS

uniqueness and stability theorems for the two-dimensional problem of emission

tom-ography with variable absorption p(z).

fr"."ppore that the operator A and the scale {X-}H=o 9f_B3,ngh spaces

satisfy the assumptions of Section 2; i.e., Condition A is satisfied' Moreover,

*" ,oppor" that the perturbing operator B belongs to L(X*) for m = 0, 1, . . .

and [A, Bl: AB - BA= 0.

Definition . A generali,zeil A-analytic function in a domain O is a function

u(z) e Ct(O;Xm) satisfying the equation (a.1) in O.

If the equation (4.1) has a solution u(z) e ct(fl;X*) and the operator

function G(z) satisfies the equation

(4.1)

G z - A G , * P ' ( z ) B : O

then the function 
u1;ry: exp(-G)u(a)

is A-analytic in the domain O, i.e., is a solution to the equation

v v -  A v " = Q .

Therefore, solving (4.2), we obtain the representation (4.3) for generali',ed

A-analytic functions *iti"n is an operator analog of the representation for

the usual generalized analytic functions [18].
In the theorems below we state sufficient conditions for existence of an op-

erator solution G(z) to the equation (4.2) and indicate how to find it.

Theorem 4.1. suppose that p, is a rcal-analytic function such that

the following estimate holds for aII z : :D * iy eA':

lffir,l="t#,i + j - - k ,  / c : 0 , I r 2 , . . . ,

where diam(O) <2n" Then the opetator function

G(z) --i #f-Eo)"-'t B e cr(o; L(x^)),
n= l

where zs is the midpoint of the diameter of the domain O, safisfies the opentot

equation (4.2).

(4.2)

(4.3)
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Proof. Introduce the oPerators

G 1  :  p B ,  G n * r =  ( - 6 o ) " P B t  n = ! , 2 , . . .  .

Then

G(z) -- i ffc,{r), Gn+t -- -l(G,)z - A(G*)"), (4.4)
n=l

G"(,):-84{,1,,

Gz(,):-E#rr"l,-iffc,*,. (4.b)

The operator G satisfies formally the operator equation (4.2). we show i
that the series (a.a) and its derivatives (4.5) converge in the uniform operator

topology (i.e., in the norm of the space L(x^)) and the equalities (4.4),

(4.5), and (4.1) hold in the strict sense. Calculate the operatot (6a)"p'B

in the variables c and y. We have

(6e)" pB = 2-o (tr - A)0, + i(E + A)0)" pB

:2-n Bi^nrtX" - A)n-e(E + ,\o uff--.r6ur.
P=0

Recalling the inequality llall ( 1 and the conditions of the theorem, we obtain
the estimate

l lG"+rll-: 11 (6n)"r,Bll^< "llBll- >tr'w: "llBll-(1#!l
?=0

which implies that G, "-G e L(X^). Similarly, we can prove thal G2rGv €
L(x*).

Remark. We can write down the operator exp(-G), using the Bell
polynomials Yr,(sr, a2t. . . ,nn), n 2 1, in n variables [15] that are employed in
combinatorial analysis. By definition, we have

y,(,r,n2,...,no):-t 
#(i i)- '  (X)r'  .  (#)-",

r(o)

where summation is ca,rried out over all unordered partitions zr(n) of the num-
ber z, i.e., over all representations of n as the sum of positive integers:

zr (n)  :  { (kr ,kr , . . . , f r , , )  :  f r r  *  2kz *3&e *  " '  *  nkn -  n ,  k i> 0} .
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Using the exponential generating function

t  *E #r,@r,r2t.. . ,no):*r[E #r"f
for the Bell polynomials, we see that

@ (a -  o -^ \ f ,

exP [-c( ' ) ]  :  n+ D #'"(Gt,Gz, ' ' ' ,Gn) '
n=1

We give some examples of construction of the operators G and' e-G.
Suppose that the point z6 coincides with the origin.

Example 1.  Let  p(z) :  const .  Then Gr :  pB and Gs :0 for  k> 2.
Therefore, G(z) - -ZprB and,

e-G(r) : "zoB,

Example 2. Suppose that p,(z): 12 *A2 = zz. Then Gr - zZB,

G z :  - 6 4 Q 2 $ :  - ( z E - z A ) B , G s :  - 2 A 8 ,  a n d  G 3  : 0  f o r  k  >  4 .
Therefore,

E x a m p I e 3. Suppose that p,(z) is an analytic function in the domain O
(i..., ttz : 0) which satisfies the conditions of Theorem 4.1 (the condition of

real analyticity in Theorem 4.1 is inessential). In this case, Grr11 - p@)gn"
and, by the Remark to Theorem 4.1, we infer that

exp[-c(z)] : r + 
L#t" 

(ua, u$ tB, /2) 4,2 p,..., t (o-') *-r u1 .

