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ON RINGS WHICH ARE ASYMPTOTICALLY CLOSE
TO ASSOCIATIVE RINGS

A. Ya. Belov

The subject of this work is extension of A. R. Kemer’s results to a rather
wide class of rings, close to associative rings, over a field of characteristic
0 (in particular, this class includes the varieties generated by finite-
dimensional alternative and Jordan rings) For this case we prove finite-
basedness of systems of identities (Specht property), representability of
finitely generated relatively free algebras and rationality of their Hilbert
series. For this purpose, we extend Razmyslov —Zubrilin’s theory to
Kemer polynomials. For a rather wide class of varieties we prove Shirshov
theorem on height.

Ключевые слова и фразы: PI-algebra, representable algebra, universal
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§1. Introduction

An identity in an algebra means a polynomial which vanishes on the whole
algebra. For instance, a (n−1)-dimensional algebra satisfies Capelli identity Cn

of order n:

Cn( ~x, ~y ) =
∑
σ∈Sn

(−1)σy0xσ(1)y1xσ(2)y2 · · · yn−1xσ(n)yn.

Various important classes of algebras (for example, associative, alternative,
Lie, Jordan algebras) are axiomatizable by identities. The class of algebras
which satisfy a given system of identities is a category which is called a variety
(variety), and the free objects of this category are called relatively free algebras.

Various non-associative structures recently have obtained rather numerous
applications in the major areas of mathematics. For instance, A. V. Yagzhev
has elaborated the approach to Jacobian problem based on universal algebra.
This reduced Jacobian problem to problems of PI-theory (this problem occurred
to be equivalent to the question on weak nilpotency of any ternary Engel
algebra over a field of characteristic 0). A. V. Yagzhev’s approach is related to
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quantization theory and operads. It is not casual that I. P. Shestakov, one of
leading experts in non-associative PI-theory, is actively working in polynomial
automorphismas and quantum theory. Beatiful results of Ye. I. Zelmanov (in
particular, solution of weakened Burnside problem) were preceded by his works
in the theory of Jordan algebras. Numerous mathematicians specializing in
PI-theory also did work in the theory of polynomial automorphisms. The
monograph [54] is devoted to problems of these theories.

A rather evolved structure as well as combinatorial theory has been elaborated
for associative algebras. First of all, this includes radical theory, prime algebras,
Burnside-type problems, finite-basedness problems. Structure theory also is
rather evolved for a certain class of rings close to associative ones, and analogues
of Kemer’s theorem have been obtained. At the same time, investigation of
bounds for finite basedness (which has different nature in zero and in positive
characteristics) and developing of the corresponding theory in a maximally
general form seems to be a very important and actual problem. In the present
paper, we consider only the case of algebras over a field of zero characteristic.

A point of an ordinary algebraic variety is a set of numbers satisfying
some system of algebraic equations. A point of a variety of algebras is an
algebra satisfying a set of identities. To a system of algebraic equations, there
corresponds an ideal in the ring of commutative polynomials. What ideal
corresponds to a set of identities?

Let P (x1, . . . , xn) be an identity in an algebra A,
{
Hi(y1, . . . , yqi

)
}

an
arbitrary set of polynomials, and R(z1, . . . , zk) an arbitrary polynomial. Then
the results of substituting P (H1, . . . , Hn) and multiplying by R (RP and PR)
hold in A as well. These new polynomials are called consequences of the
identity P . Moreover, a linear combination of identities is an identity again.
An ideal generated by the values of a system of polynomials closed under
substitution is called a T -ideal. To every T -ideal, there corresponds a T -ideal
in a free algebra or, equivalently, a completely characteristic ideal in a free
algebra, i. e., an ideal closed under all endomorphisms.

Similarly to the notion of T -ideal, the notion of T -space is introduced in a
natural way; this is the space generated by values of a system of polynomials
closed under substitutions. Some examples of T -spaces not being T -ideals are:
the commutator subalgebra
[A,A]; the set of values of central polynomials in the algebra of generic matrices.
This notion is a new one in comparison with the clasical case.

In the classical case we have Hilbert theorem on basis which states that
any ascending chain of ideals in the ring of commutative polynomials in several
variables stabilizes. For identities in associative algebras we have Kemer’s
theorem (which answers the known question posed by W. Specht) stating that,
in zero characteristic, an ascending chain of T -ideals stabilizes. In positive



On rings which are asymptotically close to associative rings 31

characteristic, the similar fact is valid for finite numbers of variables (the case
of an infinite ground field is solved by A. R. Kemer in [29], and the general
case recently by the author in [9]). For infinite numbers of variables, there
exist some counterexamples constructed first by the author in [7; 8] and later
by V. V. Shchigolev [50] and by A. V. Grishin [13].

The PI-theory produces a new point of view to non-commutative algebraic
geometry. Consider an algebra endowed by a group of automorphisms or a
semigroup of endomorphisms. In classical definitions, replace the notion of
“ideal” by that of “invariant ideal”. For instance, “primarity” means the absence
of nonzero invariant ideals with zero product. Furthermore, Noetherian properties
usually are provided by the transformation (semi)group, and algebraic operations
become an additional structure. This approach makes it natural to work in
multibased algebras of an arbitrary signature (and even in operads).

In many cases, a result obtained for the associative case produced possibilities
for non-associative (in particular, alternative or Jordan) situation as well.
Extension of results leads to a fundamentally new insight.

I. P. Shestakov has said that until A. R. Kemer’s work [25] he was sceptical
as regards super-generalizations. His opinion was changed by the “supertrick”
which enables to reduce (in zero characteristic) investigation of identities in
infinitely generated associative algebras to superidentities in finitely generated
superalgebras. The supertrick has obtained a non-associative generalization
but the main fact was that previous counterexamples solving open problems
in the theory of alternative and Jordan algebras (in particular, examples of
infinitely based varieties) obtained their explanation in I. P. Shestakov’s work [47].
Non-associative theory often dealt with polynomials whose variables could be
divided into several mutually anticommuting groups. (This property is usual
for extremal polynomials in solvable alternative algebras, consisting of long
associators.) In this case we can check non-vanishing of the corresponding
series of polynomials working in a model which is the Grassmann hull of a
finite-dimensional superalgebra [47] (cf. Kemer’s work [27] which states that
every proper variety of associative algebras over a field of zero characteristic
is generated by the Grassmann hull of a finite-dimensional superalgebra).

I. P. Shestakov’s approach was further developed by S. V. Pchelintsev
and his students [1; 2; 38] which has resulted in constructing infinitely based
varieties of commutative Moufang loops. (The author considers it possible
that the works [1; 2] include the earliest correct proof of this fact, although
they were preceded by publications of another author on the same topic[43].)
In the sequel, the Grassmannian technique enabled to construct examples of
infinitely based varieties for the associative case as well. It is of interest that
systematical study of identities related to a Grassmann algebra was started by
V. N. Latyshev [31; 32] already in 60ths.
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Proofs of finite-basedness and recent solutions of open problems make
it especially actual to clarify the nature of finite-basedness and its bounds.
Moreover, the situation in zero and positive characteristic does differ both
technically and conceptually. This paper treats the case of zero characteristic.

The main result of this paper is the following statement.
Theorem 1.1. (а) Let M be a convenient variety of algebras (see Definition 1.1)

over a field of zero characteristic, such that all its subvarieties are representable.
Then the Hilbert series HQ of an arbitrary T -space Q in a relatively free algebra
of M is rational.

(б) A convenient variety of algebras over a field of zero characteristic is a
locally Specht one, and its relatively free algebras are representable.

Definition 1.1. A variety M is called structurizable if every finite-dimensional
algebra of M decomposes into a sum of simple components and of the nilpotent
radical.

A structurizable variety is called convenient if it is generated by some finite-
dimensional algebra.

The varieties of alternative and Jordan algebras which are generated by
a finite-dimensional algebra are structurizable. Nevertheless Theorem 1.1 is
not a generalization of known results by A. V. Iltyakov [22], A. Ya. Vais and
Ye. I. Zelmanov [12] on finite-basedness of varieties of alternative and Jordan
algebras. We have to require that all identities of some finite-dimensional
algebra hold.

We attempt to work (in particular, to extend A. R. Kemer’s and Yu. P. Razmyslov’s
technique) in as general situation as possible. First we develop the technique of
Kemer’s polynomials (which are a convenient generalization of Capelli polynomials)
in the most general situation. Next we consider a class of rings which are
asymptotically close to associative ones. For this situation, we prove an analogue
of Shirshov theorem on height. Passing to Specht-type problems, we impose
additional conditions of structurizability and validity of all identitities of some
finite-dimensional algebra. Closeness to associativity means possibility to extend
information concerning an operator algebra D(A) to the algebra A itself. A
considerable part of work can be accomplished using the left multiplication
algebra L[A]. We attempted to formulate criteria of asymptotical closeness to
associative rings and to emphasize some basic concepts and constructions (see,
in particular, Definition 1.1).

Studying finite-basedness problems, we follow Kemer’s program. It consists
in explicit description of an extremal ideal I which “forces” to determine the
maximal possible number of radical specializations as well as the complete
set of specializations related to each prime radical component. In the abstract
non-associative situation, the program needs significant improvements. First of
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all, we have no rather evolved theory of supports which are finite-dimensional
algebras, thus we have difficulties in using supports and the approach is more
functional. On the same reason, instead of consideration of support models we
present a direct, purely combinatorial proof for invariance of internal traces.
By author’s opinion, this is the base of this section.

If the ground field is of characteristic zero, the basic outline of argument can
be extended rather well to the non-associative structurizable case. The only
exclusion is the proof that a PI-algebra satisfies all identities of some finite-
dimensional algebra. Hence in alternative and Jordan cases we go roundabout.
Local representability has not been proved for this case yet, and we have
no rather evolved theory concerning “supertrick”. This makes the following
problem important:

Problem. When do in a non-associative PI-algebra satisfying the system Cn,
all identities of some finite-dimensional algebra hold? In particular, how can
we check validity of all identities of a finite-dimensional algebra for alternative
and Jordan PI-algebras?

Investigating Specht-type problems, we have to postulate validity of all
identities of a finite-dimensional algebra. In the associative case this follows
from Razmyslov — Kemer — Braun theorem on nilpotency of the radical (whose
analogue can be proved for a rather wide class of rings close to associative ones)
and from Levin’s theorem [60] the extension of which is the main difficulty
here. Levin’s theorem is closely related to matrix representation of bimodules.
Respectively, its analogues for non-associative algebras have to be related to
investigation of bimodules. In this aspect, I. P. Shestakov’s study of bimodules
over Jordan prime algebras seems rather promising. Problems of finite-basedness
are in some sense problems of describing interaction between prime components
by means of the radical, and bimodules are elementary cells of this interaction.

§2. Preliminaries

We use the following notation. In this section, T(f) denotes the T -space
generated by a polynomial f (and not the T -ideal). The symbol A usually
denotes an algebra, and a1, . . . , as denote its generators. All rings and algebras,
if the contrary is not specified, are assumed to be finitely-generated. The
formula f

∣∣
A

= 0 means that the polynomial f is an identity of the algebra A,
and the formula f

∣∣
A
6= 0 means the contrary. The ideal generated by the setM

is denoted by id(M). The set of variables x1, . . . , xn sometimes will be treated
as a multivariable and denoted by ~x, thus using expressions like P ( ~x, y), K[ ~x ],
K〈 ~x 〉 etc. Even for rings without unit, we use notation like y(1 + z) (for the
element y+yz). The symbol Eij denotes a matrix unit: this operator maps the
ith basis vector to the jth one, and all others to zero.
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The basis rank of a variety M is the minimal s such that M is generated by
its s-generated algebras. The basis rank of the variety of all associative algebras
equals 2; that of the variety generated by the algebra of generic matrices also
equals 2; the basis rank of a Grassmann algebra or of the variety defined by[
x, [y, z]

]
= 0 equals infinity.

A. R. Kemer has established that the basis rank of a variety of associative
PI-algebras equals infinity if and only if this variety contains an infinitely
generated Grassmann algebra [24]. This formed a step in proving representability
of varieties of associative algebras over a field of zero characteristic by the
Grassmann hull of a finite-dimensional superalgebra.

The growth function VA(n) of an algebra A is defined as the dimension of
the space spanned by the words of length ≤ n; generating function

∑
VA(n)tn

is called the Hilbert series of A. Sometimes we will consider the complete Hilbert
series

HA(t1, . . . , ts) =
∑

VA(n1, . . . , ns)t
n1
1 · · · tns

s

where VA(n1, . . . , ns) is the dimension of the space generated by the words
containing ≤ ni occurrences of the letter ai for each i.

The growth function depends on the choice of the set of generators. If we
define the following equivalence relation on the set of functions:

f ≡ g ⇐⇒ ∃c ∈ N : ∀n f(cn) ≥ g(n) и g(cn) ≥ f(n)

then the equivalence class VA(n) is now an invariant of the algebra itself. The
Gelfand — Kirillov dimension of an algebra A is the limit

GKdim(A) = lim
n→∞

ln VA(n)/ ln n

if this limits exists; GKdim is an invariant of the algebra itself.
By GM(n) we denote the dimension of the vector space generated by the

words of length n and containing each of x1, . . . , xn once, in the relatively
free n-generated algebra of M. If M is a variety of associative algebras then
GM(n) = n!

Definition 2.1. Let Y = {ui} be a set of words. The height of the set
of words W relative to Y is the least h such that every word w ∈ W is
representable in the form uk1

i1
uk2

i2
· · · ukr

ir
where r ≤ h. An algebra A is of height h

over Y if A is linearly representable by a set of words, having height h over Y .
Furthermore, Y is called the Shirshov basis of A.

We say that Y is an s-basis of an algebra A if there exist a number HEss

and a finite set D(Y ) such that A as a vector space is generated by elements
of the form t1 · · · tN where N ≤ 2 HEss +1, and for each i either ti ∈ D(Y ) or
ti = yki

i , yi ∈ Y . Here the number of factors ti /∈ D(Y ) does not exceed HEss.
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The essential height of A over Y is the least number HEss(A) having these
properties. For varieties with associative powers the definition is similar.

An algebra is Noetherian-type if it is an R-algebra and at the same time
a Noetherian module over a Noetherian associative-commutative ring R. An
algebra is called representable if it embeds into a Noetherian-type algebra.
Then the ring R is called the representaion ring , and we may assume that R
contains unit.

