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We investigate experimentally and theoretically the third harmonic generated by a double-layer fishnet
metamaterial. To unambiguously disclose most notably the influence of the magnetic resonance, the generated
third harmonic was measured as a function of the angle of incidence. It is shown experimentally and numerically
that when the magnetic resonance is excited by a pump beam, the angular dependence of the third harmonic
signal has a local maximum at an incidence angle of θ ! 20◦. This maximum is shown to be a fingerprint
of the antisymmetric distribution of currents in the gold layers. An analytical model based on the nonlinear
dynamics of the electrons inside the gold shows excellent agreement with experimental and numerical results.
This clearly indicates the difference in the third harmonic angular pattern at electric and magnetic resonances of
the metamaterial.
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I. INTRODUCTION

The emergent field of metamaterials has brought optical
materials to a qualitatively new level. It became possible to
access new functionalities and optical properties of media by
applying subwavelength structuring. Spectral selectivity and
extraordinary optical transmission,1 chirality,2 anisotropy,3,4

optical magnetism, and negative refraction could be assigned
to thin-film media by means of modern nanolithography.5–9

The majority of effects in optical metamaterials arise due
to the excitation of plasmon polaritons at interfaces between
metal inclusions and surrounding dielectrics. Plasmon polari-
tons produce highly localized electromagnetic field densities,
making metamaterials attractive from the point of view of
nonlinear optical effect enhancement10–13 and tailoring of
nonlinear optical properties.14–22 Magnetic metamaterials, i.e.,
metamaterials that mimic optical magnetism by supporting
circular current plasmonic modes,9,23 are of special interest
since the respective circular currents can play a significant
role in the nonlinear optical response,11,24–26 and considerable
effort was directed towards determining the peculiarities of the
nonlinear optical response caused by the excitation of magnetic
resonances.10,11,24

In this paper we attempt to demonstrate an implicit evidence
of the symmetry-induced characteristics of the nonlinear
response in magnetic metamaterials. Therefore we clearly
disclose the magnetic mode contribution to the third-order
nonlinearity of the fishnet metamaterial. This is done by means
of angular spectroscopy of third harmonic generation (THG)
and numerical modeling of THG with a Fourier modal method
(FMM) with a nonlinear extension. The results are specific to
the case when the magnetic resonance of the metamaterial is
excited by pump radiation. The magnetic mode contribution
arises from the antisymmetric current distribution in the two
gold layers of the metamaterial and is revealed as a local
maximum of THG intensity in the angular dependence at tilted

incidence. The data is supported by an analytical model based
on the dynamics of coupled nonlinear oscillators. This reveals
the strong influence of the resonance symmetry on the third
harmonic angular radiation pattern because of the retardation
effects.

II. SAMPLE

The fishnet structure is laterally defined by electron beam
lithography (Vistec SB350OS) and a lift-off technique on
a SiO2 substrate and comprises a set of rectangular holes
fabricated in a three-layer Au-MgO-Au heterostructure. The
resulting structure has thin wires with a width of wx = 110
nm and broad wires with a width of wy = 290 nm. The
structure has a period of p = 500 nm in both lateral directions.
The thicknesses of both Au films are d = 23 nm and the
thickness of the intermediate dielectric MgO film is s = 65
nm. Figures 1(a) and 1(b) show different scales of a scanning
electron microscope (SEM) image of the sample taken from
the top view. The parameters of the sample are shown in
Fig. 1(c). The specific design parameters were chosen to match
the magnetic resonance wavelength to the telecom wavelength
range.

