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TWO-DIMENSIONAL TOMOGRAPHY
PROBLEMS AND THE THEORY
OF A-ANALYTIC FUNCTIONS

E. V. Arbuzov* A. L. Bukhgeim** and S. G. Kazantsev ***

Abstract

We reduce the inverse problem of finding the right-hand side of the stationary
one-velocity transport equation to the boundary value problem for an elliptic
equation with operator coefficients on the plane. Particular cases of these inverse
problems are the problem of inverting the Radon transform in the fan-beam
statement and the problem of emission tomography (the Radon problem with
absorption). We present the Cauchy- and Poisson-type integral formulas for
solutions to the corresponding boundary value problems; in the case of incomplete
data an analog of the Carleman-type formula is given.

Key words and phrases: inverse problems, emission tomography problem.

In the present article, we study the connection between the inverse prob-
lems of finding the right-hand side of the stationary one-velocity transport
equation and the theory of elliptic equations with operator coefficients on
the plane. Particular cases of such inverse problems are the problem of in-
verting the Radon transform in the fan-beam statement and the emission to-
mography problem (the Radon problem with absorption). The productivity
of the complex interpretation of the planar tomography problems was first
observed in the monograph [4]. The systematic study of the tomography
problems from this viewpoint was initiated in [1,5-7]. In the present arti-
cle, we expose some new results in this field. The article comprises four sec-
tions. In Section 1, we describe reduction of the inverse problems of finding
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2 E. V. Arbuzov, A. L. Bukhgeim, and S. G. Kazanisev

the right-hand side of the transport equation to the boundary value problems
for elliptic equations with operator coefficients. In particular, we show that
the differential statement of the Radon problem reduces to the Cauchy problem
for the Beltrami-type operator equation

Jqu=0u— Adu=0.

Thus, the inversion formula for the Radon transform amounts to the A-ana-
log of the Cauchy formula for the operator O4. If we know the integrals of
the sought function over all straight lines passing through a given set M then
we naturally arrive at using the operator analog of the Carleman-type formula.
It was demonstrated in [1] that the straight line tomography problem with
single reflection from the boundary reduces to the Riemann-Hilbert boundary
value problem and, in the case of a half-plane, to the Dirichlet problem for
the operator As = 49484 whose solution is given by the A-analog of the Pois-
son formula. The corresponding Cauchy and Poisson formulas are presented
in Section 2. The Carleman-type formula is derived in Section 3. In Sec-
tion 4, using the analogs of the representation theorems, we prove that more
complicated tomography problems with variable absorption reduce to the cor-
responding problems without absorption.

1. Reduction of inverse problems
to boundary value problems

Let Q be a simply connected open set in R? with smooth boundary 9.
Consider the following stationary one-velocity transport equation in the do-
main §2:

uz(z,y, ) cos ¢ + uy(3,y,9) sing + p(z,y)u(z, y, #)

1 v

- o [ A coste = ¢ ule.)ae = ala) (1D
As is well known, the transport equation has the following physical meaning:
the function u(z,y,) is the density of particles at a point (z,y) moving in
the direction v = {cos¢,sin¢}; the function a(z,y) is the density of particle
sources in the domain €, and the functions p(z,y) and 7(z,y,cosp) charac-
terize the absorption and scattering properties of the medium. The function
p(z,y) > 0 is called the absorption and the function (z,y, cos @), the disper-
sion indez. If the source function a(z,y) is known then, to guarantee unique-
ness of a solution to the direct problem, we need to know the incident flow

u'g_ = f-,

where £ = 80 x [-7,7), 2+ = {(z,¥,¢) € Z: (n,¥) 2 0)},Z-=Z\I4,nis
the outward unit normal of 89, and (,) stands for the inner product in R2,
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In particular, the absence of the particle flow incident from the exterior of
the domain {2 means that f_ = 0.

The basic object of our study is the inverse problem of finding the right-
hand side a(z, y), provided that we know the outgoing particle flow for the equa-
tion (1.1) in the domain £; i.e., the values of u(z,y,¢) on the manifold X,

H‘IE+ = f+v

or some linear functionals of fi. Considering such a statement of the inverse
problem, we henceforth assume that we simply know the trace of the function u
on the whole boundary L,

“lz = f, (1’2)

or the corresponding functionals of f.