Definition 2.2. We call an ideal I representable if the corresponding quotient
algebra is representable. An ideal of identities is representable if it is a T -
ideal of a representable algebra or, equivalently, a relatively free algebra of the
corresponding variety is representable.

The least integer n such that the algebra A embeds into an algebra which is
a module of rank n over its center is called the representation order. If an ideal I
is representable then the representation order of I equals the representation
order of A/I.

An algebra is called a PIn-algebra if it belongs to the variety generated by
representable algebras of order n.

Lemma 2.1. The set of representable ideals of a fixed order satisfies ACC.

As a matter of fact, a sufficient level of invariance of an ideal relative to a
sufficiently rich semigroup of endomorphisms results in representability. The
most invariant are T -ideals; hence we have Specht property in the associative
case and in "good"structurizable varieties with a sufficiently rich endomorphism
semigroup.

Lemma 2.2 (On intersection of representable ideals). The intersection of
a finite number of representable ideals is representable.

Доказательство. Let {Iα} be representable ideals of an algebra A. Then
the kernel of the homomorphism A → ⊕

α A/Iα equals
⋂

α Iα, and the direct
sum of representable algebras is representable.

Definition 2.3. A representable algebra is called irreducible if it does not
contain a finite set of representable nonzero ideals with zero intersection. An
algebra is called irreducible of order n if it does not contain a finite set of
representable nonzero ideals of order n with zero intersection.

Note that the decomposition into simple components is, in general, not
unique.

Statement 2.1. (a) Every Noetherian-type algebra embeds into a direct
sum of finite number of its irreducible quotients by ideals stable under multiplication
by elements of the representation ring.

(b) For any m ≥ n, any representable algebra of order n embeds into the
direct sum of its irreducible quotients of order m.
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We say that an ideal I contains no obstacle for representation of an ideal J
if there exists a representation ρ of the whole algebra in a Noetherian-type
algebra such that ker(ρ) ∩ I = I ∩ J .

Statement 2.2. Suppose an ideal I contains no obstacle for representability
of J . Then if A/(I + J) is representable then A/J is representable as well.

Доказательство. Let ρ be a representation of A/J such that its restriction
to I has kernel equal to I ∩ J . It suffices to consider the direct sum of this
representation and of faithful representation of A/(I + J).

Замечание. It is not clear whether representability of the meet I ∩ J , of
the sum I + J , and of the ideal I itself implies representability of J . Perhaps
no. It seems probable that an embedding into a Noetherian-type algebra may
expand the ideal J so that some new elements in the meet with I may arise.
It would be worth while to construct corresponding examples.

Extensions and the choice of free elements. Let A be a finite-dimensional
algebra. If the ground field is infinite then we can construct a relatively free
s-generated algebra Ã which generates Var(A) and embeds into the extension
of A by a polynomial ring (and thus is representable). Namely, take a basis
for A as a vector space, multiply each element of the basis by a free variable
and sum up. We get a generator for the algebra Ã. To get the set of generators
for Ã, take disjoint sets of variables.

Statement 2.3. (a) The algebra Ã is relatively free, representable, and
Var(Ã) = Var(A).

(b) The extension of Ã by the ring R generated by the values of trace
operators of (forms) is a Noetherian R-module.

Доказательство. Assertion (a) is already proven. Assertion (b) follows
from Proposition 2.5 to be proved below.

Let M be a Noetherian module over a Noetherian ring S. Then the finite
sum ⊕i⊗ki M is Noetherian as well. Let A be a representable algebra embedded
into a Noetherian-type algebra Â, and t = {ti} be a finite set of letters.
Consider the set of words Uk containing ≤ k occurrences of letters from t.
Furthermore consider various specializations of elements of A in Uk.

Statement 2.4. Let A be a representable algebra. Then there exists a
finite set M of elements from A such that for any polynomial F ( ~y, ~Λ ) of
homogeneity degree ≤ k in variables from a finite set ~Λ, constant vanishing of
F ( ~y, ~Λ ) is equivalent to vanishing of F ( ~y, ~ξ ) for every ~ξ ∈Mk.

The above statement may reformulated in terms of extensions by restrictedly
free elements of order k. A set of n elements M = {mi} ⊂ A is called a free
set of order k if for any polynomial F of degree ≤ k in variables from {ti} = Λ



On rings which are asymptotically close to associative rings 37

we have the following: if the result of substitution mi → ti vanishes in A then
the result of every substitution si → ti for every si ∈ A vanishes as well.

Consider an extension AV ar(A)〈Λ〉 and various specializations
ti → mi; i = 1, . . . , |Λ|, each of which corresponds to a homomorphism of
this extension onto A. Since the set M is finite, we get a homomorphism
of the extension AV ar(A)〈Λ〉 into the direct sum ⊕kA where k is the number
of all these specializations. Elements of A map to constants, and images of
elements from Λ will be free elements of order k in the image. We obtain the
free extension of order k by M, which is a free set of order k.

Now we need some universal construction.
Definition 2.4. Suppose B is an associative algebra, {βi} are its generators,

{bi}i∈I is the set of its elements, {δij}i∈I; j=1,...,m is a set of independent commuting
variables. The canonical algebraic representation of order m is the algebra

B̂
(m)

= B[δij]/ id
({bm

i + δi1b
m−1
i + · · ·+ δim}i∈I

)
.

If the index i runs over the set corresponding to words of degree ≤ s
in the generators of the algebra B then the resulting object will be called
the canonical algebraic representation of length s and of order m and will be
denoted by B̂

(m,s)
.

Definition 2.5. Suppose b ∈ B. Extend the algebra B by free commuting
constants δi, i = 1, . . . , n− 1, and consuder the quotient by the ideal id(bm +
δ1b

m−1 + · · · + δm). The algebra B admits a natural map to this algebra, and
the kernel of this map is called the obstacle for algebraicity of order m for the
element b. The kernel of the canonical algebraic representation of order m is
called an obstacle for algebraicity of order m. The definition of the obstacle for
algebraicity of order m of the system of elements {bi} is similar.

Suppose a system of forms δi(b) satisfies the Hamilton —Cayley identity.
This means that the identity

an + δ1(a)an−1 + · · ·+ δn(a) ≡ 0

holds in the algebra. Then the canonical Hamilton — Cayley representation of
order n is constructed in a natural way, and the corresponding kernel is called
the obstacle for the Hamilton —Cayley identity of order m.

Informally speaking, if all elements of B (resp. the words of length ≤ s) are
“forcedly” turned into algebraic elements of degree m then we get the canonical
algebraic representation of order m (resp. of length s).

Similarly we define the ideal Jk, the obstacle for representability by matrices
of order k over a Noetherian ring.

Local finiteness of algebraic algebras implies
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Lemma 2.3 (on canonical representation [59]). (a) A canonical algebraic
representation is a Noetherian module over values of the trace operator. The
same is true for the representation of length s if s does not exceed ≤ m
or PIdeg(B).

(b) If B is representable by matrices of order m then the natural maps
B → B̂

(m)
and B → B̂

(m,s)
are embeddings.

(c) If B is representable, that is, embeds into a Noetherian-type algebra
then the canonical algebraic representation of some order is an embedding.

Замечание. The canonical algebraic representation may be defined in the
non-associative case as well. Then assertion (b) of the above lemma remains
valid, and assertion (a) holds for the so-calledKurosh varieties (see Definition 3.1).

Definition 2.6. Suppose B is a finite-dimensional algebra, {~ei}n
i=1 is its

basis, {xkl}s
k=1

n
l=1 are independent variables. The s-generated algebra of generic

elements from B is the algebra generated by ai

∑n
l=1 xil~el.

The above definition immediately extends to multibased algebras of an
arbitrary signature. The algebra of generic elements is relatively free and
generates a homogeneous variety.

Now we will describe the procedure of linearization. Suppose a polynomial P
has degree n in a variable x. Substitute

∑n
i=1 xi for x and take the sum of

terms multilinear in all xi. The resulting polynomial Q is called the complete
linearization of P . A partial linearization is the sum of terms having a given
inhomogeneity degree in the variables xi. In characteristic zero which is treated
in the present paper, an identity is equivalent to all its linearizations. In
particular, all identities are equivalent to multilinear ones.

The main idea which is due to Yu. P. Razmyslov is as follows. If we extend a
representable algebra by the values of traces then it becomes a Noetherian-type
algebra.

Suppose f( ~x, ~y ) is a polynomial, multilinear and skew symmetrical in ~x =
(x1, . . . , xn), V is a vector space generated by xi, and A ∈ End(V ) is an
operator. Then

f(A · ~x, ~y ) = f(Ax1, . . . , Axn, ~y ) = det(A)f(~x, ~y ).

Now we obtain a linearization. Set A = E + ta. We have a decomposition in
powers of t:

f( A · ~x, ~y ) =

(
n∑

k=0

Φk(a)tk

)
f( ~x, ~y )

where Φk(a) is a form of order k over the operator a. It equals the trace of the
operator

∧k(a) which acts on the vector space
∧k(V ) or, equivalently, the sum

of principal minors of order k in the matrix of the operator a. In particular,
Φ1(a) = Tr(a), Φn(a) = det(a), Φ0(a) = 1.
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Theorem (Yu. P. Razmyslov). (a) The algebra of generic matrices of
size n satisfies the Capelli identity of order n2 + 1 and does not satisfy the
Capelli identity of order n2.

(b) The following equations hold where xi are alternated and yi are “layers”:

n Tr(Z)C(x1, . . . , xn2 ; y1, . . . , yn2) =
n2∑
i=1

C(x1, . . . , xn2 ; y1, . . . , yn2)
∣∣∣
xi=Zxi

, (1)

det(Z)C(x1, . . . , xn2 ; y1, . . . , yn2) = C(Zx1, . . . , Zxn2 ; y1, . . . , yn2)

= C(x1, . . . , xn2 ; y1, . . . , yn2)
∣∣
xi=Zxi∀i. (2)

The above theorem and a corollary from Shirshov theorem on height (if all
words of length not exceeding the degree of the algebra are algebraic then the
algebra is finite dimensional) immediately imply

Statement 2.5. (a) Suppose Y is the set of words having length ≤ 2n, in
the generators of the algebra of generic matrices Mn, and Z is the following
set of traces:

Z =
{

Tr(y
kj

i )
∣∣ yi ∈ Y, 0 < kj ≤ deg(A)

}
.

Then the extension Mn[Z] of Mn is integer over K[Z] and is a Noetherian
module.

(b) The algebra of generic matrices with trace (or with forms) is a Noetherian
module over values of the trace operator of (taking the form). In turn, the
values of these operators generate a Noetherian commutative ring.

(c)A similar statement is valid for any representable algebra A. An extension
Â of a representable algebra A by the value of the trace operator on elements
of the above type is a Noetherian module over a commutative ring. (Traces of
the (form) are determined by the representation.)

The procedure of swap.
Statement 2.6 [52]. Consider the following game. Given n piles of some

objects. The first player may choose any m piles and divide each of them into
right and left part. The second player interchanges right parts non-identically.
Then the first player can guarantee that all piles except m − 1 ones contain
≤ m− 1 objects each.

Доказательство. Order the piles and consider the vector whose ith coordinate
is the number of objects in the ith pile. Order such vectors lexicographically.
We will show that if the first player cannot increase the vector corresponding
to the present piles then the distribution of objects is as required.

Suppose there are m piles; k1, . . . , km are the corresponding numbers of
objects. Suppose ki ≥ m for any i. Set ki = k′i + qi, qi = i, k′i = ki − i. Since
ki ≥ m, we have k′i ≥ 0. It remains to apply Proposition 2.7.
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Statement 2.7 [52]. Suppose ki ≥ m. Put ki = k′i + qi. Suppose k′i ≥ 0
and qj > qi for j > i. Then for any non-identity permutation σ ∈ Sm the
vector ~kσ = (k′1 + qσ(1), . . . , k

′
m + qσ(m)) is lexicographically smaller than ~k =

(k′1 + q1, . . . , k
′
m + qm).

Доказательство. If σ(1) 6= 1 then σ(1) > 1 and k′1 + qσ(1) > k′1 + q1. In
this case ~kσ Â ~k. If σ(1) = 1 then we get inductive descent from m to m− 1.

Proposition 2.6 implies
Lemma 2.4 (on swap). Let A be a PI-algebra satisfying a multilinear

identity f of degree m. Let a word W be of the form

W = c0v1c1 · · · vmcm+1

where ci are letters not occurring in the words vj. Then W can be represented
modulo T (f) as a linear combination of words having the form

W ′ = ci0v
′
1ci1 · · · v′mcim+1

where ci do not occur in the words v′j and not more than m− 1 words v′i have
length exceeding m− 1.

The sense of the lemma is that the identity enables to collect almost all
symbols from “piles” vi into m− 1 piles v′i.

We play for the first player when we represent the word W as a product
W0 · · ·Wm+1 “cutting” the words vi. Then the identity turns W0 · · ·Wm+1 into
a sum of words where Wi are permuted non-identically. The second player
chooses the most “unconvenient” term.

If all vi are powers of the same element then we obtain a gathering procedure.Suppose
M ⊂ A. Let M (k) denote the ideal generated by kth powers of elements
from M . The swap lemma implies

Statement 2.8 [52]. Suppose A is a finitely generated graded associative
PI-algebra, M ⊂ A is a finite set of homogeneous elements which generates A
as an algebra. Suppose the quotient A/M (m) is nilpotent of degree r. Then A
is generated as a vector space by elements of the form

v0m
k0
0 v1m

k1
1 · · ·mks−1

s−1 vs

where for each i we have |vi| < r, ki ≥ m and furthermore, not more than
m − 1 of the words vi have length ≥ m, mi ∈ M , and there are no m equal
elements among mi.

In other words, A has bounded essential height over M (see Definition 2.1).
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If an algebra satisfies a rarefied identity then there exist k and coefficients
ασ such that for any polynomial F (x1, . . . , xk, y1, . . . , yr) multilinear in xi the
following equation holds:

∑
σ

ασF (c1vσ(1)d1, . . . , ckvσ(k)dk, y1, . . . , yr) = 0. (3)

Similarly to the swap lemma, we can prove using this fact
Lemma 2.5 (on rarefied swap [52]). Let A be a PI-algebra such that for

all F multilinear in the variables xi the equation (3) holds. Replace xi by vi.
Then F ( v1, . . . , vm, ~y ) is linearly representable by elements of the form F (v′1, . . . , v

′
m, ~y )

where not more than k − 1 words v′i have length greater than k − 1.
Замечание. The equation

∑
ασF (xσ(1), . . . , xσ(m), ~y ) = 0 for any F is

the definition of a rarefied identity for the non-associative case (and moreover
for algebraic systems of arbitrary arity).