III. LINEAR OPTICAL RESPONSE

Simulated and measured linear absorption spectra of the
sample for different angles of incidence are shown in Figs. 2(a)
and 2(b). The angles vary from 10◦ up to 50◦ with 10◦ steps.
The linear absorption Aλ is measured with an integrating
sphere module of a Perkin Elmer Lambda 950 spectrometer
in the spectral range of 1.20–1.80 µm in 2 nm steps. For the
theoretical description of the problem we applied the FMM,
which allows for solving the linear diffraction problem for an
arbitrary anisotropic biperiodic multilayer structure.27 For the
simulation we used the parameters of the sample as measured
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FIG. 1. (Color online) (a) A scanning electron microscope (SEM)
picture taken from the top view. The inset (b) shows a magnified SEM
picture. The period p is 500 nm in both lateral directions. (c) The
details of the geometry parameters are wx = 110 nm, wy = 290 nm,
d = 23 nm, and s = 65 nm.

using the SEM. The angular spectroscopy of absorption
measured with p-polarized incoming light is in agreement with
the theoretical predictions, i.e., existence of an absorption peak
at a wavelength of approximately λ = 1.54 µm for normal
incidence which is blueshifted as the angle of incidence is
increased. The magnetic moment of the resonance results
from the currents inside the broader wires of the metamaterial
flowing in the opposite directions. This is demonstrated in
Fig. 2(c), where the calculated phase difference #φ between
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FIG. 2. Numerically simulated (a) and measured (b) linear ab-
sorption Aλ as a function of wavelength λ in the spectral range of
the magnetic resonance, plotted for different angles of incidence:
θ = 10◦, 20◦, 30◦, 40◦, and 50◦. The dotted line in the simulation plot
shows the absorption for normal incidence. (c) The calculated phase
difference #φ between the y components of the electric fields in the
top and bottom gold layers at the center of the resonance peak for
normal incidence, at 1.54 µm.

the electric field in the top and bottom gold layers is shown as
a grayscale plot from the top view.

IV. NONLINEAR OPTICAL RESPONSE

For the nonlinear measurements a setup based on an optical
parametric amplifier (OPA) was used operating at wavelengths
of 1.49, 1.54, 1.56, and 1.60 µm and having an average output
power of 3 mW focused to a 300 µm spot from the air side
of the sample. The OPA was pumped by a Nd:YAG laser with
a pulse duration of 5 ps and a repetition rate of 5 kHz. The
resulting fluence took values up to 700 µJ/cm2 in the plane of
the sample. The sample was placed on a six-axis positioning
stage such that during the angular spectroscopy the beam was
always focused into the same spot. The forward propagating
THG signal pulses were detected by a photomultiplier tube
and gate-integrated by an oscilloscope. We used the p-p po-
larization configuration—illuminating with p-polarized light
and selecting only the p-polarized part of forward propagating
light before the detector. For all measurements spectral filtering
(Schott RG610 and BG40) before the detector was used for
picking up the desired wavelength. With these filters the third
harmonic response was orders of magnitude larger than signals
at other wavelength, i.e., at the pump wavelength. The averaged
THG signal from the pure SiO2 substrate measured outside the
metamaterial area was at least one order of magnitude lower
than that from the metamaterial area. Contributions from the
substrate were therefore safely neglected. The principle setup
is shown in Fig. 3.

For numerical simulation an extension of the FMM which
includes the nonlinear interaction was used.28 The method
relies on the undepleted pump approximation that ignores the
feedback of the nonlinearity-induced field to the pump field.29

The approach allows for solving the problem completely
rigorously and permits a reliable prediction of the diffracted
amplitudes of the third harmonic fields.

FIG. 3. (Color online) The setup for angular spectroscopy of the
third harmonic generation (THG) intensity. The pump polarization is
set to p and p-polarized third harmonic radiation is detected with a
photomultiplier tube (PMT). The diffraction in the x direction is not
shown.
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FIG. 4. (a)–(d) show the third harmonic signal as a function
of the angle of incidence for different wavelengths in the spectral
vicinity to the magnetic resonance. For comparison, (e)–(h) show the
linear absorption Aλ at the same fundamental wavelengths and (i)–(l)
show the linear transmission T at the corresponding third harmonic
wavelengths. The vertical dashed lines indicate the angular positions
of the appearance and the disappearance of diffraction orders. The
black dots represent the experimental data and the dotted lines
represent the simulation results. The solid lines are curves calculated
with Eq. (12). This equation represents an analytical model which
describes the nonlinear response of coupled oscillators.