We new turn to the complex interpretation of the problem (1.1), (1.2).
To this end, we identify R? with the complex plane C by putting z = z + 1y,
i2 = —1. Passing to the complex variable z, we preserve the former notations
for functions; i.e., we put a(z) = a(z,2) = a(z,y), u(z,9) = u(z,y,), etc.
Defining the operators

b P _1(08_ 00\ g 0u_1(0u
=% 2\3z ‘'ay) “T 8z 2\6z Yoy )’

we rewrite the problem (1.1), (1.2) in the complex form

us(z,9)e ™ + us(z,0)e™ + p(2)u(z, )

- % _2 7 [z, cos(p — ¢')] u(z, ¢')de' = a(2), (1.3)
2€Q, @€ [,
u])_j == _f(t,tp). (1°4)

Now, expanding the functions u, f, and 4 in Fourier series in the variable ¢
and recalling that all functions are real-valued, we obtain

u(z,¢) = uo(2) + me{z uk(z)e-‘*v}, (L)

k=1

Hze)= fo(z)+2Re{§: f*(z)e—ikw}: (1.6)

k=1

1(z,c080) = () + 3 M) (e + ), (1)
k=1
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where ug(2), fo(z), and 3%(z), k = 0,1,2,..., are real-valued functions. In-
serting the expansions (1.5)-(1.7) into (1.3) and making the corresponding
transformations, we obtain the following countable system of first-order differ-
ential equations in the Fourier coefficients {u;(z) }:o:n:

(uk)z + (uk42): + p(2)upg1 = Vogrurp, k=0,1,2,.... (1.8)
Moreover, the right-hand side a(z) is determined by the formula
a(2) = 2Re{(u1): } + p(2)uo(2) — yo(2)uo(2). (1.9)
Make the so-obtained Fourier coefficients into the vectors
u(z) = {ug(z),ul (2} .}, f(z) = {fg(z),ﬁ(z),.. }

which we consider, for definiteness, in the Hilbert space X = Iy constituted by
complex-valued vectors u = {ug,us,...}, u; € C, with the norm

o0

lhall® = 3 fusf.

=0

Consider the right shift U in the space X:

U: {uo,u1,...} = {0,uq,uy,...}.
Then the adjoint operator U* in I3 is the left shift

U*: {uo,u1,...} - {ug,uy,...}.
Moreover, introduce the weighted left shift
['(z): {wo,u1,...} = {11u1,v2us,v3u3, .. )

Using the above notations, we can rewrite the system (1.8) in operator form

u; + U*UM; 4 pU%u —I'(z)u = 0.
Putting, for brevity,

A=-U'U*, G4=08-A408, Ao(z)=p(z)U*-I(z),

we obtain the following generalized Beltrami-type equation with operator co-
efficients: N
dau+ Ag(z)u=0, ze. (1.10)

The data (1.4) transform into the Cauchy data

ey = (1.11)
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consequently, to solve the original inverse problem (1.3),(1.4), it suffices to
obtain an analog of the Cauchy formula for (1.10); afterwards, the right-hand
side a(z) is determined by (1.9).

The main result of the present article is the Cauchy formula for the opera-
tor in (1.10) with Ag(z) = p(z)B (the case [A, B] = 0 is considered in Section 4
(Theorem 4.3) under the assumption that p(z) € C?(Q), with © a strictly
convex domain with smooth boundary). The main difficulty in studying (1.10)
is that, unlike the classical Beltrami equation, in our case the equality ||A|| = 1
holds not only in the space I3 but also in the whole scale of the spaces I3* with
the norm

[ Z(l +3)""fusl*s m >0,
j= :
It is well known (see, for instance, [14]) that the resolvent R(A) = (A —
AE)~! of the operator A = U*, as a bounded operator in IJ* for |A| > 1,
extends to the unit circle as a bounded operator from I"‘“ into I i.e.,
R(\) € L(IZ*+,15) for |A| = 1 and m > —1/2; moreover, R()) is strongly
continuous in A for m > 1/2. In Sections 2-4, we use this property to study
the equation like (1.10) in the abstract situation by postulating the indicated
property of the resolvent of the operator A in an arbitrary discrete scale of
Banach spaces (Condition A). In the derivation of the Carleman formulas for
A-analytic functions, we have to require that ||A|| < 1. As regards the inverse
problem (1.3),(1.4), we can fulfill this condition by considering the operator
= U* in the space I3, with the norm

[ o]
2 =25 2
lally =) s uil’, s €(0,1).
j=0

In this case we have ||A||, £ s < L.