§3. Capelli polynomials and Kemer polynomials

This section is devoted to one of main tools used in this paper, that is,
to polynomials which are multilinear and skew symmetric in several groups of
variables. The Capelli polynomial Cn of order n is the polynomial of the form

Cn =
∑
σ∈Sn

(−1)σxσ(1)y1xσ(2) · · · yn−1xσ(n).

Here yi are called layers.
In the non-associative case (including algebras of an arbitrary signature Ω)

the term the system of Capelli polynomials Cn of order n denotes a set of
polynomials which are multilinear and skew symmetric in some set of n variables {xi}.
If in an algebra B each Capelli polynomial of order n vanishes then we say
that B satisfies the system of Capelli identities. The system Cn holds in algebras
of dimension less than n. For instance, the algebra of matrices of order n
satisfies Cn2+1 (but does not satisfy Cn2).

3.1. Kemer diagrams. To each Young diagram D we may attach a collection
of disjoint sets of variables {Λi} corresponding to its columns. The number of
elements in Λi equals the length of the corresponding column.By S(D) we will
denote the T -ideal generated by polynomials, multilinear and skew symmetric
in each Λi.

Now we define a non-determinate operator ′ on the set of diagrams. If all
columns of D are distinct then the diagram D′ is obtained from D by adding
two unit columns, otherwise we take two maximal coinciding columns. Let
m be their length. Replace one of them by a column of length m− k, and the
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other one by a column of length m + k. Thus we obtain m distinct diagrams
of the form D′ (for k = 1, . . . , m). We do not include zero columns.

It is not difficult to verify
Lemma 3.1. Every diagram of the form D(s) for s ≥ n(n+1)(2n+1)

12
includes

a column of length ≥ n.

Доказательство. The lemma may be reformulated as follows. Suppose
s ≥ n(n+1)(2n+1)/12. Consider the following operation over a set of numbers.
We add two units if all numbers are distinct. And if m,m is the pair of maximal
coinciding numbers in the set then they are replaced by the numbers m−h,m+
h where 1 ≤ h ≤ m. Repeated s times, this operation results in appearing a
number not less than n.

First of all, it is clear that the numbers cannot remain bounded. In fact,
consider maximal numbers to which the operation was applied infinitely many
times. If it was applied to a number n more than n times then we get two
equal numbers exceeding n. Hence there is no maximal number to which the
operation was applied infinitely many times.

Thus a number ≥ n will appear, and the only question is on the number
of operations. Consider a process having maximal number of steps before a
number ≥ n appears. Clearly, at the next to last step there are two numbers
equal to n − 1 (otherwise we can avoid appearance of a number ≥ n at the
next step, and the process will not be the longest one.)

Similarly, at the preceding step we must have one copy of n − 1 and two
copies of n−2. Using induction, we ensure easily that at the kth step from the
end in the longest process we must have single copies of n− (k− 1), . . . , n− 1
and two copies of n − k. At the (n − 2)th step from the end we get the set
2, 2, 3, 4, . . . , n−1, and at the (n−1)th step from the end we have 1, 1, 2, . . . , n−
1 and perhaps one unit more.

It is not difficult to estimate the number of operations which precede the
appearance of this set. Obviously, the operation ′ increases the sum of squares
of the numbers in the set not less by 2, and this number does not exceed(
2 +

∑n−1
k=1 k2

)
/2 = n(n−1)(2n−1)

6
+ 1. The total number of operations differs

from this number by n. Thus we obtain the required estimate.

Замечание. The same estimate holds for the maximal number of operations
necessary to obtain the number n if we must have k = 1 when replacing n, n by
n−k, n+k. A corresponding problem was suggested by the author at the 27th
international mathematical Tournament of towns.

Define b(M) as the greatest natural b which satisfies the following condition.

There exist diagrams D consisting of arbitrarily many cells, such that their
columns are of length ≥ b and all polynomials from S(D) are not identities of
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the variety M.
For an algebra C, set b(C) = b

(
Var(C)

)
. If C is nilpotent then b(C) = 0,

and if C generates the variety of all associative algebras then b(C) = ∞.
Definitions. Suppose M is a variety of algebras of signature Ω, D is a

Young diagram such that all columns are of length ≥ b = b(M). If furthermore
S(D)

∣∣
M
6= 0 then such a diagram will be called curious. We call a diagram D

interesting if there exist arbitrarily large curious diagrams including D. We
call a column in a curious diagram D large if its length exceeds b, and small if
it equals b. The set of variables corresponding to a small (resp. large) column
is small (resp. large). The set of large columns forms the head H(D) of the
diagram D. A diagram is called extremal if it is interesting and moreover for
H(D′) ⊃ H(D) and D′ ⊃ D all polynomials from S(D′) are identities of M;
k(H) denotes the minimal number of small columns in an extremal diagram
with head H (if there is no such diagram then k(H) = ∞). A good diagram
with head H is an extremal diagram having not less than k + 1 small columns.
An extremal diagram is called a Kemer diagram if all large columns are of
length b + 1. Then d denotes their number, and k is the minimal number of
small columns in the Kemer diagram. So a minimal Kemer diagram is described
by the parameters b, d and k.Thus for the variety M we define the values b(M),
d(M) and k(M). The types of varieties or triples (b, d, k) are ordered as follows:
(b1, d1, k1) ≺ (b2, d2, k2) if any of three conditions holds:

• b1 < b2;
• b1 = b2, d1 < d2;
• b1 = b2, d1 = d2, k1 > k2.
Intervals between variables which correspond to the diagram are called

layers. If no confusion can occur, we will use the term “layer” when we consider
the values of the corresponding polynomials (if substitutions of variables from
the set

⋃
Λi are fixed).

In the sequel, if the contrary is not specified, a Kemer diagram means a
good Kemer diagram.

Extension by generic elements. Suppose B is an algebra from a variety
M, X = {xi}i∈I is a set of variables. The following lemma is an analogue of
the lemma from [18].

Lemma 3.2. For any lemma B ∈ M and arbitrary set of variables X there
exists an algebra BM〈X〉 ∈ M which is generated by B and X and has the
following properties:

• any map X → BM〈X〉 extends uniquely to an endomorphism BM〈X〉 ∈
M;

• X generates a free algebra of M;
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• the algebra BM〈X〉 ∈ M is the universal object with the properties from
the above items.

Similarly, there exists a universal algebra Balt
M 〈X〉 in the class of all extensions

of B by the set of |X| absolutely anticommuting elements from X, as well as
the algebra BM(D) corresponding to the diagram D. Here to the columns of
the diagram there correspond absolutely anticommuting sets of variables.

If M = Var(B) then we omit the index M in notation for algebras like
BM〈X〉 and write B〈X〉.

If M′ is a subvariety in M then the algebra BM〈X〉 maps onto BM′〈X〉
in a natural way. Furthermore, to a morphism of algebras B1 → B2 there
corresponds naturally a morphism B1

M〈X〉 → B2
M〈X〉, and this functor is

faithful.
A set Λ is called absolutely commuting if

xcy = ycx for any c ∈ A and any x, y ∈ Λ. If xcy = −ycx for any c ∈ A
and any x, y ∈ Λ then the set Λ is absolutely anticommuting.

3.2. Razmyslov — Zubrilin theory for Kemer polynomials. This subsection
is devoted to the technique presented in [18; 19], which stem from the paper [41]
by Yu. P. Razmyslov whose student K. A. Zubrilin was. For the associative
case, this technique is presented in [59]. It extends easily to the non-associative
case (and moreover to algebras of arbitrary signature) using the appropriate
definition of Kemer polynomials.

Suppose a polynomial F ( ~y, x1, . . . , xn) is multilinear and skew symmetric
in variables xi, a ∈ A. Define the operators of internal forms δk

a by

δk
a(F ) =

∑
i1<···<ik

F ( ~y, x1, . . . , xn)
∣∣∣
xi1

=axi1
,...,xik

=axik

; δ0
a(F ) = F. (4)

The polynomial δk
a(F ) is the homogeneous of degree k in a component in

the result of substitution F
∣∣
(a+1)xi→xi; i=1,...,n

.
It is easily verified that

δk
a(Cn) =

∑
i1<···<ik

∑
σ∈Sn

(−1)σxσ(1)y1 · · · xσ(i1)ayi1 · · ·xσ(ik)ayik · · · yn−1xσ(n).

Hence δk
a(F ) also is skew symmetric in the set of variables {xi}n

i=1.
Put Tr(a) = δ1

a. Clearly Tr(a + b) = Tr(a) + Tr(b).
The operators δk

a are defined only for records of elements, so the result of
their application may depend, in general, on the representation of an element
from A as a polynomial F and on the choice of {xi}. If F is multilinear and
skew symmetric in several sets of variables then considering δk we will indicate
the specific set.

We shall use the following technical statement.
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Lemma 3.3 (on absorption of a variable). Suppose an algebra satisfies the
system of Capelli identities of order n+1; the polynomial F is multilinear and
skew symmetric in x1, . . . , xn and moreover linear in the variable z. Then the
following equation holds:

F (z, x1, . . . , xn, ~y ) =
n∑

i=1

F (z, x1, . . . , xn, ~y )
∣∣∣
z=xi; xi=z

. (5)

Доказательство. The difference between right and left sides of the equation
is a polynomial belonging to T(Cn+1) because it is multilinear and skew symmetric
in the set of variables {z, x1, . . . , xn}.

Now we formulate the basic lemma from [18] which is an analogue of
Hamilton — Cayley theorem for operators having an internal definition.

Lemma 3.4. Suppose a polynomial F ( y, ~z, x1, . . . , xn) is multilinear and
skew symmetric in the variables xi, and a ∈ D(A) is an element of an operator
algebra (for instance, an operator of multiplication by ā). Then modulo Cn+1

we have the equation (“Hamilton — Cayley theorem”)

F
(
an(y), ~z, x1, . . . , xn

)
=

n∑

k=1

(−1)kδk
a

(
F

(
an−k(y), ~z, x1, . . . , xn

))
. (6)

Доказательство. Write down equation (6) in the form
n∑

k=0

(−1)kδk
a

(
F

(
an−k(y), ~z, x1, . . . , xn

))
= 0. (7)

Suppose i1 < · · · < ik, I = {i1 < · · · < ik}. Consider the term

tI = F
(
an−k(y), ~z, x1, . . . , xn

)∣∣
xi1

=axi1
,...,xik

=axik

.

For n−k > 0 represent an−ky in the form an−k−1ay and put y′ = ay. For n = k
represent an−ky in the form y and put y′ = y. Now suppose x′i = xi for i /∈ I
and x′i = axi for i ∈ I. Apply identity (5) from lemma 3.3 to tI . We get

tI =−
∑

j /∈I

F
(
an−k−1(xj), ~z, x1, . . . , ay, . . . , xn

)∣∣∣
xi1

=axi1
,...,xik

=axik

−
∑
j∈I

F
(
an−k(xj), ~z, x1, . . . , ay, . . . , xn

)∣∣∣
xi1

=axi1
,...,xik

=axik

for I 6= {1, . . . , n} and

t{1,...,n} =
n∑

j=1

F
(
xj, ~z, ax1, . . . , ay, . . . , axn

)
.
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To complete the proof of the lemma, note that in the expression for
∑

I(−1)|I|tI
the terms of the sums

∑

j /∈I

F
(
an−|I|−1(xj), ~z, x1, . . . , ay, . . . , xn

)∣∣∣
xi1

=axi1
,...,xi|I|=axi|I|

for |I| = k < n cancel with the terms of the sums
∑
j∈I

F
(
an−|I|(xj), ~z, x1, . . . , ay, . . . , xn

)∣∣∣
xi1

=axi1
,...,xi|I|=axi|I|

for |I| = k + 1, hence
∑

I(−1)|I|tI = 0.
Extend the original algebra A by coefficients λi. Consider the ideal Ia

generated by an+1 −∑
i λia

n+1−i.
Let ΛM(A, X) be the subspace in the algebra AM〈x1, . . . , xn〉 consisting of

polynomials which are multilinear and skew symmetric in the set of variables
X = {x1, . . . , xn}. Put A(n; a) = A

[{λi}
]
/Ia.

To λi, attach the operators δi(a). Lemma 3.4 immediately implies
Statement 3.1. Suppose A ∈ M, and the variety M satisfies the system

Cn+1. Then we have the natural embedding

ΛM(A, X) → ΛM

(
A(n; a), X

)
.

Let Ka be the kernel of the map A → An(a) = A
[{λi}

]
/Ia.

Corollary 3.1. If h ∈ Ka, A = A′
M〈y〉, y is a variable not from X,

F (y, X) ∈ ΛM

(
A(n), X

)
, then F (y, X)

∣∣
h→y

= 0.
Let S ⊂ A be a set of elements from the algebra A. Let us define the

algebras A(n,S), A(n,S)M〈X〉 and the space ΛM

(
A(n;S), X

)
in a natural

way. Let A(n) be the minimal universal object obtained by forced declaring all
elements of A being algebraic of degree n. It is the injective limit of extensions
A0 = A, A1 = A0(n,A0), . . . , Ak+1 = Ak(n,Ak). Let Kn be the kernel of the
natural map A → A(n).

Note that it suffices to show that Fh = 0 if h belongs to the obstacle for
the canonical algebraic representation of order n for any previously fixed finite
subset {a1, . . . , as} ⊆ A, because the joint of these obstacles is an obstacle for
the canonical algebraic representation of order n for the whole algebra. Hence
using induction, from Proposition 3.1 we obtain

Corollary 3.2. (a) Suppose A ∈ M, and the variety M satisfies the
system Cn+1. Then we have the natural embedding

ΛM(A,X) → ΛM

(
A(n), X

)
.

(b) If h ∈ K, A = A′
M〈y〉, y is a variable not from X, F (y, X) ∈ ΛM

(
A(n), X

)
,

then F (y, X)
∣∣
h→y

= 0.
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The above corollary implies an important technical statement.
Lemma 3.5. Suppose a polynomial F is multilinear and skew symmetric

in some set of n variables Λ and is linear in a variable x0 not belonging to Λ.
Furthermore let v belong to the obstacle Obstrn for algebraicity of order n.
Then Fv = F

∣∣
v→x0

≡ 0 modulo Cn+1.
The subspace T(g) skew symmetric in sets of variables from Λi is a Noetherian

module over operators Tr(a) and δk(a).
Corollary 3.3. (a) Cn Obstrn ⊆ Cn+1.
(b) Obstr1 · · ·Obstrn ⊆ Cn+1.
(c) (Obstrn)n ⊆ Cn+1. In particular, if an algebra A satisfies Cn+1 then

(Obstrn)n = 0.
(d) If a finitely generated algebra satisfies a system of Capelli identities

then the radical is nilpotent.
Доказательство. Assertion (a) is reformulation of the above lemma.