The third harmonic intensity was measured and simulated
in the forward zeroth diffraction order with the fundamental
wavelength exciting the magnetic resonance. The angular
spectra of THG are provided in Figs. 4(a)–4(d) for the
fundamental wavelengths of 1.49, 1.54, 1.56, and 1.60 µm,
respectively. The magnetic resonance position for normal
incidence is 1.54 µm. The maximum of the THG signal is
seen at angles of incidence around 20◦. The appearance of this
maximum is detailed in the discussion section and is believed
to be caused by the interference of THG from the individual
layers forming the fishnet metamaterial. The simulation shows
an agreement with the experimental values. The THG signal
is expressed in a pump power-independent fashion as derived
from the numerical calculations; the absolute values of the
THG signal are valid only for the simulation results while for
the experimental data they are of the same order of magnitude.
The estimation—based on experimental data—of the effective
nonlinear susceptibility is χ

(3)
1111 = 10−18 m2/V2, which is the

same order of magnitude as the reference value of bulk gold.30

V. DISCUSSION

Plasmon-enhanced THG at the magnetic resonance of
fishnet metamaterials was reported previously.10 It was shown

that the THG spectra obey the principles of the local-
field enhanced nonlinear response. It was proposed that
the wavelength dispersion of the THG efficiency is defined
by the spectral line of the magnetic resonance cubed. The
maximum of THG at angles of about 20◦ can neither
be explained by means of dispersion of the local field
factor at the fundamental frequency [see Figs. 4(e)–4(h)]
nor with the linear transmission characteristics at the third
harmonic wavelength [see Figs. 4(i)–4(l)]. Finally, the position
of the maximum does not coincide with the angular position
of the propagating diffraction order appearance, as illustrated
by the vertical dashed lines in Figs. 4(i)–4(l). In this section
we show that, first, this feature is caused by retardation effects,
and second, it is specific to the antisymmetric electric current
structure of the magnetic resonance.

The observed third harmonic radiation is considered to
be caused by the nonlinear polarization of gold due to
anharmonic electron movement. Nonlinearities of other sub-
stances of the metamaterial are neglected since their χ (3)-
tensor components are several orders of magnitude smaller
than that of bulk gold: χ

(3)
1111(SiO2) = 4.6 × 10−23 m2/V2,

χ
(3)
1111(MgO) = 1.0 × 10−22 m2/V2, and χ

(3)
1111(Au) = 7.5 ×

10−19 m2/V2.30–32 Without further discussion on the specific
source of that third-order nonlinearity, we describe the motion
of electrons of gold at the third harmonic wavelength within
the conducting layers of the metamaterial by using a model
of weakly coupled oscillators. Within the chosen model the
phase difference between the oscillators in the two layers
dictates whether the resonance is antisymmetric—currents in
the two layers are antiparallel to each other [Fig. 5(a)]—or
symmetric—currents are parallel [Fig. 5(b)]. At the third
harmonic wavelength this phase difference is assumed to be
equal to the phase difference of the oscillators at a fundamental
frequency multiplied by three. For the antisymmetric reso-
nance the phase difference is equal to π , and for the symmetric
one it is equal to zero (see the Appendix).