Another way of solving the equation $.2) is connected with solution
of the direct problem for the transport equationl therefore, we will make
use of the condition of real analyticity of the function p(z) and convexity

of the domain O. Given a point z in the strictly convex domain 0 and
a direction eie, d"fin" the function t : lkrp\ so that t be the point of
intersection of the ray starting at the point z in the direction -"ip *ith
the boundary f of the domain O. Assume that z € O. Then the function

l 2
m(z,e): I p()ldel

J t(r,pl

is a solution to the transport;Cuation.

e-'emz * e'em, - p(z\. (4.6)

G(z) : -r (;+ f;e)a
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Expanding the function m(z,g) in the Fourier series

/ \ \ -m\z,g) : I  m1r"-;kv,
lc=-o

we obtain the following system of equations in the odd
tion 1):

harmonics (see Sec-

(*z*+t)z * (mz*$,)": 0, /c : 0r 1, .  .  .  ,

2(ml, - t t(z).

Using these relations, we easily see that a formal solution to the equation (4.2)

can be written as

G(z) :-, i m2a1(z)B(-A)e.
t=0

We can also find this solution by solving the nonhomogeneous equation (4.2)

by the formula
1  t f

c(0 : ; J J"K(" 
- )pQ)B dn dy.

The following theorem shows that the function G(z) is a smooth solution to

the equation @.2).
Theorem 4.2. suppose that a strictly convex domain o .has smooth

boundary f of class C2 and p e C2(O) ;r a rca!-valued function. Then

the opemtor function G(z) equals
. @

-2B|mz*+tk)?A)k e Ct(o; L(x^\) n c(CI.; L(x^))
&=0

and satisfies the equation (4.2\.

To prove Theorem 4.2, we need some lemma on smoothness of the func-
tion X, a solution to the transport equation (a.6) with the right-hand side equal
to  1.

Lemma 4.L. Suppose that the boundary I of a stfictly convex domain {l

is of the class C2 and y is a solution to the following boundary value problem:

xz ( r ,p \ " - i e  +x r ( r , g )e ;e : ! ,  z  € {1 ,

xb- : o'
Then the functions Xz and Xz are continuously differentiable with respect to I
at each interior point z € Q. Moreover, the following formulas hold:

/  \  " - i ' r .  r r h  \ \  
o i ?

x,Q,e\: i-(t * icot(B - e)), xz(z,e):7(t -; cot(B - e)). (4.7)

!f$6 si|(z,p) is the vectot tangent to the boundary I at the point t: ^l(zrvJ"
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We can prove Lemma 4.1 by straightforwardly calculating the partial
derivatives y, and ys.

Proof of Theorem 4.2. Show that the functions t??, m", and rmz are
continuously differentiable with respect to g at each point z € O. Then
the vectors

{ * t , * s , . . . } ,  { ^ t r , r n t r r . . . } ,  { * v r m y z t . . . }

belong to t|, which guarantees convergence of the series

G(z) --r" i  m,21,a{z)(-A)k
lc=0

and its derivatives. Continuous differentiability of the function rn with respect

to g for all z €0 follo*. from the representation

m(r,p): [ '  p(C) ld(l  :  [* ' ' ' "  rQ - peiv)dp.
Ji lr,p\ Jo

Differentiating this formula with respect to z and' g, we find that

rr,2 : t (tk,d)x, * Io""o' 
p, ilp,

(^,)'o = tr, (.r e, v)) x', - *(u 
(t {", v)) x")

* n 
|o*'''o' 

(- rrrreip + trrze-ie) p d,p, (4.8)

where lQ,p) : z - Xedr and lL : -iX"iv - ytreiv. Recalling the smoothness

condition and Lemma 4.1, from (4.8) we infer that the function rn, is continu-
ously differentiable with respect to p for all z € O. Continuity of the function
(*z)',p is verified straightforwardly. Theorem 4.2 is proven.

iheorems 4.1 and 4.2 enable us to transfer the properties of A-analytic
functions to solutions to the equation (4.1). In particular, we have the integral
formula with the generalized Cauchy kernel for solutions to the equation (4.1).

Theorem 4.3. Suppose that the conditions of Theorems 4.1 or 4.2 are

satisfred. If u(z) e Cl(O;X-) n C(0; yn+t) is a solution to the equa-

tion (4.1) then the following integral formula with the genenJized Cauchy
kernel is valid:

'(0 : * lrKn(,,C)(d, * Adz)u(z), ( € o,

where Kn(",C) : K(z - C)gG(C)-G(') is an operator function with values

in L(X^+r; X^) continuous in both va,riables z,e € 0 for z + e .
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ln conclusion, we observe a possible approach to determination of the ab-
orption p(z) when the source function a(z) is unknown. For example, if
r solution u(z) to the equation (a.1) is continuous up to the boundary then
the following equality holds [7]:

t  
|  [  *e - t )ec ( t ) - c ( , ) (az+  Adz ) f ( z ) , ,  € f ,

;r( t) :  in, 1y

which can be considered as a nonlinear equation in the function p'(z). IL p:
const and G(z) : -pzB then for the coefficient p we obtain the relation

lr(,) = *i + [^*p -t)(z -tr(a, + Attz)r(z), r € r.
z - ' zor T_o te| JI

Observe that the results known so far on uniqueness and stability of
a solution to the problem of emission tomography with absorption of finite
smoothness require that the gradient of the absorption be small (see [11,12,
161). In Theorems 4.2 and 4.3, we only require that the function p belong

to the class C2(0). A detailed exposition of the applications of the theory
of A-analytic functions to the emission tomography problems is presented in
the article [8].
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