Assertion (b) is deduced from (a) by obvious induction. Assertion (c) follows
from (b) and the inclusion Obstrk ⊆ Obstrn for k ≤ n. Thus if the algebra
satisfies Cn+1 then it includes an ideal Obstrn of nilpotency degree n with
representable quotient. But in a representable finitely generated algebra the
radical is nilpotent. Assertion (d) is proved.

Consider two disjoint sets X and Y having m elements each, and the
symmetric group S2m acting on X ∪ Y . In the group algebra ZS2m, define
elements T (Z), Z ⊆ X, as follows:

T (Z) =
∑

σ(Z)⊆Y

(−1)σ · σ, Z 6= ∅,

T (∅) =
∑

σ∈S2m

(−1)σ · σ.
(8)

Statement 3.2 [18]. The following equation holds:
∑
Z⊆X

(−1)|Z|T (Z) =
∑

σ(X)=X

(−1)σ · σ. (9)

The left-hand sum is taken over all subsets Z of X, including X itself and ∅.
Замечание. Suppose X = {1, . . . ,m} and Y = {m+1, . . . , 2m}. Consider

an action of the group algebra ZS2m on the vector space over Z of multilinear
polynomials of degree 2m in 2m variables x1, . . . , x2m: namely,

σ · x1, . . . , x2m = xσ(1) · · · xσ(2m)

where σ ∈ S2m. Then T (Z) · x1 · · · x2m is a polynomial, skew symmetric in
variables with numbers from Z and in variables with numbers from X\Z ∪ Y .
If Z 6= X then |X\Z∪Y | ≥ m+1, and if |Z| = m−k then |X\Z∪Y | ≥ m+k.
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The next lemma follows from Proposition 3.2 and the above remark.
Lemma 3.6 [18]. Let f(x1, . . . , x2n) be a polynomial, multilinear and skew

symmetric in the sets of variables x1, . . . , xn and xn+1, . . . , x2n and maybe
depending on other variables. Then

f(x1, . . . , xn, xn+1, . . . , x2n)− f(xn+1, . . . , x2n, x1, . . . , xn) ≡ 0 mod I

where I is the sum of T -ideals generated by polynomials which correspond to
diagrams D having a column of length n−k and another column of length n+k,
k = 1, . . . , n.

Corollary 3.4 (on transfer [18]). (a) Suppose an algebra A satisfies the
system of Capelli identities of order n+1, and let a polynomial F be multilinear
and skew symmetric in variables {xi}n

i=1 and {zi}n
i=1. Then the value of δk

a(F )
does not depend on the choice of the group {xi} or {zi}, and the operators δk

a

and δs
b commute.

(b) Furthermore in this case Tr(ab) = Tr(ba).
Lemma 3.7 [18]. Suppose a polynomial F is multilinear and skew symmetric

in each of two disjoint sets of n variables Λi, i = 1, 2, and moreover is linear
in the variable x0 not belonging to Λ. Suppose v belongs to the obstacle for
Hamilton — Cayley identity of order n. Then F

∣∣
x0→v

≡ 0 modulo
∑n

k=1(Cn+k, Cn−k).
The subspace T(g), skew symmetric in sets of variables from Λi is a Noetherian

module over the operators δk.
Here (Cr, Cs) denotes the T -ideal generated by polynomials, multilinear

and skew symmetric in two groups consisting of r and s variables.
Замечание. Since the calculations in the proof of Lemma 3.5 (resp. Lemma 3.7)

involve variables from a single set Λi (resp. from only two sets), the proof of
these lemmas extends to the case of extremal diagrams (that is, of several sets
of variables).

Statement 3.3 (on transfer). Suppose |Λ1| = |Λ2| = n = b(A), a polynomial F
corresponds to the Young diagram D = D0∪D1 where D0 is an extremal Young
diagram, and the diagram D1 consists of two columns of length b corresponding
to the sets Λ1 and Λ2.

Then all statements similar to (a) and (b) in Corollary 3.4 as well as
Lemma 3.7 and Lemma 3.4 hold.

Operators δk(x) are forms defined internally.
The statement below is a complete analogue of Lemma 3.7 for extremal

polynomials.
Statement 3.4. Suppose a Young diagram D includes a pair of columns

of the same length m, a polynomial f ∈ S(D) is linear, besides the variables
corresponding to columns of D, also in a variable x0, and an element v ∈ A



On rings which are asymptotically close to associative rings 49

belongs to the obstacle for Hamilton — Cayley identity of order m, g = f
∣∣
v→x0

.
Then g belongs to the sum of ideals of the form S(Di) where the diagram Di

is obtained from D by replacing some pair of columns of length n with a pair
of columns of length n + k and n − k respectively (k > 0). In particular, if
m is the maximal length of coinciding columns then g belongs to the sum⊕

Di=D′ S(Di).

Note that summation extends over all possible results obtained by applying
the operator ′.

Using Lemma 3.1 and induction, we obtain the following
Theorem 3.1. Let an algebra A satisfy the system of Capelli identities

Cn. Then the operator obstacle for Hamilton — Cayley identity of order n has
nilpotency index not exceeding n(n+1)(2n+1)

12
.

Note that the quotient by this obstacle is a representable algebra, and for
representable algebras Razmyslov — Kemer — Braun theorem is obvious. Thus
we in fact obtain a direct combinatorial proof of Theorem 3.1.

Since in an associative algebra with trace all matrix identities follow from
Hamilton — Cayley identity [17; 40; 61], we have

Corollary 3.5. In the conditions of Theorem 3.1, suppose that A is an
associative algebra. Then the verbal ideal generated by identities of matrices
of size n has nilpotency index not greater than n(n+1)(2n+1)

12
.

3.3. Representable spaces. A variety M is called Kurosh variety if any
algebraic algebra from M is locally finite. An algebra is called algebraic if any
1-generated subalgebra is finite-dimensional.

Definition 3.1. A space S ⊆ A is called representable if it has zero meet
with the obstacle for representability of some order. We call a space S ⊂ B
representable in an algebra B if there exists a morphism B to a Noetherian-type
algebra such that its restriction to S is an embedding.

An equivalent definition: a space S is representable if the restriction to S
of some homomorphism of A to a Noetherian-type algebra is an embedding.

For a diagram D of a variety M ⊇ Var(A) and for an algebra A, define the
subspace SD,M(A) ⊆ AM〈{Λi}〉 as the space of polynomials, multilinear and
skew symmetric in variables from each set Λi corresponding to the diagram D.
If the algebra in question is clear, we simply write SD,M(A).

In view of the remark after Lemma 3.7, the following statement is valid.
Statement 3.5. Let D be an extremal diagram for a Kurosh variety M ⊇

Var(A), S = SD,M. Then if D includes a small column then the space S is
representable.

Замечание. The Kurosh property is necessary because almost all multiplications
may be subsequently applied to variables which correspond to D, and then
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powers of elements from A not appear. To avoid restrictions of such kind, we
need to consider a pair consisting of the algebra A and the algebra of operators
acting on A.

To a diagram D, attach a system of sets of variables ξij ∈ Λi where Λi is a
set of strongly anticommuting variables, which corresponds to the jth column
of the diagram D.

Suppose M is a variety of algebras, D is a Kemer diagram. Consider the
algebra K0(A,D) = A ∗M

〈{ξij}
〉/

Q where the ideal Q is generated by non-
associative monomials Mα containing two occurrences of any variable ξij, and
by elements of the form M(ξij1 , ξij2)+M(ξij2 , ξij1). The algebra K0(A,D) is an
extension of A in M by a system of strongly anticommuting variables, which
is defined by the diagram D. Usually M = Var(A), and this is assumed if the
index M is omitted. In any case, the inclusion M ⊇ Var(A) is necessary for
correctness of constructions. This is always assumed.

Let Jb+1 be the ideal in K0(A,D) generated by values of polynomials of
the form f(u1, . . . , ub+1, ~y ) where uk are monomials in generators of A, and f
is multilinear and skew symmetric in ui. Put K1(A,D) = K0(A,D)/Jb+1.
Let K(A,D) be the space (the ideal) in K1(A,D) generated by monomials,
multilinear in all variables of the form ξij. Extremality of D implies a natural
isomorphy between the corresponding spaces in the algebras K1(A,D) and
K0(A,D).

Statement 3.6 (on representable spaces). Let D be an extremal diagram.
Then the following is true.

(а) Var(A) = Var
(
K0(A, D)

)
= Var

(
K1(A,D)

)
.

(б) The spaces S1(A,D) and S0(A,D) (sometimes denoted by S(A,D)) in
the algebras K1(A,D) and K0(A,D) respectively, generated by monomials
multilinear in all variables of the form ξij are isomorphic in a natural way.

(в) If M is a Kurosh variety then the above spaces are representable.

If the ground field is of characteristic zero then K(A,D) is isomorphic to the
subspace AM〈X〉, the space of polynomials with coefficients in A, multilinear
and skew symmetric in the corresponding sets of variables.

In the space K(A,D) multiplication by internal traces (forms) is defined
in a natural way, and if M is a Kurosh variety then this action determines the
structure of a Noetherian module on K(A,D).

Now we formulate an additional useful statement concerning the above
constructions.

Statement 3.7. The correspondence A → KM(A, D) is a covariant functor
(the index M specifies the variety in question). The space KM(A,D) always is
representable and moreover isomorphic to KM(A′, D) where A′ is a quotient
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of A by some representable ideal. The T -ideal H(D) of the algebra K1M(A,D)
lies in the space KM(A,D).

We will prove a somewhat different statement concerning representable
spaces.

Statement 3.8. Suppose D is a rectangle of size
(
k(M) + d(M) + 1

)× b(M),

and M is a Kurosh elastic variety (that is, a variety with associative powers).
Then the space S = SD,M is representable.

Доказательство. It suffices to show that S is disjoint with the obstacle
to algebraic representation of some order (which depends on M only) for an
arbitrary element r ∈ B. Pass to the algebra B

[
δi(r)

]
which we will consider

as an algebra over the associative-commutative ring F
[
δi(r)

]
, choose a new

element r′ ∈ B, and so on. Thus we obtain that we can pass from B to
its operator canonical algebraic representation of some order, and the latter
algebra is a finite-dimensional module over an associative-commutative ring.

Suppose b = b(A) and ψi are operators of the form xi → r(xi). It suffices to
show that the operator r is algebraic over the operators ψi (and the algebraicity
order depends on M only). Then we may interprete the coefficients in the
algebraicity relation using operators ψi and argue as in the proof of Lemmas 3.5
and 3.7.

Thus the statement will be proved if we will show that for some m every
polynomial F ( ~x, ~y, rm ), multilinear and skew symmetric in variables from the
sets Λi satisfies

F ( ~x, ~y, rk) =
k∑

i=1

ΨiF ( ~x, ~y, rm−i)

where the coefficients Ψi are polynomials in the operators ψi and do not depend
on F .

Let δik(r) be the operator of an internal form of order k defined by the set
of variables Λj. If a polynomial G is of the form G

(
~y,

⋃
i Λi, r

b, d
)
then the

difference

G

(
~y,

⋃
i

Λi, r
b, d

)
−

b∑

k=1

δjk ·G
(

~y,
⋃
i

Λi, r
b−k, d

)

is representable as a linear combination of polynomials obtained by choosing b+
1 subwords inside some polynomial G and by alternating these subwords; here
the subwords containing any variable from Λj are not alternated for j 6= i, and
furthermore only those occurrences of r are involved which are contained in
the chosen power rb.
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Suppose m = b · (d + 1). Then rm divides into d + 1 parts of length b, and
the difference

G

(
~y,

⋃
i

Λi, r
m

)
−

b∑

k1=1

b∑

k2=1

· · ·
b∑

kd+1=1

δ1k1(r)δ2k2(r)

· · · δd+1,kd+1
(r)G

(
~y,

⋃
i

Λi, r
m−Pi ki

)

belongs to the T -ideal which corresponds to the diagram including d + 1
columns of length b + 1 and k(A) columns of length b. But in M any ideal
with these properties is zero.

Note also the following useful
Statement 3.9. A finite set of elements which are values of polynomials

from representable spaces described in this subsection generates a Noetherian
A-module (left, right, bimodule).

Доказательство. It suffices to prove the proposition for a polynomial
f ∈ SD,Var(A). The latter follows from the fact that any increasing chain of
representable ideals stabilizes.

3.4. Thinning of alternators. Here we consider one of the basic tools which
enables to guarantee that alternated constructions have bounded degree. We
will use Kemer polynomials.

We start from the associative case. Let a pair (A,H) be given where A is
an algebra with a fixed set of generators, and H ∈ N is a positive integer.

Suppose D is a diagram, f ∈ S(D) ∩ AM

〈 ⋃
i Λi

〉
is a polynomial, g is

obtained from f by substituting the words {vj} ∈ A instead of variables from⋃
i Λi. If all these words have length ≤ H then we call the polynomial g (and

the sets Λi) thin relative to D. If at least one vj has length > H then g is thick.
Замечание. In fact, the notions <thick> and <thin> relate not to g itself

but to its recording. (We permit this inaccuracy when the specific recording is
clear and so any confusion is impossible.)

If H is not fixed, we may speak of h-thin and h-thick polynomials for each
h ∈ N.

If each Capelli polynomial of thickness h vanishes then we say that the
algebra satisfies the system of Capelli identities of thickness h. If h = H
then the algebra satisfies the system of thin Capelli identities. Similar is the
definition of somewhat more general notions of validity of a system of rarefied
identities of thickness h, a thin system of rarefied identities, a thick set Λi and
a set Λi of thickness h as well as of thickness of a variable considered as a set
of a single variable.
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To generalize these notions to an algebra of an arbitrary signature Ω, we
have to modify the notion of the word length. Here a word is an arbitrary
monomial in generators. To the layout of operations, there corresponds a tree
such that the generators correspond to its end vertices (except the root),
and the monomial itself corresponds to the root. This tree is called the tree
of the monomial. A branch is a part of a path without self-intersections,
which leads from the root to an end vertex. The length of a monomial v
is the maximal possible length of a branch in its tree, it will be denoted
by l(v). The value l(v) is the maximal length of a chain of submonomials
mutually comparable by inclusion; br(v) denotes the total number of branches
of length l(v). The parameter CH(v) is the vector

(
l(v), br(v)

)
. Its values are

ordered lexicographically (first by the first coordinate, then by the second one).
The following lemma due to K. A. Zubrilin [19] concerns the structure

of trees of monomials for algebras with rarefied identities. Its proof is easily
obtained using the swap procedure.