With this knowledge we write down the dynamical equa-
tions for the charge density at the third harmonic frequency,

ρas(r,t) = q0 cos 3ωt
[
δ
(
y − wy

2

)
− δ

(
y + wy

2

)]

×
[
δ

(
z − d + s

2

)
− δ

(
z + d + s

2

)]
, (1)

and for the current density,

jas
y (r,t) = 3ωq0 sin 3ωt

[
*

(
y − wy

2

)
− *

(
y + wy

2

)]

×
[
δ

(
z − d + s

2

)
− δ

(
z + d + s

2

)]
, (2)

for the antisymmetric resonance, and the dynamical equations
for the charge density,

ρs(r,t) = q0 cos 3ωt
[
δ
(
y − wy

2

)
− δ

(
y + wy

2

)]

×
[
δ

(
z − d + s

2

)
+ δ

(
z + d + s

2

)]
, (3)
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and for the current density,

j s
y (r,t) = 3ωq0 sin 3ωt

[
*

(
y − wy

2

)
− *

(
y + wy

2

)]

×
[
δ

(
z − d + s

2

)
+ δ

(
z + d + s

2

)]
, (4)

for the symmetric resonance. Here δ(y) is the Dirac delta
function, *(y) is the Heaviside step function, and q0 is the
amplitude of the uncompensated charge oscillations at third
harmonic frequency. The latter depends on the magnitude
of the nonlinear polarization and is proportional to the χ̂ (3)

components and the local field factors at the third harmonic
frequency L3ω(θ ) and fundamental frequency Lω(θ ) cubed.
The solution of the potential equation,

(
# − 1

c2

∂2

∂t2

)
A(r,t) = −µ0j(r,t), (5)

is sought. The problem is considered to be two dimensional,
i.e., x independent. First, we consider the antisymmetric
resonance. The solution of Eq. (5) could be expressed with
the retarded potential

A(r,t) = µ0

4π

∫
dV ′ j(r

′,t − |r′ − r|/c)
|r′ − r|

. (6)

Since H = curl A/µ0, the magnetic field distribution in the far
field (r & r ′) is expressed in the cylindrical coordinates by
substitution of Eq. (2) into Eq. (6) it follows:

Hx = −3ωq0 sin β

πr cos β
sin

(
kwy cos β

2

)

× sin
(

k(d + s) sin β

2

)
sin(3ωt − kr),

Hy = Hz = 0, (7)

where k = 3ω/c and β = θ + π/2. The angular radiation
pattern R(θ ) is defined by the averaged electromagnetic
intensity which the unit cell of the metamaterial emits per
unit solid angle as a function of radiation angle. It is expressed
as follows:

R(β) = dP

dβ
= r[r · [E × H]]. (8)

For a plane wave it applies r · E × H = r
√

µ0/ε0H
2. By

substitution of Eq. (7) into Eq. (8) and time averaging we get
the angular radiation pattern for the antisymmetric resonance:

Ras(β) ∝
[
q0 tan β sin

(
kwy cos β

2

)
sin

(
k(d + s) sin β

2

) ]2

.

(9)

The radiation pattern can be evaluated for the symmetric
resonance in the same way by use of Eqs. (4) and (6):

Rs(β) ∝
[
q0 tan β sin

(
kwy cos β

2

)
cos

(
k(d + s) sin β

2

) ]2

.

(10)

The polar plots in Fig. 5 show the normalized angular
dependences of THG calculated using Eqs. (9) and (10) for the
antisymmetric and symmetric resonances, respectively, for the
same parameters. The dependence of q0(θ ) ∼ |Lω(θ )|3 can be

FIG. 5. (Color online) Parameters of the model and uncom-
pensated charge density distribution in the unit cell of the fishnet
metamaterial for (a) antisymmetric and (b) symmetric resonances
and corresponding far-field radiation patterns. The blue area between
the gold layers is shown for a better understanding of the layout, and
no influence of the dielectric is assumed in the model.

expressed for the magnetic resonance with a Lorentz spectral
line:

Lω(θ ) ∼
[(

ω0
0 + ∂ω0

∂θ
|θ |

)2

− ω2 + 2iγω

]−1

, (11)

relying on the approximation under which the local field
correction factor is proportional to the absorption contour
function. Then, the central frequency of the resonance ω0(θ )
is substituted by the truncated Taylor expansion in the form of
ω0(θ ) = ω0

