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Abstract—A theoretical analysis is performed of the surface instability and acoustic and temperature fields in
an acoustically excited drop of liquid. Such drops form in an acoustic fountain created under the action of an
ultrasonic beam focused on the free boundary of the liquid. A model of a solitary spherical drop is used to
describe the considered phenomena. This model is a resonator with an acoustically soft boundary, inside
which a spherically symmetrical nonlinear acoustic field evolves. Mechanisms of drop explosions are pro-
posed.
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INTRODUCTION
Means of non-invasive diagnostics and surgery

with the use of ultrasound are now increasingly in
demand. A new generation of medical devices, includ-
ing ones that use high-intensity focused ultrasound
(HIFU) to destroy benign and malignant tumors [1],
deliver drugs using contrast agents [2], and stop inter-
nal bleeding [3] are actively being developed and
improved.

Most HIFU procedures are based on thermal
effects initiated by the absorption of ultrasound in bio-
logical tissue. However, there are also mechanical
effects that are initiated by the dynamics of HIFU-
induced bubbles used to destroy tissue. Sources with a
sequence of pulses rather than continuous signals are
normally used in devices for mechanical destruction.
This is necessary to minimize thermal effects and the
predominance of mechanical effects from the activity
of bubbles. This means of tissue destruction is referred
to as histotripsy. Developing new approaches to his-
totripsy so that the mechanical destruction of tissue is
reliable and reproducible is definitely of considerable
interest.

Studies have shown that the formation of acoustic
microfountains is observed in histotripsy boiling,
along with other instances of the physical destruction
of tissue. Acoustic microfountains are broken into
drops during their evolution. Atomization subse-
quently develops inside these drops [4]. Studying the
general principles of acoustic spouting is thus relevant
and will help elaborate the features of this particular
phenomenon. A fairly simple way of observing an
acoustic fountain is to generate it at a water–air inter-

face under the effect of focused ultrasound in the
megahertz range of frequencies.

High-speed filming of acoustic fountains in studies
by different independent research groups [5, 6] has
shown that a jet disintegrating into a chain of drops
with identical sizes (approximately equal to the length
of the acting ultrasonic wave) erupts from a liquid
shortly after the ultrasound source is turned on. After
some time, drops begin to lose their stability and
explode, usually starting from the top drop. This
results in dispersion (atomization) of the liquid. It has
also been found that a dark dot appears in the center of
a transparent drop just before an explosion. This could
indicate rupturing of the liquid (i.e., cavitation). In
addition, the drops themselves become turbid before
mist caused by the spraying of the liquid begins to form
around the drops. This is explained by the emergence
of a cloud of microbubbles in the drop volume, or by
the curvature of the drop surface on the micron scale.
We have developed a theoretical model of this problem
whose analytical solutions exist only in the context of
simplified models. Numerical modeling is used to
describe the problem more fully.

TEMPERATURE IN THE CENTER OF A DROP 
OF AN ACOUSTIC FOUNTAIN

A theoretical model of the dynamics inside a drop
of an acoustic fountain is presented in [7]. This model
is based on considering the acoustic field in the form
of a standing wave whose structure varies slightly at
times on the order of its period. Rapid changes are dis-
tinguished from slow ones using a basis of weakly
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Fig. 1. Peak pressure in the center of a drop.
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interacting standing waves with different frequencies
in order to analyze the patterns of the nonlinear wave
process in explicit form. It is found that a standing
wave takes the form of an alternately converging and
diverging pulse with a peak in the process of nonlinear
evolution. The peak pressure in this pulse near the res-
onator’s center can far exceed the initial amplitude of
the wave. Extremely high concentrations of energy can
be achieved near the resonator’s center at a certain
time interval despite the total loss of energy.

Viscous absorption in a drop heats the liquid, due
to the transformation of acoustic energy into heat.
Since the energy of higher harmonics is localized near
the center of the drop, the release of heat is most effi-
cient at the very center of the drop. The energy dissi-
pated in a unit of volume per unit of time (on average
over a period) is equal to the sum of the contributions
from each harmonic:

(1)

Here,  is a coefficient of dissipation;  is the equilib-
rium density of a medium;  is the speed of sound; r is
the distance from the drop’s center;  is the wave
number of the decomposition of the acoustic field
potential over the basis of functions 
and Pn is the amplitude of the acoustic pressure har-
monics in the drop.