Lemma 3.8 (on a tree). Suppose an algebra A satisfies a system of rarefied
identities of order m. We call a branch long if its length is ≥ m.

Then any monomial is linearly representable by monomials such that the
corresponding tree has not more than m− 1 disjoint long branches.

It is easy to see that all notions related to thickness are immediately
extended to the general case. In the associative case, there is no need to consider
the parameter CH: it suffices to use lengths of monomials only. This reduces
the technical aspect of proofs, so the reader may originally have in mind just
the associative case.

Note that the degree of a monomial v does not exceed ql(v) where q is the
maximal arity of an operation in the signature Ω.

The swap procedure enables to prove directly
Statement 3.10. Suppose an algebra B satisfies a system of rarefied identities

of order h and of thickness h, and g ∈ S(D). Then g is linearly representable
by polynomials g′ ∈ S(D) such that for each of them not more than h sets
of variables Λi are of thickness greater than h. Moreover the total number of
variables (in all sets) of thickness greater than h does not exceed h− 1.

Corollary 3.6. If an algebra B satisfies the system of Capelli identities of
order m and of thickness m then it satisfies the Capelli identity of order 2m−1
as well.

We consider polynomials from AM

〈 ⋃
i Λi

〉
together with a family of correspondences

between monomials and variables from
⋃

i Λi, which determines a substitution
resulting in g. This allows to speak of thick or thin variables from

⋃
i Λi as well

as of variables having thickness h.
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Definition 3.2. S
(m)
D,m1,m2,k is a space generated by polynomials which correspond

to a diagramm D ∪ E having the following properties:
• the diagram E consists of m1 + m2 columns of length k;
• not more than m1 sets of variables corresponding to these columns have

length greater than m.
Clearly S

(m)
D,m1,m2,k is an ideal.

We also will need the following corollary from Proposition 3.10 and Lemma 2.5
on rarefied swap.

Corollary 3.7 (Thinning of small sets). Suppose an algebra satisfies a system
of rarefied identities of order m and of thickness m, m′ = m1 + m2 ≥ m. Then
we have the equality

S
(m)
D,m′,0,k = S

(m)
D,m,m′−m,k

and the inclusion
S

(m)
D,m′,0,k ⊆ S

(m)
D,0,m′−m,k.

Now we turn to the procedure of thinning large sets in Kemer polynomials.
This procedure is based on the following relation. Let a polynomial f be
multilinear and skew symmetric in the set of variables {yi}m

i=1 and retains
these properties after adding the variable x. Consider

f ′ = f −
m∑

i=1

f
∣∣∣
x→yi; yi→x

. (10)

The polynomial f ′ is multilinear and skew symmetric in the set of variables
{x} ∪ {yi}m

i=1.
Замечание. Similarly, starting from a polynomial, multilinear and skew

symmetric in each of the sets of variables {yi}m1
i=1 and {xj}m2

j=1 we can construct
a polynomial f ′, multilinear and skew symmetric in the joint set f ′ =

∑
σ∈S(−1)σσ·

f where S is a system of representatives of cosets of Sm1+m2 relative to Sm1 ×
Sm2 .

Lemma 3.9. Suppose m = |Λ|, a polynomial f ∈ AM

〈
Λ∪{x0}

〉
is multilinear

and skew symmetric in the set of variables Λ and is linear in the variable x0.
Suppose the polynomial g ∈ T(f) is obtained by replacing x0 by a monomial
v0 of length k, k > m+1, and by replacing the variables from Λ by monomials
of length ≤ m.

Then g is linearly representable by
(1) the values of substitutions to f such that CH(v′0) < CH(v);
(2) the polynomials which correspond to substitutions of thickness m+1 of

elements from A to a polynomial from AM

〈
Λ ∪ {x0}

〉
, multilinear and

skew symmetric in the set of variables Λ∪ x0, and of arbitrary elements
to another set Λ′ where |Λ′| = m.
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Доказательство. Choose a submonomial of thickness m+1 in the monomial v0,
denote it by x′0 and use the expression (10). It remains to observe that the terms
corresponding to

f ′ = f −
m∑

i=1

f
∣∣∣
x→yi; yi→x

satisfy condition (2), and those corresponding to the terms of the sum

m∑
i=1

f
∣∣∣
x→yi; yi→x

,

satisfy condition (1) of the present lemma. Let u be a submonomial in the
monomial v and u belongs to some chain of submonomials which increases by
inclusion and has maximal length. Then replacing u by a monomial of smaller
length we decrease the parameter of the original monomial.

Consider a pair (A,H). Suppose H ≥ k. Similarly to the above, we can
prove the following

Statement 3.11. Suppose a polynomial f belongs AM

〈 ⋃1
i=0 Λi

〉
, |Λ0| =

k, |Λ1| = k + 1. Suppose the set Λ1 contains just s thick variables, and all
variables in the set |Λ0| are thin. Then the following holds.
(a) If s > 1 then the polynomial g corresponding to f is linearly representable

by values of polynomials gµ which correspond to not more than one thick
variable in the set Λ1.

(b) Suppose s = 1. Then the polynomial g corresponding to f is linearly
representable by values of polynomials gµ such that parameters (CH) of
all but one its variables in the set Λ1 are the same and a single parameter
is strictly smaller.(

All polynomials gµ correspond to f for some verbal substitution xj → vj

where xj ∈
⋃1

i=0 Λi.
)

Доказательство. Assertion (a) uses a construction related to formula (10),
and assertion (b) follows from (a) applied to the thick variable in Λ1.

Замечание. Similarly, if |Λ0| = |Λ1| − s then in view of the remark
preceding Lemma 3.9 we may guarantee that not more than s variables from Λ1

have thickness exceeding m. But for s > 1 no analogue of assertion (b) has
been proved. This is one of the reasons for using Kemer diagrams and not
arbitrary extremal diagrams.

Thus we can make a large set thinner at the price of «thickening» a small
set. Combine this process with the swap procedure which enables to thin almost
all small sets. Summing up the results of Proposition 3.11 and of Corollary 3.7
we obtain
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Statement 3.12. Suppose M is a variety of algebras with parameters
(b, d, k) satisfying a rarefied identity of degree m, and Sm1,m2 is the space
of values of Kemer polynomials with m1 + m2 small columns, such that all
variables corresponding to large sets have thickness ≤ m + 1 and not more
than m1 variables from small sets have thickness > m (the number of large
sets for a Kemer polynomial always equals d). Then the following holds:
(a) If m1 = m−1 and m1 +m2 ≥ k +1 then the space Sm1,m2 coincides with

the space generated by all values of Kemer polynomials which have the
diagram D consisting of d large and m1 + m2 small columns.

(b) Suppose c is the number of small columns in the Kemer diagram D and
the diagram E consists of m columns of length b. Then we have the
inclusion S(D ∪ E) ⊂ S(0, c).

The sense of this proposition (and of this subsection) is in the inclusion:
the space of values of polynomials corresponding to the Kemer diagram D∪E
is contained in the space of thin values of Kemer polynomials corresponding
to a somewhat smaller diagram D.

Corollary 3.8. Suppose A is a PI-algebra with parameter (b, d) satisfying
a system of rarefied identities of order m, A′ is the quotient by the ideal
generated by polynomials of thickness max(m, b+1) which correspond to some
Kemer diagram for the variety Var(A). Then the pair (b, d) for Var(A′) is
strictly smaller than the pair (b, d) for Var(A).

Замечание 1. The thinning technique is used for extremal polynomials
corresponding to diagrams which contain ≥ m small columns and with a large
column of length q contain a column of length q − 1.

Замечание 2. For associative and structurizable algebras, the possibility
for thinning follows also from the fact that an extremal ideal is a Noetherian
module over traces.

3.5. Rings with operators. Suppose B is an algebra with signature Ω, and
D(B) is an operator algebra for B. To each element of D(B) there corresponds
a monomial from BVar(B)〈X〉, linear in the variable x. To multiplication of
operators D1 ∗ D2 there corresponds a substitution of D1 → x to D2, and to
action of an operator on an element v there corresponds a substitution v → x.

Thus we obtain a pair (B, D) where D is an operator algebra. We want to
investigate identities of this pair. We may define in a natural way the variety M

of double-based algebras (multiplication operators must belong to the operator
algebra D) as well as extensions B〈 ~x, ~y 〉 where ~x denotes free variables of the
algebra, and ~y denotes free operator variables. Similarly we define the algebra
BM〈 ~x, ~y 〉 for any variety M of double-based algebras (to every variety of
ordinary algebras there corresponds, in a natural way, a variety of double-based
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algebras.) Note that investigation of alternative and Jordan algebras involves
using of multibased systems (alternative systems, Jordan triple systems).

We will investigate varieties such that the corresponding operator algebra
is a PI-algebra. This is a natural class of algebras. The necessity of restrictions
of such kind is evident from the following example.

Пример. Suppose M is a variety of algebras determined by the identity
x(yz) = 0, B is a free 2-generated algebra of M and M′ = Var(B). It is easy
to see that the basis M consists of monomials of the form

(((· · · ((xi1xi2)xi3) xi4) · · · ) xik) ,

and substitution of monomials of length greater than 1 to all positions except
the first one results in zero. Hence if xi1 is fixed then substitutions of the form
xi1 → xi1xα realize the action of left multiplication in the operator algebra. It
is easily seen as well that the variety M′ satisfies a system of rarefied identities,
namely, the Capelli identities of order 4. At the same time, the growth in a
free algebra of M′ is exponential, GKdim(B) = ∞, and the variety M′ itself
is neither locally Specht nor locally representable.

Similarly to the case of ordinary algebras, we may consider polynomials,
multilinear and skew symmetric in sets of operator variables (these polynomials
may also include ordinary variables). Corresponding diagrams will be called
operator diagrams, and the space of polynomials, which corresponds to an
operator diagram D will be denoted S2(D); to a pair D = (D1, D2) consisting
of an ordinary and an operator diagram, there corresponds in a natural way the
space S(D) = S(D1, D2). Let D1 be an extremal diagram for an algebra B. An
operator diagram D2 is compatible with the diagram D1 if the algebra BM〈 ~x, ~y 〉
contains a nonzero polynomial from S(D1, D2), and D2 admits D1 if D2 is
compatible with any extremal diagram D′ ⊃ D1. Fix an extremal diagram D1

and consider the set of operator diagrams which admit it. Similarly to the case
of ordinary algebras, define operator diagrams extremal relative to D1, their
heads and tails (the remaining parts of the diagrams). We may define, in a
natural way, a pair of extremal diagrams D = (D1, D2). (The diagram D2 has
to be extremal in the class of diagrams which admit arbitrary large extremal
diagrams containing D1.)

Замечание. In the definition of an extremal diagram D2 we require non-
vanishing of a polynomial which is not necessarily purely operator polynomial.
Moreover it is quite possible that the space S(D2) in the operator algebra D
is zero.

We call a family of diagrams regular if together with any diagram it contains
all its subdiagrams.
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Lemma 3.10. Every descending by inclusion chain of regular families
stabilizes.

Let D1 be a Kemer diagram for an algebra B. When D1 increases, the set of
diagrams compatible with D1 decreases and at some moment stabilizes. Now
the symbol k will denote the minimal number of small columns necessary for
stabilization. A good diagram will mean a Kemer diagram with ≥ k + 2 small
columns. Considering diagrams compatible with a good Kemer diagram D1

we define the operator Kemer diagram D2 corresponding to D1 as well as
parameters b2, d2 and k2. The pair (D1, D2) is called the pair of Kemer diagrams.

Note that operator alternators and alternators of elements from the algebra
are disjoint. All statements related to thinning of alternators and to representable
spaces extend immediately to this case. We formulate only the eventual result.

Statement 3.13. Let M be a variety of double-based algebras with parameters
(b, d, k) satisfying a rarefied identity of degree m and an operator rarefied
identity of the same degree. Let Sm1,m′

1; m2,m′
2,n be the space of Kemer polynomials

which have m1 +m′
1 and m2 +m′

2 small columns in the first and in the second
diagram respectively and satisfy the following conditions.

(1) For each type, the variables which correspond to large sets are of thickness
not exceeding m + 1 (this means that we substitute to these variables
from Λ monomials of thickness not greater than m + 1).

(2) Not more than m1 variables in small sets are of thickness greater than m.

(3) All variables from A contained in the alternated sets are of thickness
not exceeding n.

Then the following holds.

(a) If m1 = m2 = m− 1, m1 + m′
1 ≥ k + 1, m2 + m′

2 ≥ k + 1 then the space
Sm1,m′

1; m2,m′
2
coincides with the space generated by all values of Kemer

polynomials having the pair of diagrams (D1, D2) where Di consists of di

large and mi + m′
i small columns.

(b) Suppose ci is the number of small columns in Di, and Ei consists of m
columns of length bi. Then we have the inclusion

S(D1 ∪ E1, D2 ∪ E2) ⊂ Sm1,m′
1; m2,m′

2,m ⊂ S0,m′
1; 0,m′

2,m.

Since the operator algebra D is a PI -algebra and every finitely generated
subalgebra of it is a Kurosh algebra, the lemma on tree implies

Statement 3.14. Let D = (D1, D2) be an extremal pair of diagrams for a
variety M ⊇ Var(A) of double-based algebras with operators, S = SD,M. Then
if each Di includes a small column then the space S is representable.
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§4. Height theorem for the non-associative case

Definition 4.1. An algebra A has bounded L-length if for some k the
algebra L[A] of its left multiplications is linearly representable by a set of
elements of the form L(p1) · · ·L(pq) where q < k and L(x) is the operator of
the left multiplication by x. A variety M is called not bad if the algebra of left
multiplications of any finitely generated algebra from this variety

(1) is finitely generated,
(2) is of bounded L-length,
(3) and moreover the algebra A is elastic, that is, any 1-generated algebra

from M is associative or M is a variety with associative powers .
The above conditions mean that the associative algebra L[A] is close to the

original algebra A and enable to extend to A statements related to L[A].
Definition 4.2. A class of rings E is called a Kaplansky class if for any

R ∈ E the following holds:
(1) if R is prime and Nil(R) = 0 then R has nontrivial center;
(2) the quotient R/ Nil(R) ∈ E is a subdirect product of simple rings;
(3) R⊗ F[λ] ∈ E;
(4) Nil(R) = 0 ⇒ Jac

(
R⊗ F[λ]

)
= 0.