2. The Cauchy and Poisson formulas

Suppose that X is a complex Banach space and we are given a chain
Xm . Xm+tl € X™ C X% = X of Banach spaces densely embedded into X,
where m > 0 is integer:

1l xm = [l < [ullgnyy for all ue X5 lullp = fJul.

We state the following condition on the operator A:
Condition A. Suppose that A € £(X™) for each m > 0, the oper-
ator A| xm has spectral radius p(4] X"') equal to 1, and the resolvent R(A)

extends by strong continuity in X™ to the circle [A\| = 1 as an operator
in L(X™H X™),
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Here £(X) is the space of bounded linear operators in X, cixmtlox=)
is the space of bounded linear operators acting from X™*+! into X™, and A xm
is the restriction of the operator A onto the subspace X™.

The first part of Condition A implies that the resolvent R()) = (A-—J\E)‘1
of the operator A belongs to the space L(X™) for A > 1 and is an analytic
operator function outside the unit disk. The second part of Condition A implies
existence of the following operator function for z # 0:

K(z) = (5) ' R(="¢) = (2) (A + ¢*PE) T = (zE+24)7, ¢ = arg(2),

with values in the space £(X™*1, X™).

The basic properties of the operator function K(z) are stated in the fol-
lowing theorem:

Theorem 2.1. Suppose that the operator A satisfies Condition A in
the discrete scale {X™}®_,. Then the following assertions are valid:

1) K(2) € L(X™*, X™) and ||K(2)l|g(xm1 xm) S 2 2 # 0;
2) K(21)K (22) = K(22)K(21) € L(X™H, X™), 21 # 22;
3) K(21)K (22) = K (22 — 21) [K(#1) — K(23)], z1 # 233

4) the strongly continuous derivatives Kz and K belong to Lixmtixm™)
for z # 0 and the equality '
K; —AK, =0

holds. Moreover, for z # 0, the highest-order derivatives have the form
K™ = (—1)ratk™, K™ = (-1)"nlAmKmH e £(X™HMHL X,

Remark 1. We fulfill Condition A for a given operator A by choosing
the corresponding scale {X™}%_, of Banach spaces. Once such a scale is
already found for the operator A, it is the same for the operator A% e,
the operator (2E + zA?)™! € L(X™+! X™) is defined. This follows from
assertion 2) of Theorem 2.1.

Suppose that § is an open set in the complex plane C and a function
u: 0 — X with values in a complex Banach space X belongs to the class
C(9; X), where C k(Q; X) is the space of k times strongly continuously dif-
ferentiable functions with values in X.

Definition. A function u(z) € C*(2; X) is called A-analytic in the do-
main  if the equality

u; — Au, =0 (2.1)

is valid for all z € Q. Denote the set of all A-analytic functions u: Q- Xm
by the symbol A(Q; X™).
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As an example of an A-analytic function in the domain C\{0} we may take
the function u(z) = K(z)h, where h is some fixed vector in the space X el
and K(z) is the operator function of Theorem 2.1.

From Theorem 2.1 and the Stokes formula we derive the following theo-
rem:

Theorem 2.2. Assume that u(z) € C*(Q; X™*!). Then, for all { € Q,

- fr K(z - ()(dz + Adz)u(z) — ~ fn K(z — ¢)(uz — Au,) dzdy.

This theorem yields an analog of the Cauchy-type integral formula for
A-analytic functions.

Theorem 2.3. Suppose that u(z) € C(Q; X™+!) N A(R; X™). Then,
for all ( € Q,

2m

u(¢ j K(z — ¢)(dz + Ad2)u(2).

Detailed proofs of Theorems 2.2 and 2.3 are given in [5, 7).

To obtain analogs of the Poisson and Cauchy formulas in the half-plane
II = {Imz > 0}, we suppose, for simplicity, that X is the complexification of
the real Hilbert space X'; i.e.,, X = X' @ iX'. Respectively, the scale {X™}
consists of Hilbert spaces too; moreover, alongside Condition A, we suppose
that the operator A is real; i.e., AX' C X'.