Let T be the temperature increment of the relative
initial equilibrium level,  be the thermal
diffusivity, κ be the coefficient of thermal conductiv-
ity, and  be the specific heat capacity of the liquid.
The heat balance equation has the form
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The region of heat source localization is extremely
small, so the effect of heat diffusion can be notable;
the contribution from thermal conductivity must
therefore be taken into account. This is easy to do by
expanding the temperature increment in spatial har-
monics:

(3)

Here,  are the amplitudes of the corresponding
harmonics. Calculations of the temperature based on
this approach showed that the predicted heating in the
center of the drop was no higher than fractions of a
degree under conditions characteristic of the drops of
an acoustic fountain.

CONDITIONS FOR CAVITATION
At the initial stage, the oscillations of the drop are

harmonic, and the pressure in the center is relatively
low. Higher harmonics arise over time due to acoustic
nonlinearity, and the profile becomes non-sinusoidal.
Negative pressure levels of tens and hundreds of mega-
pascals are reached in the center of the drops upon the
formation of acoustic fountain created in practice.
This is close to or exceeds the levels of liquid tensile
strength; their maximum for water is 30 MPa (see
Fig. 1).

We calculated how bubbles with different initial
radii behave in the center of a drop at the moment
when the temporal profile of the acoustic pressure in
the center of the drop is maximally distorted. It turned
out that small bubbles quickly collapse. A bubble
begins to grow under the influence of pressure arising
in the center of an acoustic fountain’s drop with an
increase in the initial radius of the bubbles, starting
from a value of about 10 μm.

INSTABILITY OF A DROP’S SURFACE
The problem of the stability of the spherical shape

of an acoustically excited drop that produces spheri-
cally symmetric oscillations is considered along with a
description of the temperature field. Acoustic pressure
on the drop’s surface is assumed to be zero, ignoring
the influence of the surrounding gas on the liquid. In
other words, the drop is considered to be in a vacuum.

Our analysis of surface instability was based on
considering the liquid dynamics in a drop’s surface
layer, where spherical disturbances develop. The liq-
uid in this layer was considered to be incompressible.
This was a reasonable approximation, since the pres-
sure on the surface of a drop is zero. We cannot con-
sider the liquid to be incompressible throughout a
drop in the case of an initial spherically symmetric
oscillation, since the liquid in this case must either rest
everywhere (a property of solutions to the Laplace
equation) or contain a source and a drain of mass (e.g.,
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Fig. 2. First zone of instability of a drop surface in param-
eters  (the pressure at the center of the drop at the initial
moment): n is a harmonic number; the black line is for the-
oretical calculations without viscosity; Δ represents
numerical calculations without viscosity; ○ denotes a
numerical calculations with viscosity.
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Fig. 3. First zone of instability of a drop surface in param-
eters  at different moments of slow time.
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an oscillating bubble) at the center of the drop. We
therefore we may assume there is a spherically sym-
metric source of mass somewhere deep inside the
drop. It causes oscillations of the incompressible near-
surface layer, but the very motion of the surface and
the near-surface layer is distorted, due to the develop-
ment of instabilities that emerge on the surface and
gradually attenuate as the drop moves away from it.

Small disturbances of a general form can be repre-
sented as a superposition of spherical harmonics. Dis-
turbances are large-scale at low orders of spherical
harmonics , so the effects of viscosity can be ignored
in low-viscosity liquids (including water). Viscosity
can play a prominent role at high values of . The
threshold for the parametric excitation of capillary
standing waves on the surface of a drop in particular
will be nonzero precisely because of viscosity effects.