The condition (4) is equivalent to the following two assertions:
• if R is prime and Nil(R) = 0 then localization by the center Z(R) is

simple;
• if Nil(R) = 0 then R⊗F[λ] is a subdirect product of prime algebras. The

intersection of any ideal with Z(R) is nontrivial.
Замечание. Any variety of non-nilpotent Lie algebras cannot be not bad

because l-length is unbounded. It does not belong to a Kaplansky class as well.
A variety M is called good if it is not bad, that is, satisfies (1)–(3) from the

definition of a not bad variety, and moreover
(4) the algebra of left multiplications of any finitely generated algebra from

this variety is a PI-algebra.
An algebra is called representable if it embeds into a finite-dimensional

algebra over an associative-commutative ring.
Statement 4.1. (a) In the category of n-dimensional representations there

exists a universal object.
(b) An algebra C is representable if and only if there exist a family of ideals

{Ji}i∈I and a number n ∈ N such that
(1)

⋂
i∈I Ji = 0;

(2) dim C/Ji ≤ n.
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Доказательство. Assertion (b) is an immediate consequence of assertion (a)
which is well-known. Now we describe the construction of universal n-dimensional
over the center representation. Let {ēi}n

i=1 be the basis vectors. The multiplication
is determined by structure coefficients Ck

ij: ēiēj = Ck
ij ēk. To every ith generator

of the algebra C, attach the element
∑

j λij ēi. Furthermore impose relations
on the coefficients Ck

ij and λij, which follow from the relations of the algebra C.
These coefficients are determined from the quotient of the ring of commutative
polynomials by the above relations.

Замечание. Note that the class of n-dimensional algebras over a field,
even in the associative case, may contain no universal object.

Now we introduce the following notation:
Monr is the set of non-associative monomials of degree r;
M (k) is the ideal generated by kth powers of elements from M .
If J is an ideal in C then IJ is the ideal in L[C] generated by operators

of muliplication by elements of J . Suppose D ⊆ C; ID,s denotes the ideal
in L[C] generated by operators of left multiplication by elements of the form
W (t1, . . . , tk) where W ∈ Monk, k ≤ s and there exists i such that ti ∈ D. If
I is an ideal in L[C] then define the ideal JI as the set

{
x ∈ C : ∀d ∈ id(x) L(d) ∈ I

}
.

Let g(r) denote the number of generators in the left multiplication algebra for
Mr, the free r-generated algebra of M. Let l(r) denote the l-length of Mr.
Since the algebra of left multiplications is finitely generated, there exists a
function denoted by GM(r)

(
or simply G(r)

)
, such that for s > G(r) we have

the inclusion ID,s 3 Iid(D) in an r-generated algebra C from M.
The fact that algebras of left multiplications are finitely generated implies
Statement 4.2. There exists a function h(r) such that L[Mr] is generated

by operators of left multiplication by monomials of degree not exceeding h(r)
in the generators of the algebra Mr.

Statement 4.3. If I is an ideal in L[C] of codimension k then the codimension
of the ideal JI does not exceed k ·N where N is the number of non-associative
monomials of degree not greater than G(r+1), and r is the number of generators
of C.

Доказательство. The fact that the algebra of left multiplications is finitely
generated implies that x ∈ JI if L(d) ∈ I for any non-associative monomial d
of degree not greater than G(r + 1), including x. Hence the codimension of JI

does not exceed the product of the codimension of I by the number of these
monomials.
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Theorem 4.1. (a) Let M be a not bad variety, C ∈ M be a finitely
generated algebra. Then representability of C is equivalent to representability
of L[C].

(b) If a variety M is good and C ∈ M is a semiprime algebra then C is
representable.

(c) If a variety M is good and C ∈ M is a simple algebra then C is finite-
dimensional.

(d) If a variety M is good and an algebra C ∈ M has no ideals with
non-nilpotent quotients then C is simple

(e) If a variety M is good and any simple algebra from M has no basis
consisting of nilpotent elements then for M Kurosh problem has positive
solution. Moreover, if C is homogeneous and finitely generated then there
exists M ⊂ C such that the algebra C/M (k) is nilpotent for every k.

(f) The lattice of prime ideals in a variety satisfying a system of Capelli
identities satisfies both ACC and DCC.

Доказательство. Assertion (a) follows from Propositions 4.1–4.3. Assertions (c)
and (d) follow from (b). Assertion (e) follows from (a)–(d), and assertion (f) from
the rank theorem. Now we prove assertion (b). In the algebra L[C] there exists
a sequence of ideals {Iα} such that its intersection lies in the radical R

(
L[C]

)
and any quotient L[C]/Iα embeds into the algebra of m×m matrices for some m
the same for all Iα. The corresponding sequence of ideals JIα in C is such that
any quotient C/JIα embeds into an algebra of dimension over the center, not
exceeding some m′. If x ∈ ∩JIα then L(x) ∈ R

(
L[C]

)
and x ∈ R(C). Primarity

of C implies R(C) = 0. It remains to apply Proposition 4.1.

Suppose q(n) is the nilpotency degree of C/M (n), s is the number of
generators of the algebra C. Denote by I(M, n) the ideal in L[A] generated by
elements of the form L(t1) · · ·L(tn) for which there exists m ∈ M such that
ti = mki for any i (the element m ∈ M is the same for all ti). The definition
of not bad variety implies

Statement 4.4. The operator L(xq) generates for some q a proper ideal
in L[B] if and only if xt for some t generates a proper ideal in B.

The next proposition establishes a connection between nilpotency of nil-
algebras and local finiteness condition.

Statement 4.5. Let all nil-algebras in a good variety M be nilpotent.
Then there exist functions FM(n, k) and HM(n, k) such that any k-generated
algebra from M having algebraic of order n elements which are sums of monomials
of length ≤ HM(n, k), is of dimension not exceeding FM(n, k).

The next statement is related to combinatorics in not bad varieties. It
also enables to pass from an algebra to its algebra of left multiplications, and
conversely.
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Statement 4.6. (a) The quotient L[A]/IM(k) is nilpotent of degree ≤ q(k)·
l(s + 1).

(b) We have the inclusion Id(D) ⊇ ID,r, and if r ≥ h(s + 1) then for all D
the equality Id(D) = ID,r holds.

(c) For k sufficiently large
(
for k > g(r+1)

)
we have the inclusion IM(k),s ⊆

I(M,n)
(
k > K

(|M |, n, s
))
.

(d) For n > k · l(2) we have the inverse inclusion I(M, n) ⊆ IM(k),s.
Доказательство. (a) An element of L[A]t belongs to the ideal generated

by the operators of left multiplication by elements of L
[
At/l(s)

]
. If t/l(s) ≥ q(k)

then At/l(s) ⊇ M (k).
(b) The inclusion Id(D) ⊇ ID,r is obvious. The converse inclusion for r ≥

h(s + 1) follows from Proposition 4.2.
(c) Suppose z ∈ Id(mk). Denote the element mk by a new letter m′. Then

L[z] lies in the ideal generated by m′ and by monomials of degree not exceeding
G(s + 1) in the generators of A. Let z′ be such a monomial. Now replace m′

by mk to obtain a monomial w (in generators of the algebra and in the letter m).
The operator L(w) is linearly representable by products of the form

∏
L(wi)

where the degree of each wi does not exceed h(s+1) (the alphabet consists of s
generators of the algebra and of m). We say that a monomial wi is of the first
kind if it contains a letter distinct from m, and of the second kind otherwise.
The number of monomials of the first kind does not exceed G(s + 1) − 1,
and taken together they contain not more than

(
h(s + 1)− 1

)(
G(s + 1)− 1

)
occurrences of m. Thus we have not less than k− (

h(s+ 1)− 1
)(

G(s+ 1)− 1
)

occurrences of m in monomials of the second kind.
An operator of multiplication by a monomial of the second kind is linearly

representable by a product of monomials of the second kind of degree not
exceeding h(2) (a monomial of the second kind includes the letter m and also
the letter corresponding to the element of the algebra to which the operators
are apllied). Hence we may assume that the number of operators of the second
kind is not less than

k − (
h(s + 1)− 1

)(
G(s + 1)− 1

)

h(2)
.

Since the number of monomials of the first kind is not greater than G(s+1)−1,
there is an interval consisting of not less than

k − (
h(s + 1)− 1

)(
G(s + 1)− 1

)

h(2)
(
G(s + 1)− 1

)

operators of multiplication by monomials of the second kind, disposed succesively.
Thus for

k > n · h(2) · (G(s + 1)− 1
)

+
(
h(s + 1)− 1

)(
G(s + 1)− 1

)
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we have the required inclusion IM(k),s ⊆ I(M, n).
(d) Observe that in transformation of expressions of the form

x · L[w1] · · ·L(wn)

where wi are powers of m, two symbols are involved: m and x. Hence assertion (d)
follows from the fact that the L-length of the algebra generated by elements x
and m is bounded by l(2).

Let a number n exceed the degree of an identity valid in L[A]. Apply
proposition 4.6 and the swap lemma to obtain the following

Lemma 4.1. Suppose C is a finitely generated graded PI-algebra from a
good variety, M ⊂ C is a finite set of homogeneous elements, such that for
any k the quotient algebra C/M (k) is nilpotent. Then there exist a number H
and a finite set D(M) such that L[C] is linearly representable by elements of
the form t1t2 · · · tk where k < H, and either ti ∈ D or there exists mi ∈ M
such that ti = L(xi1)L(xi2) · · ·L(xij) where ( for a fixed i) all xiα are powers
of the same mi.

Boundedness of the L-length implies
Statement 4.7. Let all xα be powers of the same element m. Then the

product L(x1)L(x2) · · ·L(xj) is linearly representable by elements of the form
L(y1)L(y2) · · ·L(yλ) where λ ≤ l(1) and all yα are powers of m.

Definition 4.3. An algebra C has essentail height not greater than H
over a set M which is called an s-basis of C if there exist a finite set D(M)
and a number N such that C is lineraly representable by elements of the form
Q(t1, . . . , tl) where Q ∈ Monl, l ≤ N , and for any i either ti ∈ D or there exist
mi ∈ M и ki ∈ N such that ti = mki

i , and the number of ti /∈ D does not
exceed N . The minimal of these H is called the essential height. If for some H
we may assume D = ∅ then M is a Shirshov basis of C. This is equivalent to
the following condition: M generates C as an algebra.

Note that in the associative case we may set N = 2H + 1.
The theorem below follows from Lemma 4.1 and Proposition 4.7.
Theorem 4.2. Suppose C is a finitely generated graded PI-algebra from

a good variety, M ⊂ C is a finite set of homogeneous elements. Then if the
algebra C/M (k) is nilpotent for any k then C has bounded height over M .
Furthermore if M generates C as an algebra then M is a Shirshov basis for C.

Замечание. Theorem 4.2 holds even without the associativity condition
for 1-generated algebras. In this case, the condition ∃mi ∈ M : ti = mki

i

in the definition of essential height must be replaced by the condition of
representability of ti in the form of a monomial in a single element of M .
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Corollary 4.1. Suppose C is a finitely generated graded PI-algebra from
a good variety, M ⊂ C is a finite set of homogeneous elements. The set M is
an s-basis if and only if every simple quotient of C contains a non-nilpotent
image of an element from M .

Using the fact that simple algebras in good varieties are finite-dimensional,
we obtain

Corollary 4.2. Let M be a good variety such that any simple algebra
from M has no basis consisting of nilpotent elements. Let C be a homogeneous
finitely generated algebra from M. Then C has bounded height over some finite
set M .

In a number of works, asymptotical closeness of certain algebras to associative
ones is proven. In fact, what is proved is the property of a variety to be
«good». In [44] and in [46] it is shown that l-length of finitely generated Jordan
and, respectively, alternative algebras is bounded. In [46] it is proved that
the algebra of left multiplications of an alternative or special Jordan finitely
generated PI-algebra is a PI-algebra1. In the same work it is shown that for
a finitely generated alternative PI-algebra of degree m, the condition of the
theorem holds if for M we take the set of words of degree not exceeding m2.
In [34] condition (4) is proved for finitely generated Jordan PI-algebras, in [16]
it is established that a Jordan PI-algebra of degree m such that all words of
degree ≤ m2 are algebraic, is locally finite. Thus we have

Corollary 4.3. (a) Suppose A is a finitely generated graded associative
(alternative, Jordan) PI-algebra, M ⊂ A is a finite set of homogeneous elements
which generates A as an algebra, M (k) is an ideal generated by kth powers of
elements from M . Then if for any k the quotient algebra A/M (k) is nilpotent
then A has bounded essential height over M .

(b) Let B be an alternative or Jordan finitely generated PI-algebra of
degree m. Then B has bounded height over the set of words of degree ≤ m2.

Statement 4.8. Let B be the Cayley — Dickson algebra over an arbitrary
field. Then some word of length not exceeding 2 in the generators of B is non-
nilpotent.

This proposition, Theorem 4.2 and Theorem 4.1 imply
Theorem 4.3. Suppose B is a relatively free alternative algebra, M is a

some set of (non-associative) words in its generators. Then M is a Shirshov
basis (an s-basis) for B if and only if M is a Shirshov basis (an s-basis) for
the quotient of B by the associator ideal.

1 a Jordan algebra is called special if it embeds into A+ for some associative algebra A,
and is called a PI-algebra if it satisfies an identity not valid in the free special algebra.
An alternative PI-algebra is an alternative algebra with an identity not valid in the free
associative algebra
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Combinatorial-asymptotic notions and results can be extended to good
varieties. The complexity of a variety M is defined as the class of simple algebras
belonging to M.

Theorem 4.4. Let M be a good variety. Then the following holds.
(a) The essential height of a representable algebra from M, if it exists, is

equal to the Gelfand — Kirillov dimension of the algebra as well as to
the essential height and the Gelfand — Kirillov dimension of its algebra
of left multiplications, and the dimension in question is finite.