0 + |θ |∂ω0/∂θ , accounting for angular dispersion
of the resonance. The angular radiation pattern of the third
harmonics is straightforwardly connected to the angular
dependence of THG. The third harmonic radiation is emitted
from each unit cell of the metamaterial with the relative phase
depending on the angle of incidence of the pump. Radiation
from each cell interferes to compose the diffraction pattern.
The intensity of each diffraction lobe depends on the angle
of diffraction via the radiation pattern dependence. If only
the zeroth diffraction order is detected, then the diffraction
angle equals the angle of incidence and thus the radiation
pattern is probed by measuring the angular dependence of
THG. Now we use Eqs. (9) and (11) to calculate the data on
angular-dependent THG from the fishnet metamaterial. The
function used is expressed as follows:

I (θ ) = B

[
|L(θ )|3 cot(θ ) sin

(
kwy sin θ

2

)

× sin
(

k(d + s) cos θ

2

) ]2

. (12)

The parameters in Eq. (11) are determined from the linear
measurements (see Fig. 2). The angular dispersion of the reso-
nance central frequency is ∂ω0/∂θ ! 3 × 1012 rad/(deg s) and
γ = 0.15 ± 0.01 ps−1 (corresponds to #λFWHM = 220 nm).
The parameter B stands for a calibration coefficient that was
not measured precisely. For wy the SEM-measured value
was taken and (d + s) was set to 250 nm. The angular-
dependent third harmonic intensity function [Eq. (12)] is
plotted in Figs. 4(a)–4(d) with solid lines. A good quantitative
correspondence is observed between the experimental data,
the numerically calculated data, and the modeled depen-
dence. From all the parameters only (d + s) differs from the
experimentally measured one. The main reason is general
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oversimplification of the model, i.e., not taking the real phase
velocity of the third harmonic radiation inside the metamaterial
into account, considering pure symmetric or antisymmetric
modes, assuming a continuous background material, etc.
Nevertheless, the model gives an explicit way how one can
distinguish between symmetric and antisymmetric resonances
of the metamaterial by means of its nonlinear optical response.
For the symmetric resonance no local extremum is observed
at oblique incidence whereas the maximum is present in the
case of the antisymmetric resonance. In terms of effective χ̂ (3)

tensor components of the metamaterial this means that the
χ (3)

yyyy component of the medium at the magnetic resonance
is less pronounced than that at the electric resonance. In
correspondence with the general concept of metamaterials
it makes possible to tailor the relation between different
tensor components by the proper choice of the metamaterial
resonance and its parameters. Moreover, it could be seen
from Eqs. (9) and (10) that effective nonlinearities of the
metamaterial straightforwardly depend on its dimensions,
namely, wy , d, and s in the framework of the model.

VI. CONCLUSIONS

To conclude, a magnetic resonance contribution to third-
order optical nonlinearities of the fishnet metamaterial was
shown. It was achieved by means of measurements of the third
harmonic signal in the forward direction from a fishnet sample
and numerical simulations with a nonlinear FMM. Interference
of radiation from separated third harmonic sources is shown to
emerge as a local maximum in the angular spectra of the third
harmonic signal found at oblique incidence. Antisymmetric
oscillations of currents, which are the intrinsic properties
of magnetic resonances, are found to be responsible for the
particular radiation pattern. Based on this an analytical model
was built. The angular characteristic of the third harmonic
response from the experiment, the FMM, and the analytical
model were compared. A quantitative correspondence between
these data sets is observed. The results contribute to a better
understanding of the possibilities of the nonlinear properties of
optical metamaterials with plasmonic resonances of different
symmetries.
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APPENDIX

Here we discuss the phase difference between the sources
of third harmonic radiation. The sources of the radiation are
oscillations in the gold layers at the third harmonic frequency.
We use a coupled oscillator model with a nonlinear extension.
Uncompensated charges are induced at the edges of the thick
wires of the metamaterial by the external electromagnetic
field with a polarization along the thin wires as shown in