Definition. The vector-functions v(z,y) € C*(II; X) such that
Aav(z,y) = (E - A)Qauv(m,y) +(E + A)zawv(z, y)=0
are called A-harmonic in the half-plane. We denote the set of such functions
by ha(II; X).
Consider the operator function

Pas(t) = Payla —t) = 1 o pra @ = Ap = A~ )

where z =z + iy and p = ;'—:_—:;E:%:}. Using this function, we define the A-har-
monic Poisson integral by the formula

v{#)= /_ : By gle—Higliidt = (Pry +5)(s). (2.2)

The immediate calculations carried out in [5] show that Py .(t), with ¢ € R
fixed, is an A-harmonic function of z in II. Moreover,

Pa.(t) € L(X™F2 X™)
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and o
c(z,m
|Pa,:(t)el xm < 1 -l,-tﬂ llell xme+2

for all e € X™12. Consequently, Pa .(t) € Lq (R,L(X™+2,X™)),1 < g < oo,
and v(z) = (Pa,y * 8)(z) € ha(Il; X™) for g € Ly(R,X™?), 1 < p < 00

The following assertions are valid for the A-harmonic Poisson integral (2.2):

Theorem 2.4. 2) Suppose that g(z) € Loo(R; X™*?) and ¢ is a point
of continuity of g(z). Then (Pay * g)(z) — g(z0) in X™ asz =2z + 1y — Zg-

b) Suppose that g(z) € Ly(R; X™*?), 1 < p < oo. Then

"PA:S' *B— g"LP(m:Xm) —0 as y—0.

Remark 2. If the function g(z) is uniformly continuous and bounded
on R then the convergence is uniform.

Corollary. a) Suppose that a function g(z) with values in X™*2 is
bounded and uniformly continuous on R and

v(z,y) = { (Pay *g)(z) for y>0,

g(z) for y = 0.
Then v(z,y) € ha(I; X™) N o(I.X™),
b) If v(z,y) € ha(IL; X™+2) N C(1; X™+?) then v(z,y) is representable
as the A-harmonic Poisson integral of its boundary values:
v(g,g) = j Pay(z — )v(t) dt.
—00

The following analog of Fatou’s theorem holds for A-harmonic functions
in the upper half-plane:

Theorem 2.5. Suppose that v(z) € ha(Il; X™*2) and

[s 4]
sup [ [v(e+ in)fgmisdo < 0

—00
for some p € [1, 00].
Then the following limit over nontangent directions exists for almost all
teR:
lirr% v(z) = g(t) € Lp(R; X,
I
z€la(t)
where To(t) = {z =z +iy: |z —1t| < c(a)y}-
If p> 1 then v(z) = (Pay * g)(z) and
lim |[v(z + iy) = (=)l @;xm) = 0

for every 1 < p < o0.
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If p =1 then v(z) = (Pay *w)(z), where w is the finite measure on R
connected with the boundary values of g(t) by the formula dw = g(t) dt + dv
and dv is a measure taking values in the space X™*? and concentrated on
a set of Lebesgue measure zero.

The proofs of all the above assertions proceed by the same scheme as
in [9,10] in the classical case of A = 0. Moreover, if ||A|| < 1 and the initial
function v(2) is A-analytic then the Poisson formula is also valid in the case
p = 1. A precise statement of this assertion is given below.

We say that a vector-function u(z) belongs to HA(IT; X), 1 < p < oo, if
u(z) € A(Il; X) and

o0

fally, =sup [ (e + i)l de < .

)
The space HY(IT; X) is defined to be the space of bounded A-analytic func-
tions in II with the norm

[ulle = iR lu(- + i)l (rsx) -

Theorem 2.6. a) Suppose that u(z) € H%(II; X™*2),1 < p < co. Then
the following limit over nontangent directions exists for almost all t € R:

l‘}icmtu(z) = f(t) € Lp(R; X™*?)
and u(z) = (Pay *f)(z). For p € (0,00), we have

lu(z + iy) — £(z)|l 1, (m;xm) = O
asy — 0.

b) Suppose that u(z) € H}(II; X) and ||A|| < 1. Then the following limit
over nontangent directions exists for almost all t € R:

lim u(z) = £(1) € L (&; X),

u(z) = (Pay *1)(z), and lu(z +iy) — £(2)llymyx) — 0 as y = 0.
Moreover, for such functions, we can also obtain an analog of the Cauchy
formula.

Theorem 2.7. a) Suppose that u(z) € H(I; X™*!) and 1 < p < oo.
Then

u(e) = o /: :(E + AVK (i — 2)u(t)dt, (23)
0= f (B + A)K(t - 5)ut) dt, (2.4)

where K (2) = (z + 2A)™L,
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b) Suppose that u(z) € HY(I1; X) and ||A|| < 1. Then formulas (2.3)
and (2.4) are valid.