(b) Any finitely generated algebra from M satisfies the strong algebraicity
identity as well as the natural analogue of the Capelli identity. Hence its
algebra of right multiplications also is PI.

(c) The radical of a finitely generated algebra from M is nilpotent (an
analogue of Braun theorem).

(d) If every simple algebra from M has center then a complete analogue of the
theorey of Razmyslov polynomials is valid. In particular, a localization of
a prime algebra by the center is finite-dimensional over the center, and a
prime algebra embeds into an algebra finite-dimensional over the center.
The Gelfand — Kirillov dimension equals the transcendence degree of the
center.

(e) Homogeneous components of identities form an algebraic ideal which
satisfies the identity xn−1 − xn2 = 0.

Moreover, as was established above, finite-dimensional algebras from good
Kurosh varieties satisfy the height theorem.

Here we do not present the proof of Theorem 4.4 as well as the definitions
of some involved notions since the situation is quite similar to the associative
case. All argument concerning swap immediately extends to good varieties.

The notion of a good variety generalizes to (multibased) algebras of arbitrary
signature. An operator D is called elementary if there exists a monomial M of
degree n + 1 and constants c1, . . . , cn ∈ B such that D(x) ≡ M(x, c1, . . . , c1).
An operator algebra for a finitely generated algebra has bounded length if it is
generated as a vector space by products of elementary operators in a bounded
number.

Definition 4.4. A variety M is called not bad if the following conditions
hold:

(1) for a finitely generated algebra from M, the operator algebra also is
finitely generated;

(2) an operator algebra for a finitely generated algebra has bounded length.
A not bad variety is called good if in addition to (1), (2) it has the following

property:
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(3) the operator algebra for a finitely generated algebra from M is a PI-
algebra.

Замечание. For an algebra A (of arbitrary signature) satisfying Cn there
exists the maximal locally nilpotent ideal [20] but the «Bair chain» stops at
the nth step. This means that the algebra includes the maximal locally solvable
ideal B0(A), the quotient A/B0(A) includes the maximal locally solvable ideal B1(A),
similarly the quotient A/B1(A) includes B2(A) and so on. Furthermore we have
Bn(A) = 0 (see [21]). For good varieties, the Bair radical coincides with the
nilradical (and with the Jacobson radical), and B1(A) = 0.

4.1. On Burnside-type problems. It is of interest of describe Shirshov
bases for Lie and Jordan cases. This problem reduces to the case of varieties
generated by simple algebras.

It is known that a simple Jordan algebra is either an algebra of a quadratic
form or a non-special algebra HC3 or an algebra of matrices with operation
A◦B = AB+BA or the algebra of symmetric matrices with operation ◦. In the
first case the generators may be nilpotent but then all words of length 2 are non-
nilpotent and the Shirshov basis must consist of words having length 1 and 2.
In the latter case the set of monomials is a Shirshov basis if for any regular
word u of length not exceeding the matrix size n there exists a monomial
in this set such that after removing parentheses the leading coefficient is u.
Hence to improve the estimates in Ye. I. Zelmanov’s result [16], it suffices to
calculate in HC3. In any case the bound for the degree of words does not
exceed max(m/2, const). Note that since various bracketings are possible, the
above condition for the set of Jordan (Lie) monomials is sufficient but not
necessary. To all appearance, it may be weakened. In this context the question
arises on description of monomials which are Shirshov bases. Theorem4.3
provides that it suffices to check only Kurosh condition. Seemingly the latter
has some connection with tensor ranks of expressions. It would be of great
importance to clarify this connection.

It is of interest to compute the lattice of ideals of identities in prime algebras
for PI-rings close to associative ones and to obtain theorems on finiteness of
the lattice for as general situation as possible.

It is known that all simple PI (λ, δ)-algebras are associative. So the question
arises:

Is the variety of PI (λ, δ)-algebras good?
It is easy to see that a finitely generated Engel — Lie algebra generates a

not bad variety. Is it possible to prove directly that it is good (i.e., that the
algebra of multiplications is PI)? For this, it suffices to estimate from above
the growth order of codimensions as o(n)!. Then we shall obtain another proof
of nilpotency of these algebras (a well-known result by Ye. I. Zelmanov).

Also the following questions arise:
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Is any algebra which is good from the left also good from the right? Is
this valid in zero characteristic? Is the class of not bad (good) varieties in the
finitely generated case closed under tensor product? Is this true in the general
case?

Since a tensor product of associative PI-algebras is also PI, the left multiplication
algebra in a tensor product of good varieties is PI. Moreover it is obvious that
the tensor product of algebras A and B with bounded L-length has bounded
L-length as well; and if the algebras L[A] and L[B] are finitely generated then
L(A ⊗ B) is finitely generated as well. However is it true for a free object of
the variety Var(A⊗B)?

When solving the Kurosh problem, we imposed the condition of absence of a
nil-basis in a simple algebra. It does hold in associative, Jordan and alternative
cases. On the other hand, a finite Lie algebra with a nil-basis generates a good
variety. It is of interest to obtain any general criteria of absence of a nil-basis.
Is it possible in Corollary 4.2 to replace this condition by a weaker condition
of absence of simple nil-algebras?

§5. Finite-basedness problems

Dealing with a wide class of algebras, it is difficult to perform specific
calculations, so we will use only abstract tools.

Definition 5.1. Define the complexity of a variety as the set of prime
algebras belonging to it. Each prime algebra is considered up to the variety
generated by it. Order complexities of algebras as follows: Ai ≺ Aj means that
Var(Ai) ⊂ Var(Aj).

The complexity type of a variety M is the family of sets of prime algebras
subordinate to M. A set of prime algebras {Ai} is called subordinate to the
variety M if M contains an algebra including ⊕iAi and having a nonzero non-
associative monomial which includes an occurrence of some element from Ai

for each i.

In contrast to the associative case, for arbitrary M the set of complexities
of prime algebras is, in general, only partially ordered. However Martindale’s
theory provides that this set satisfies both ACC and DCC if some rarefied
identity holds.

Similarly to the associative case, we deal with the sets of algebras {Ai}
(some of them may be identical) connected by means of the radical. Two
complexity types T1 and T2 for these sets of algebras will be ordered as follows.
If a prime algebra Ai is contained both in T1 and T2, decrease the multiplicity
of its occurrence by 1 to obtain the sets of algebras T ′

1 and T ′
2 which have to

be in the same relation as T1 and T2. Thus it suffices to order the sets without
common elements. In this case we have Ti ≺ Tj if and only if each element of
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Ti is smaller (relative to ≺) than some element of Tj. The obtained relation of
the sets of algebras is a relation of partial strict ordering. Replacing any of Ai

by any set of strictly smaller algebras decreases the complexity type.
In this section, the ground field has zero characteristic. Any finite-dimensional

algebra, if the contrary is not specified, is assumed to be irreducible, that is, it
does not include two nonzero ideals with zero meet. All varieties are assumed
to be structurizable.

The main aim of this section is to prove Theorem 1.1.
5.1. The Martindale centroid, the rank theorem and first Kemer lemma.

We start with considering prime components. For use in the sequel, we have
to introduce two new essential restrictions on the variety in question, namely,
to pass to structurizable and convenient varieties (see definition 1.1).

Let M be a prime PI-algebra of arbitrary signature Ω. Then its Martindale
centralizator is a finite-dimensional algebra over some field, of dimension equal
to the maximal degree of a Capelli polynomial non-vanishing on this algebra.

Let R be a prime algebra of signature Ω. Recall the construction of the
Martindale centroid. It is defined as the injective limit of equivalence classes
of morphisms

lim
−→

{
HomR(I, R)

∣∣ 0 6= I / R
}
.

Equivalence of pairs (ψ1, I1) and (ψ2, I2) means coincidence of restrictions
of ψ1 and ψ2 to the meet I1 ∩ I2. The sum of morphisms ψi and ψj is defined
in a natural way, and the product is the composition ψi ◦ψj. So we obtain the
structure of a commutative ring C(R).

The central closure Q(R) is the set of formal sums
∑

ψiri where ri ∈ R,
with the natural equivalence relation and naturally defined operations.

Theorem 5.1 [42]. Suppose C(R) is a commutative ring with unit, Q(R) =
C(R)R, any nonzero D-submodule in Q(R) intersects R in a nonzero ideal,
and for any D-homomorphism χ of a nonzero D-submodule J from Q(R) to
Q(R) there exists an element c ∈ C(R) such that cj = χ(j) for any j ∈ J .
If J is a large D-submodule in Q(R) then the element c is uniquely determined
by the homomorphism χ.

A submodule M of a module P is called large in P if any nonzero submodule
in P has nonzero meet with M .

Another definition of the Martindale centroid may be given using the
injective envelope (see [42]). The central closure of a prime algebra A is constructed
as the injective envelope of A as a D(A)-module; here the ring of D(A)-
endomorphisms of this module occurs to be a field such that D(A)-endomorphisms
of A embed into it. This field is called the Martindale centroid.

Suppose a polynomial F ( ~y, x1, . . . , xn) is multilinear and skew symmetric
in variables xi. Substitute ei → xi and ~y′ → ~y where ei, y

′
k ∈ A. Now for each
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i, fix ~y and all ej except ei and put ϕi(ei) = F ( ~y, e1, . . . , en) and ϕi(ej) = 0
for j 6= i (no confusion because of skew symmetricity of F ).

We have obtained a non-associative analogue of matrix units. Instead of
basic units Eij we have ei. Instead of the position ∗ between facings Eij ∗ Ekl

for substituting the matrix unit Ejk (substituting other matrix units results in
zero), there are positions in the polynomials ϕi.

Nonvalidity of the system Cn means «essential linear independence». Let R be
a prime algebra such that Cn+1 does hold but Cn does not. Then R embeds into
a central simple algebra R′ of dimension n over a field, generating the same
variety (see, for example, [62] or [42]). The precise formulation is as follows.

Theorem 5.2 (on rank [42]). Let V be a subspace in a prime algebra A
of signature Ω. If rank(A, V ) < ∞ then for the central closure Q(A) we have

dimc(A) C(A)V = rank(A, V )− 1.

The rank rank(A, V ) of a vector space V relative to an algebra A is the
least positive integer k such that V satisfies all Capelli identities of order k.
We say that V satisfies all Capelli identities of order k if any polynomial
F (x1, . . . , xk, ~y ), multilinear and skew symmetric in a set of variables {x1,
. . . , xk} vanishes on A after replacing xi by elements of V skew symmetric in
a set of k variables.

The proof of Theorem 5.2. We present this proof because we will use similar
argument in the sequel. Suppose a = Cn(v1, . . . , vn, ~z ) 6= 0, v ∈ A, G(x, y,~t )
is bilinear in x and y. Put

ai(u) = Cn(v1, . . . , vi−1, u, vi+1, . . . , vn, ~z ).

Using Lemma 3.3 on absorption of a variable
(
equation (5)

)
we get

g
(
ai(u), a,~t

)
=

n∑
j=1

g
(
ai(vj), aj(u),~t

)
.

If u = vk and also k 6= i then ai(u) = 0 by skew symmetricity of the Capelli
polynomial. If k = i then ai(u) = ai(vi) = a. Hence the preceding equation
implies the identity

g
(
ai(u), a,~t

) ≡ g
(
a, ai(u),~t

)
. (11)

Since the algebra A is simple for any g, a ∈ A\{0}, n ∈ N, there exist
α ∈ Id(a)n and a nonzero multilinear polynomial G such that G(g, α,~t ) 6= 0.
Together with the equation (11) which enables to transfer occurrences this
easily implies that the operator ci(a, u) replacing a by ai(u) is well defined and
does not depend on a specific recording. Moreover this operator belongs to the
field of D(A)-endomorphisms of the central extension of A.
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To prove the rank theorem, it suffices to establish the equality

b = u−
n∑

i=1

ci(a, u)vi = 0.

However for any polynomial H bilinear in the first two arguments we have

H(b, a,~t ) = H(u, a)−
n∑

i=1

H(vi, ci(a, u)a,~t ) = H(u, a)−
n∑

i=1

H(vi, ai(u),~t ) = 0.

The last equality holds by virtue of the identity (5) from Lemma 3.3
(taking u for the variable z). The rank theorem is proven.

The properties of the Martindale centroid and of the central closure imply
Statement 5.1. Let A ∈ M be a prime algebra which satisfies the system

of Capelli identities of order (n + 1) but does not satisfy the system of Capelli
identities of order n. Then A embeds into an algebra B, finite-dimensional over
an associative-commutative ring K, so that for any a ∈ D(A) there exists a
λ(a) ∈ K such that for any polynomial F ( ~y, x1, . . . , xn), multilinear and skew
symmetric in x1, . . . , xn, we have

n∑
i=1

F ( ~y, x1, . . . , xn)
∣∣∣
a(xi)→xi

= λ(a) · F ( ~y, x1, . . . , xn).

Here the ring K is generated by these λ(a) and is Noetherian.
Доказательство. In view of properties of the Martindale central closure

it suffices to ensure that if a polynomial F~y( ~x, ~z ) is multilinear and skew
symmetric in the sets of variables x1, . . . , xn and z1, . . . , zn then the operation

F~y( ~x, ~z ) →
n∑

i=1

F~y( ~z, x1, . . . , xn)
∣∣∣
a(xi)→xi

determines a morphism of D(A)-modules
(
from D(A) to the operator algebra

)
generated by the values of F on the T -ideal of A, generated by Cn. The latter
follows from Lemma 3.6.

Corollary 5.1. The lattice of T -prime ideals in a finitely generated algebra
of arbitrary signature, satisfying a system of Capelli identities satisfies ACC
and DCC.

In some cases it suffices to consider only operators of multiplication by
elements of A.

Let {ei} be a basis of the ring R′ considered as a vector space. Then the rank
theorem implies the existence of a polynomial F (x1, . . . , xn, ~y ), multilinear
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and skew symmetric in the set of variables {x1, . . . , xn} and such that Ψ =
F (e1, . . . , en,~t ) 6= 0. Since R′ is simple, any element x ∈ R′ belongs to the kth
power of the ideal J generated by Ψ, and there exists a linear combination of
monomials containing k occurences of Ψ.