Fig. 5.33 Charge conservation implies q1(t) = −q3(t) and
q2(t) = −q4(t). Harmonic oscillations of the charge densities
in two coupled layers can be described as a superposition
of two eigenmodes of the system—the first one corresponds
to codirectional currents in the layers and the second one
corresponds to counterdirectional ones.34 Consider x1(t) =
q1(t) − q3(t) = 2q1(t) for the uncompensated charge at the
upper fishnet layer and x2(t) = q2(t) − q4(t) = 2q2(t) for the
lower fishnet layer. The linear dynamics of these values is
described by the coupled harmonic oscillator model:

ẍ1(t) + 2γ ẋ1(t) + ω2
0x1(t) + σx2(t) = f eiωt , (A1)

ẍ2(t) + 2γ ẋ2(t) + ω2
0x2(t) + σx1(t) = f ei(ωt+ϕ0). (A2)

Here is γ the damping constant, ω0 is the central frequency of
the resonance for an isolated layer, σ is the coupling constant,
f is the oscillator strength, and ϕ0 is the difference of phases
of the exciting fields caused by the retardation. The dynamics
of the asymmetric mode X(t) = x1(t) − x2(t) is described by

Ẍ(t) + 2γ Ẋ(t) + ω2
0X(t) − σX(t) = f (1 − eiϕ0 )eiωt . (A3)

The solution of the equation in the frequency domain is
expressed as

X(ω) = f (1 − eiϕ0 )
ω2

0 − ω2 + 2iγω − σ
. (A4)

In the case when the Q factor of the modes is high enough
for the condition

√
σ & γ to be held, the asymmetric mode

implies x1(ω) + x2(ω) ≈ 0 and arg x1(ω) − arg x2(ω) = π as
a consequence.

Now we consider a nonlinear addition to the electron
movements

ẍ1(t) + 2γ ẋ1(t) + ω2
0x1(t) + σx2(t) + αx3

1 (t) = f eiωt (A5)

and

ẍ2(t) + 2γ ẋ2(t) + ω2
0x2(t) + σx1(t) + αx3

2 (t) = f ei(ωt+ϕ0),

(A6)

where α + γ 2ω4
0/f

2. This restriction corresponds to the
experimentally observed low conversion (≈10−11) from the
fundamental field to the third harmonic field and allows one
to use the perturbation theory approach. At the magnetic
resonance apply x1(t) ≈ −x2(t) and only one equation has
to be considered:

ẍ1(t) + 2γ ẋ1(t) + ω2
0x1(t) − σx1(t) + αx3

1 (t) = f eiωt . (A7)

The approximate solution is reduced to two terms:

x1(t) = x0
1 (ω)eiωt + x ′

1(ω)ei3ωt . (A8)

After substituting the solution into Eq. (A7) and calculating
the multipliers of eiωt and ei3ωt , one gets

x0
1 (ω) = f

ω2
0 − ω2 + 2iγω − σ

(A9)

and

x ′
1(ω) = α

ω2
0 − (3ω)2 + 6iγω − σ

[
x0

1 (ω)
]3

. (A10)
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Analogously one gets

x0
2 (ω) = f eiϕ0

ω2
0 − ω2 + 2iγω − σ

(A11)

and

x ′
2(ω) = α

ω2
0 − (3ω)2 + 6iγω − σ

[
x0

2 (ω)
]3

. (A12)

Since the first multipliers in Eqs. (A10) and (A12) are
not resonant and have the same phase, the phase difference
arg x ′

1 − arg x ′
2 is defined by the second multipliers. These

multipliers are equal to [x0
1 (ω)]3 and [x0

2 (ω)]3 for the upper
and lower layers, respectively. As a consequence, arg x ′

1 −
arg x ′

2 = 3[arg x1(ω) − arg x2(ω)] = 3π , which means that at
the THG frequency the electrons move inside two gold layers
out of phase.
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