3. The Carleman formulas
for A-analytic functions in the half-plane

Suppose that u(z): I — X is an A-analytic function and we know the val-
ues of u(z) on some set M C Il of positive Lebesgue measure. If |All < 1
then we can obtain some formulas which enable us to find u(z) in the whole
half-plane TI from its values on the set M. To this end, as in the classical case
A = 0 (see [2]), we construct a weight “quenching” function ®(z) (in our case,
it is an operator function) whose norm is small on 9I \ M and is large on M.

Theorem 3.1. Suppose that |A| < 1 and

bad)= 1 [ (B A A - A

Xz, A)= = fM ((?ﬂ)%;w + A (u= AN (E- AT 45 ,,:z) &

B(2) = exp[9(2, A) + 1x(2, A)), (3.1)
where the operator exponential function is defined by the formula eV =
Sty -kl_rUk. Then the function ®(z) € L(X) possesses the following prop-
erties:

1) 84@(2) =0 in II;

2) [0(2), 2(0)] =0

3) [8(2), 4] =0;

4) ®71(2) is a continuous linear operator for all z € TI;

5) H‘I"l(z)(}(t)” <1lforallzeTll andte€ Oll\ M.

Using the analogs of the Cauchy and Poisson formulas obtained in The-
orems 2.6 and 2.7 and the above-constructed quenching function ®(z), we
obtain some Carleman-type formulas which yield a solution to the problem of
A-analytic continuation.

Theorem 3.2. Suppose that ||A| < 1, u(z) € H4(II; X), 1 < p < o,
and the function ®(z) is defined by (3.1). Then

a(z) = lim —— [ (E+A)K(t - 2)[87'(z)e®)] u(t)dt  (3.2)

n—oo 271 M

for all z € I1.
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Theorem 3.3. Suppose that ||A|| < 1, u(z) € H4(Il; X), 1 < p < oo,
and the function ®(z) is defined by (3.1). Then

(B A2)(u—A)" (5= A [87(2)8()] "u(t) de
(33)

Py M t)2+ 2
for all z € II.

The above results readily yield the following theorem which is an analog
of the second part of F. and M. Rieszs’ theorem:

Theorem 3.4. Suppose that ||A|| < 1, u(z) € HY(II; X), 1 < p < oo,
and u(t) = 0 on some set M C OII of positive Lebesgue measure. Then
u(z) =0.

The Carleman-type formulas (3.2) and (3.3) enable us to obtain a condi-
tional stability estimate for the problem of A-analytic continuation from a part
of the boundary.

Theorem 3.5. Suppose that ||A|| = s < 1, M C 01l is a set of positive
Lebesgue measure, u(z) € HY(I1; X), 1 < p < oo, and I(u) = [|ul| , am\ar;x)-
Then

lu(z)llx < el(u) + c(e)l|ull g, m;x)

for all z =z + iy € Il and all € > 0, where ¢(e) = e(c,lp(y))lhsl_lhg Cs,p(Y)
is a constant (depending on s, p, y), and 7 = 'l'i'an {r,_—tit’+_y!'dt'

A.P.Soldatov [2] demonstrated that the Bitsadze representation [17] for
solutions to second-order elliptic systems with constant coefficients

A8::V(z,y) + BOzyV(z,y) + Cc')'wV(:c, y) =0,

with V = (W,..., V), can be written as V(z,y) = Re@u(z), where u(z)
is an A-analytic function and © and A are matrices expressible in terms of
the coefficients of the system. Thus, formulas (3.2) and (3.3) may also be
applied for solving the Cauchy problems for second-order elliptic systems in
a half-plane. As an example, we consider the Cauchy problem for the Lamé
system of equations,

pAV + (A + p) grad divV = 0, (3.4)
V| = CG(=), (3.5)
TBVIM =.H(z), (3.6)

where ) and p are positive constants, V = (V}, V;) is the displacement vector,
T is the stress operator defined by the equality

(A+2p)vy  pry Lo Ay
to= ( Avy p O + pvi (A4 2p)rvg By,
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and v = (v1,v7) is the outward unit normal.
The following theorem is valid:

Theorem 3.6. Suppose that a function V(z,y) € C(; R?)nCY(TI; R?)
is a solution to the problem (3.4)—(3.6) and possesses the property

V(z,0) € Ly(dT1;R?), A%mmmmﬁe%wmnﬁ

Then V(z,y) is determined by the formula
V = ReOu,

s [¥ i A +3p
S\l 2e—-1) T X
and u(z) is a function of the class HE(IT; R?), with A = (g _; ), 1€ ps o,

which takes the values u|M = f = g +ih on the set M, with the functions g(t)
and h(t) determined by the relations

ReO(g + ih)(t) = G(z),

Re®(g +ib)(t) = [ H(r)dr, © = (i?ﬂx)

31

where

The values of the function u(z), z = z + iy € II, are determined by
the following Carleman-type formulas:

u(z)=— lim e """(‘)/h G _mpm (1 '"{po(z)*’zgﬁ%”_ﬂ)f(t) dt (3.7)

o s t)2+y* \ 0

for 1 £ p< oo and

t2 one(t) _ Ay
(o) = o Jim o) [ (8 SRR FOTICE
151

for 1 < p < oo, where

—1 i

-t
p(z) =— (cx+ 111I 1 a=a.rcta.n-z—-—+arctan B = o1 + oy,
lz—ta] /)’ lz—t |z—ta|
2z 4
wo(z) = —Zeiler—a) gin g,

T
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I. E. Niezov [13] obtained a solution to the Cauchy problem for the Lamé
system of equations in domains of special shape by means of some other
Carleman functions. The above results represent another approach to solution
of this problem.

Using (3.7) and (3.8), we can obtain estimates which characterize condi-
tional stability of the Cauchy problem for the Lamé system. The following
inequality is valid for the quenching function ®(z) in (3.7) and (3.8):

) ar | 0D nlen(z) +2), te M,
1, <
”((I) ( )Q(t)) ” < { e—n% (n|¢0(2)|+2)’ te 3H\M,

and |po(2)| < % Therefore,

[u(2)]| €% (nleo(2)| +2)

L=t

+ "% (n]po(2)| +2)”/ _W (t)dt”
'--(.. 2!:;(9')8—“? (]_ <+ ;) "f"L_p(al'l\M;C?)
. G - .
+2ch (y)e" =) (1 + ;) Il L, (aric2y » E=1,2

1 1
Here cl(y) = || 2% o "L,(dz) for (3.7) and ¢3(y) = ”;”L.!(dr) for (3.8), ;+% =1,
We can standardly demonstrate that the inequality

2t (142) <c

is valid for arbitrary € > 0 and

€ a?

;l—e 8c'(y)

n2n. =

Therefore, the following conditional stability estimate holds for the problem of

A-analytic continuation in the half-plane with the operator A = ( g "; ):

[[u()|| < el(w) + (&)l ., arc)

where I(u) = "ul[Lp(al'l\M;C?) and c(e) = ca'pz-:l_s: :
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4. The Cauchy-type integral formulas
for generalized A-analytic functions

In this section, we study the generalized Beltrami-type equation
Gqu + p(z)Bu =0, (4.1)

where B is a perturbing operator.

We consider the theory of generalized A-analytic functions and their con-
nection with A-analytic functions (the representation theorem). Various ver-
sions of the representation theorem yield inversion formulas and, consequently,
uniqueness and stability theorems for the two-dimensional problem of emission
tomography with variable absorption p(z).

We suppose that the operator A and the scale {X™}3_g of Banach spaces
satisfy the assumptions of Section 2; i.e., Condition A is satisfied. Moreover,
we suppose that the perturbing operator B belongs to L(X™) form =0,1,...
and [A,B]=AB—-BA=0.

Definition. A generalized A-analytic function in a domain § is a function
u(z) € C*(N; X™) satisfying the equation (4.1) in Q.

If the equation (4.1) has a solution u(z) € C'(€; X™) and the operator
function G(z) satisfies the equation

G;— AG; + p(z)B=0 (4.2)
then the function '
" v(z) = exp(—G)u(z) (4.3)
is A-analytic in the domain €, i.e., is a solution to the equation
Vi— sz =10.

Therefore, solving (4.2), we obtain the representation (4.3) for generalized
A-analytic functions which is an operator analog of the representation for
the usual generalized analytic functions [18].

In the theorems below we state sufficient conditions for existence of an op-
erator solution G(z) to the equation (4.2) and indicate how to find it.