Our analysis of viscous phenomena was performed
in analogy with the approach used in [8] for oscillations
of a spherical gas bubble in a liquid. The deviation of a
drop’s surface from a sphere was decomposed into spher-

ical harmonics:  = 

Different components of the expansion of distur-
bances (different modes) behave independently of one
another, so it suffices to consider only one mode of
perturbation. Such consideration produces the equa-
tion for the amplitude of the mode perturbations

(4)

Here,  is the damping decre-
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matic viscosity;  is the initial radius of the drop
(which varies slightly);  is the acceleration on the
drop’s surface, calculated from the dynamics of the
acoustic field in the drop; and  is the natural fre-
quency of free oscillations of the corresponding mode.

The acceleration profile on the drop’s surface is
harmonic at the initial moment of time, and the prob-
lem is reduced to solving an equation of Mathieu type
whose zones of instability are described in the litera-
ture [9, 10] and shown in Fig. 2.

The shape of the profile is distorted over time, and
its amplitude increases. In addition, the more dis-
torted the profile, the greater its amplitude becomes.
However, even such an increase does not lower the
threshold of instability. On the contrary: It raises it
(see Fig. 3), since the curve has the shape of a burst too
short to cause an instability. A bipolar burst is less than
10% the length of a full pulse with a duration of 1 μs
(i.e., less than 0.1 μs).

CONCLUSIONS
Calculations show the effect of heat conduction

means that compared to a linear case, the center of a
drop is not heated to more than fractions of a degree,
despite a notable increase in dissipation at the center
of the drop. At the same time, the nonlinear amplifi-
cation of peak pressure is quite strong. Negative pres-
sure levels that exceed those of the liquid’s tensile
strength can be achieved in practicable modes of form-
ing an acoustic fountain in the center of the drops.
Analysis shows that the main reason for the explosion
of a drop is the rupturing of the liquid in its center
(cavitation) under the action of high negative pressures
caused by nonlinear acoustic processes. Our results are
in agreement with experimental observations of drop
explosions, providing a deeper understanding of the
processes that accompany ultrasonic atomization.

Analysis of the instability of a drop’s surface shows
that its amplitude can be increased when it has certain
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initial parameters. This considerably distorts the sur-
face, which can lead to a further explosion of the drop.
The more turbid form of an upper drop before its
explosion when filming an acoustic fountain with a
high-speed camera can result from microscopic dis-
tortions of the drop surface that are not visible to the
naked eye. However, light waves scatter and create an
optical effect in the form of turbidity: 
drop radius  = 0.75 mm. The most unstable mode
number n = 386; i.e.,  ≈ 12 μm.

ACKNOWLEDGMENTS
This work was supported by the Russian Founda-

tion for Basic Research, project nos. 18-32-00683
mol_а, 17-02-00261, and 17-54-33034.

REFERENCES
1. Khokhlova, T.D., Canney, M.S., Khokhlova, V.A.,

et al., J. Acoust. Soc. Am., 2011, vol. 130, p. 3498.

2. Hoff, L., Acoustic Characterization of Contrast Agents for
Medical Ultrasound Imaging, Springer, 2001.

3. Vaezy, S., Martin, R., and Crum, L., Echocardiogra-
phy, 2001, vol. 18, no. 4, p. 309.

4. Maxwell, A., Sapozhnikov, O., Bailey, M., et al.,
Acoust. Today, 2012, vol. 8, no. 4, p. 24.

5. Tomita, Y., Phys. Fluids, 2014, vol. 26, p. 097105.
6. Simon, J.C., Sapozhnikov, O.A., Khokhlova, V.A.,

et al., J. Fluid Mech., 2015, vol. 766, p. 129.
7. Sapozhnikov, O.A. and Annenkova, E.A., Acoust.

Phys., 2018, vol. 64, no. 3, p. 299.
8. Prosperetti, A., Q. Appl. Math., 1977, vol. 34, p. 339.
9. Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables, Abramowitz, M. and
Stegun, I., Eds., Dover, 1965.

10. Vlasov, V.K., Glukhova, M.N., Korolev, L.N., et al.,
Vestn. Mosk. Gos. Univ., Ser. 15. Vychisl. Mat. Kibern.,
1992, no. 1, p. 65.

Translated by I. Obrezanova
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