Theorem 4.1. Suppose that p is a real-analytic function such that
the following estimate holds for all z =z + 1y € Q:

o ik
a_xra%(z) SCER'J_I:': 3+J=ka k=0,1,2,...,

where diam(Q) < 2R. Then the operator function

oo
(.2.7 - fﬂ)n = yn—1 1/ 5
Glz)=~) ———(-%)" #BeC (W L(xX™),
n=1
where zg is the midpoint of the diameter of the domain (0, satisfies the operator
equation (4.2).
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Proof. Introduce the operators
G1=uB, Gny1= (—SA)".H-B, a=1,8. 4
Then

6(e) = 2("““” Ga(2), Gutr = —[(G)s = A(Ga)], (44)

6 = -y E= ),

n=1
o =- Y ¥l g,y E=flq,,, (4.5)
n=1 n=0

The operator G satisfies formally the operator equation (4.2). We show
that the series (4 4) and its derivatives (4.5) converge in the uniform operator
topology (i.e., in the norm of the space L(X™ )) and the equalities (4.4),
(4.5), and (4.1) hold in the strict sense. Calculate the operator (BA) uB
in the variables z and y. We have

(94)"uB = 27 ((E — A)d +i(E + A)3y)"uB

o™ u

n
=2""BY P’CH(E - A)"?(E+ A)PW.

p=0

Recalling the inequality ||A|| < 1 and the conditions of the theorem, we obtain
the estimate

(n+1)!

[Gatallm = [|(Ba)"eBI, < clBll 3 C2EE=P) _ gy, (2

p=0 et
which implies that G,e~¢ € £(X™). Similarly, we can prove that G;,G; €
L(X™). |
Remark. We can write down the operator exp(—G), using the Bell

polynomials Y, (21,22,...,2s), n 2 1, in n variables [15] that are employed in
combinatorial analysis. By definition, we have

3 ky T3 ko z, kn
Yn(mla:'c?s :zn Z k]lkg (11) (E) e (E) .

where summation is carried out over all unordered partitions 7(n) of the num-
ber n, i.e., over all representations of n as the sum of positive integers:

= {(k1,k2s- .. kn) : 1 +2kp + 3k3 + -+ + nka =7, k; >0}
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Using the exponential generating function

o0 t"
1+ Zl EYn(zl,zz, ., Tn) = €Xp Z —xn:|
n=

for the Bell polynomials, we see that

exp[— G(z)]—E+E Lia f Ya(G1,Gh, ..., Ga).

n=1

We give some examples of construction of the operators G and e~€
Suppose that the point zp coincides with the origin.

Example 1. Let p(z) = const. Then G; = pB and Gy = 0 for k > 2.
Therefore, G(z) = —zuB and

c-G’(z) = eEnB.

Example 2. Suppose that p(z) = 2% + y%2 = zz. Then G; = 2B,
Gy = —04(22B) = —(2E — ZA)B, G3 = —2AB, and Gy = 0 for k > 4.

Therefore,
z z
6(z) = (2! + ﬁA)B.

Example 3. Suppose that u(z) is an analytic function in the domain £
(i.e., pz = 0) which satisfies the conditions of Theorem 4.1 (the condition of

real analyticity in Theorem 4.1 is inessential). In this case, Gp+1 = p(™) BA™
and, by the Remark to Theorem 4.1, we infer that

exp[ G(z) =1+ Z—Y (#B pMAB, s AR, ... #(R—I)An—lB).
n=1
Another way of solving the equation (4.2) is connected with solution

of the direct problem for the transport equation; therefore, we will make
use of the condition of real analyticity of the function p(z) and convexity
of the domain €. Given a point z in the strictly convex domain  and
a direction €', define the function ¢ = 7(2,¢) so that ¢ be the point of

intersection of the ray starting at the point z in the direction —e* with
the boundary I of the domain ). Assume that z € . Then the function

i, 5) = L ( QLT

is a solution to the transport equation

e %m; + ePm; = (2). (4.6)
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Expanding the function m(z,¢) in the Fourier series

m(z,p) = Z mye k¢,

k=—o0
we obtain the following system of equations in the odd harmonics (see Sec-
tion 1):
(Mmakt1)s + (M2k43): =0, k=0,1,...,
2(m1)s = ().

Using these relations, we easily see that a formal solution to the equation (4.2)
can be written as

oo
G(z) = —QZﬁzkﬂ(z)B(*A)k-
k=0
We can also find this solution by solving the nonhomogeneous equation (4.2)
by the formula

1
6(0) =+ [[ Kz~ Outz)Bdzdy
The following theorem shows that the function G(z) is a smooth solution to

the equation (4.2).

Theorem 4.2. Suppose that a strictly convex domain §! has smooth
boundary T of class C? and p € C%*(Q) is a real-valued function. Then
the operator function G(z) equals

e o]
~2BY g (2)(—A)* € CH(R £(X™)) N C(|; £(X™))
k=0
and satisfies the equation (4.2).

To prove Theorem 4.2, we need some lemma on smoothness of the func-
tion ¥, a solution to the transport equation (4.6) with the right-hand side equal
to 1.

Lemma 4.1. Suppose that the boundary I' of a strictly convex domain
is of the class C? and ¥ is a solution to the following boundary value problem:

x=(z,0)e™ + x:(z,0)e¥ =1, z€Q,
XIE_ == 0-

Then the functions x, and x; are continuously differentiable with respect to ¢
at each interior point z € ). Moreover, the foHowing formulas hold:

-¢)), xi(z9) = —(l—wotﬂ #))- (

Here '#(2%) jg the vector tangent to the boundary I' at the point t = ~(2 z,4p).

xz(z,9) =
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We can prove Lemma 4.1 by straightforwardly calculating the partial
derivatives x and xy.

Proof of Theorem 4.2. Show that the functions m, m;, and mj are
continuously differentiable with respect to ¢ at each point z € 2. Then
the vectors

{mlsmas"'}$ {mlz:milzs*-- }& {mlfa mag,...}

belong to i}, which guarantees convergence of the series

oo
G(z) = —2BY Mg (2)(~A)*
k=0
and its derivatives. Continuous differentiability of the function m with respect
to ¢ for all z € Q follows from the representation

z x(z.0) .
m(ze)= [ wOlcl = [ wta = peydn.

(zl'p)

Differentiating this formula with respect to z and ¢, we find that

x(2,%¢)
m, = p(1(2,9))x: + /0 bz dp,

(ma);, = p2(1(2,0)) X, + % (u (7(2, fp))xg)

x(z.¥) . . '
+1 f (—pzz€" + prze™%) pdp, (4.8)
0

where 7(z,¢) = z— xe' and 7}, = —ixe" — xl,€*. Recalling the smoothness
condition and Lemma 4.1, from (4.8) we infer that the function m; is continu-
ously differentiable with respect to ¢ for all z € . Continuity of the function
(msz),, is verified straightforwardly. Theorem 4.2 is proven.

Theorems 4.1 and 4.2 enable us to transfer the properties of A-analytic
functions to solutions to the equation (4.1). In particular, we have the integral
formula with the generalized Cauchy kernel for solutions to the equation (4.1).

Theorem 4.3. Suppose that the conditions of Theorems 4.1 or 4.2 are
satisfied. If u(z) € CY(Q;X™) N C(Q;X™*) is a solution to the equa-
tion (4.1) then the following integral formula with the generalized Cauchy
kernel is valid:

) = -;E./I.‘Kg(z,C)(dz-l-« Adz)u(z), (€,

where Kp(z,() = K(z — ¢)e€)-C() js an operator function with values
in L(X™*1; X™) continuous in both variables z,({ € Q1 for z # C.
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In conclusion, we observe a possible approach to determination of the ab-
sorption pu(z) when the source function a(z) is unknown. For example, if
a solution u(z) to the equation (4.1) is continuous up to the boundary then
the following equality holds [7]:

ey L — 1)eC-G(2) .
2f(t) = 2m_‘/[“K(;z t)e (dz + Adz)f(z), teT,

which can be considered as a nonlinear equation in the function p(z). If p =
const and G(z) = —uzB then for the coefficient 4 we obtain the relation

t)_zmz!‘ ]K(z—t)(z—_) (dz + Adz)f(2), teT.

Observe that the results known so far on uniqueness and stability of
a solution to the problem of emission tomography with absorption of finite

smoothness require that the gradient of the absorption be small (see [11,12,
16]). In Theorems 4.2 and 4.3, we only require that the function p belong

to the class CQ(S_'Z-). A detailed exposition of the applications of the theory
of A-analytic functions to the emission tomography problems is presented in
the article [8].
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