Let now R be a representable algebra from a structurizable good variety.
It can be embedded into a finite-dimensional algebra R′ such that Var(R′) =
Var(R). Moreover R′ decomposes into the sum of its prime components and the
radical. Here every prime component R′

i is of dimension ni equal to the maximal
degree of the Capelli identity not valid in R′

i. Then to R′
i there corresponds

some Ψi.
Consider an arbitrary polynomial G and its specializations in R′ (the

variables are replaced by elements of prime components and of the radical).
Suppose a specialization H of a polynomial G does not vanish and to a variable
yi there corresponds an element xi of R′

i. For any k ∈ N, such a specialization
is linearly representable by specializations of polynomials of T(G) obtained by
substitutions of the form yi → Mj where Mj is some non-associative monomial
and an element Ψi replaces k variables in which Mj is multilinear. Since the
specialization H is nonzero, all these specializations of the new polynomial
from T(G) cannot vanish.

Furthermore if for any i the specialization H contains an element from R′
i

then the basis elements {eij}ni
j=1

s
i=1 occiring in Ψi can be joined into a single

set and alternated. Since replacing eij2 by eij1 for j1 6= j2 results in zero, the
result of alternation coincides with the original specialization and is not zero
(the argument is similar to that of A. R. Kemer [27]).

Since we have substituted k terms Ψi into Mj, we can perform alternating
relative to k sets. (In the sequel, we will take k sufficiently large.)

Summing up the above, we obtain

Lemma 5.1 (on refinement). Let a polynomial g take a nonzero value
ḡ for some specialization involving all prime components R′

i. Then for any
arbitrarily large q ∈ N there exists a consequence of T(g) which is obtained
from g by replacing variables by nonassociative monomials and alternating in q
sets of b(A) variables, and has the same value.

Thus for convenient structurizable algebras of arbitrary signature we have

Lemma 5.2 (Kemer’s first lemma). Let M be a structurizable convenient
variety of arbitrary signature, A ∈ M, A(i) is the quotient of A by the ideal
generated by the ith prime compoment.

Then either Var(A) = Var(
⋃

A(i)) or b(A) =
∑

dim(A(i)).
If Γ is a T -ideal in A then either Γ

⋂
i A

(i) = 0 or b(A, Γ) =
∑

dim(A(i)).

Замечание 1. Similar argument is used in the proof of the rank theorem.
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Замечание 2. The proof of the non-associative analogue of second Kemer
lemma differs fundamentally from the associative case. The point is that in
the non-associative case the interaction between prime components and the
radical may have different properties. In particular, any power of a composition
of elements from operator algebras D(A(i)) with distinct i can have nonzero
action on the radical (for instance, in the case of Jordan algebras). Hence we
cannot apply argument from [27] which uses moving a mixed element into a
monomial such that all other elements of it have semisimple specializations
only.

Since an explicit «chasing» the radical as in A. R. Kemer’s work is rather
difficult here, we use a more abstract and complicated method. We will show
that internal traces in the structurizable case are defined invariantly and do
not depend on the way of recording. This is the main content of this section.

5.2. Structurizable varieties. second Kemer lemma. The aim of this subsection
is construction of internal traces in an extremal ideal and proof of their invariance.
Also we present here the main technical results of the section, in particular, a
non-associative analogue of second Kemer lemma.

Let A be a finite-dimensional algebra with generators a1, . . . , as from a
structurizable variety M,A = A/J(A). Put

A(q) = A ∗M F〈θ1, . . . , θs〉/Θq

where Θ = Id(θ1, . . . , θs). This is the «free extension of the semisimple part of
A by the radical with the nilpotency degree q». The construction is similar to
the associative case.

Suppose D is a Kemer diagram,

Λ =
k+2⋃
i=1

Λi
0 ∪

d⋃
j=1

Λj

is the corresponding set of variables, and

k ≥ max
(
k(A), c(A)

)
, d = d(A), |Λi

0| = b(A),

|Λj| = b(A) + 1. To each polynomial f multilinear in variables from Λ there
corresponds a polynomial SΛ(f) from S(D) obtained by alternating in the sets
Λi

0 and Λj. Moreover for some f the polynomial f ′ = SΛ(f) does not vanish.
We call the T -ideal consisting of polynomials of the form SΛ(f) extremal.
Suppose g ∈ S(D). Then g can be represented in the form

∑
SΛǧi

∣∣
vi→xi

where vi are some monomials which replace variables. We will use recordings
of g, or expressions of the form

g =
∑

SΛ(i)gi
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where alternated are the words corresponding to variables from Λ.
For any recording of this form and for any element a ∈ A define the

expression
δ(a)(g) =

∑
i

∑

k

SΛ(i)gi

∣∣∣
av1

ik→v1
ik

where {v1
ik} is the set of words corresponding to variables from the set Λ1

0 for
the ith term.

Results of Subsection 3.2 imply that the operators δ(ui) commute.Moreover
the result of applying the operator δ(a) does not depend on the choice of
the small subset Λi

0 in Λ which is used to determine (by substitutions) the
operator δ(a) (see Lemma 3.6 and Proposition 3.3).

Our aim is to establish the invariance of these operators, that is, their
independence of recordings of an element g ∈ S(D) from the extremal ideal to
which the operators of the form δ(a) are applied. For this, it suffices to check
that a recording of the zero element turns into a recording of the zero element.

In fact, suppose
∑

SΛ(i)gi = g = h =
∑

SΛ(j)hj.

Then ∑
SΛ(i)gi −

∑
SΛ(j)hj

is a recording of the zero element g−h, and if δ(a)(g) 6= δ(a)(h) then δ(a)(g−
h) 6= 0. Thus the recording of the zero element has turned into a recording of
the zero element.

We shall require some auxiliary statements and constructions.
A recording SΛ(i)gi will be called a letter recording if all variables from the

set Λ are replaced by words of length 1, that is, all alternations involve single
letters.

Semisimplicity of the group algebra for the symmetric group implies
Statement 5.2 (on letter alternators). (a) Let f be a sum of multilinear

polynomials of the form SΛ(fi) where all alternations are in single letters.
Then f can be represented in the form

f =

( ∑
j

αjSΛj

)
(h)

where αj ∈ K and SΛj
is the operator of alternating in sets of variables

corresponding to columns of the diagram D.
(b) Moreover SΛj

(f) 6= 0 for some j.
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Доказательство. It suffices to observe that in the group algebra, the
elements

1

(b + 1)!db!k+2
SΛj

are idempotents and any linear combination of these does not vanish when
multiplied by an element suitably chosen among them.

Замечание 1. The above statement is a fact from tensor algebra and
holds for any algebra of arbitrary signature over a field of zero characteristic.

Замечание 2. Semisimplicity of the group algebra results in the following
fact: if the alternation procedure can be performed once then it can be repeated
unboundedly. Lemma 5.3 on letter thinning may be considered as a far-reaching
generalization of these considerations. Perhaps this approach enables to establish
PIn-properties for good structurizable Specht varieties, that is, to deduce
from the Specht property local representability by constructing T -ideals such
that after any T -space operation we can return to T -ideals represented in a
convenient form.

Proposition 5.2 and results of Subsection 3.3 imply
Corollary 5.2. The space of polynomials which are letter alternators corresponding

to a Kemer diagram D is representable.
The following result is rather important:
Lemma 5.3 (on letter thinning). Suppose A is a finite-dimensional algebra

from a structurizable good variety and g =
∑

i SΛ(i)gi. Then any value of g in A
is linearly representable by values of letter alternators from T(g) corresponding
to a Kemer diagram D.

Замечание. We emphasize that this statement relates to T -spaces and
moreover that we substitute elements from a structurizable representable algebra,
that is, we substitute semisimple and radical components separately.

Доказательство. In view of Proposition 5.2 it suffices to verify our assertion
for a single term SΛ(i)gi. We may assume that g = SΛ(i)gi and g is multilinear.

We argue as in the proof of Lemma 5.2. Consider an arbitrary specialization
of variables such that g 6= 0. To this specialization, attach the following system
of substitutions Mi → xi.

• To a specialization of a variable xi to a radical element there corresponds
the identity substitution xi → xi.

• To a specialization of a variable xi to a prime component A(i) of A there
corresponds a substitution of the form Mi → xi where Mi is a non-
associative monomial containing a sufficient number of occurrences of a
monomial Ψi, multilinear and skew symmetric in some set of ni variables,
ni = rank(A(i)).
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• All variables in the monomials Ψi are distinct.
We will call a variable passive if it occurs in a (non-associative) word vi

which replaces a variable contained in a large set corresponding to Λ; otherwise
the variable is active. Substitutions to small sets of active variables create
multiplications by traces and the structure of a Noetherian module.

Since the specialization is fixed, to each of the original variables there
corresponds either a radical specialization or a prime component A, and thus
to each Ψi there corresponds some component A(i).

Note that for any specialization with nonzero result there is a small set of
variables (see definitions 1) which contains elements from each prime component R′

i.
Hence we can find a sufficient number of sets of active variables ∆j such that

• each of these sets ∆j is a joint of some sets of ni variables, relative to
which Ψij is skew symmetric;

• for each ∆i the set of prime components of A which correspond to sets
from Ψij coincides with the set of prime components of A taken once;

• thus any set ∆j consists of b(A) variables.
Now we alternate relative to all sets ∆j.
Thus we have produced a sufficient supply of letter alternators corresponding

to small sets of variables and consisting of active variables. The value of the
resulting polynomial equals the originally fixed specialization for the original
polynomial g by virtue of construction of Ψi and results of Subsection 5.1.(
If a variable specialized in A(i) gets to the nest corresponding to A(k) where

k 6= i, the result is zero, hence alternation does not change the value of the
polynomial for the given specialization.

)
The procedure of turning large sets of variables into letter sets is similar to

the procedure of thinning, used in the proof of Lemma 3.9 and Proposition 3.11.
Let a polynomial f be multilinear and skew symmetric in a set of variables
{yi}b(A)

i=1 and this is preserved after adding a variable x, and let

f ′ = f −
b(A)∑
i=1

f
∣∣∣
x→yi; yi→x

. (12)

Then the polynomial f ′ is multilinear and skew symmetric relative to the
set {x} ∪ {yi}b(A)

i=1 .
Consider a system of small sets ∆j (see definitions in Subsection 3.1).
Any of these ∆j is a letter alternator, and the variables belonging to it do

not appear in large sets.
For any radical specialization appearing in a large set, add the corresponding

variable to some of small sets and use relation (12). Now the original value of
the polynomial G will be represented as the sum of a value of a letter alternator
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(which we have to construct) and a value of a polynomial from T(G) such that
large sets involve a smaller number of its specializations.

It suffices to observe that if words corresponding to large set do not include
radical specializations then the polynomial vanishes because the dimension of
the semisimple part equals b(A) and is less than the number of elements in the
large set relative to which we alternate.

Замечание. Instead of applying proposition 5.2, we may construct for
each SΛ(i)gi a sufficient number of sets of active variables ∆j, disjoint for
distinct i, and deal with each item separately. (Is a variable passive or active,
this depends on the choice of the item gi, this is the matter of fact.) The
fact that dealing with the previous items will multiply the subsequent ones
is not dangerous because «multiplied» items are equivalent for the sequel.
The reason is that the sets ∆j are disjoint, and the procedure of alternation
changes positions of variables inside these sets (these variables will not be used
at subsequent steps of «splitting-out») as well as positions of variables having
radical specialization, whose number is bounded by c(A) − 1. The number
of variables necessary for constructing the required number of sets of active
variables is estimated by 2r

(
b(A) + 1

)(
d(A) + 2

)
.

Suppose now

h =
r∑

i=1

SΛ(i)(hi) = 0

and

ha = δ(a)(h) =
r∑

i=1

∑

k

SΛ(i)hi

∣∣∣
avik→vik

=
r∑

i=1

δ(a)SΛ(i)(hi) 6= 0.

So ha is an obstacle for correctness of the definition of the internal trace
(for the element a). The idea of the proof is to construct a nonzero element
h′a ∈ T(ha) (without any substitution into a) having a sufficient number (2)
of active small and d(A) large letter alternators. Then the operator δ(a) may
be «transferred» to these small alternators not changing the result, and then
applying of this operator amounts to some substitutions using these variables,
that is, to a T -space operation. This results in h′a ∈ T(h′) and h′ ∈ T(h) =
T(0) = 0. A contradiction with h′a 6= 0.

Now apply the lemma on letter thinning to each
δ(a)SΛ(i)(gi) occurring in this sum. Then we obtain a nonzero polynomial
ȟ ∈ T(h) representable in the form

ȟa =
r∑

i=1

∑
j

δ(a)SΛ(ij)(hij)
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where all alternators are letter ones and for each hij the number of letters
occurring in large alternators equals (b + 1)d.

Here the corresponding polynomial h vanishes:

h =
r∑

i=1

∑
j

SΛ(ij)(hij) = 0.

The number of hij can be estimated by examining the proof of the lemma
on letter thinning and does not exceed cd. Call a variable passive if it occurs in
some large alternator, and active otherwise. The number of passive variables
is easily estimated by r(b + 1)dcd. In this way, we can provide any number of
small alternators consisting of active variables.

Furthermore we assume additionally (for the sake of «transfers») that for
any SΛ(hij) there exists a small set of alternated active variable (letters) {zk}
and a small set of alternated monomials {vk} such that no zα occurs in any
vβ.

In all hij we may fix the same set of active variables which form a small
alternator, and define using them the operator δ1(a). Since

h =
r∑

i=1

∑
j

SΛ(ij)(hij) = 0

and the range of δ1(a) is included in the T -space and adjusted for all terms,
we have δ1(a)(h) = 0. On the other hand, by virtue of argument concerning
«transfer» (see Proposition 3.3 and Corollary 3.4), the difference δ1(a)(hij)−
δ(a)(hij) lies in the ideal H(D1) where the diagram D1 is obtained from D by
extending the small column to the large one. Hence δ1(a)(hij)− δ(a)(hij) = 0
and consequently ha = δ1(h) = 0.

We have proved vanishing of the obstacle for correctness of the definition
for the internal trace. Thus we have established the basic

Lemma 5.4 (on internal traces). For convenient varieties, the operators
of the internal trace are defined correctly, that is, independently of a recording
of the element.

Similarly, the «transfer» procedure enables to prove
Statement 5.3. Let the radical component Rad(a) of an element a be

zero. Then δ(a) amounts to multiplication by the trace of the corresponding
operator.

Доказательство. The assertion is obvious if all specializations of the
small set of variables involved in the definition of δ(a) are semisimple. On
the other hand, by Proposition 3.3 the substitutions forming δ(a) can be
«transferred» from one set of variables to another. Lemma on refinement
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enables to provide that the number of small sets exceeds c(A) and for any
specialization of variables all specializations in some of these small sets are
semisimple.

Proposition 5.3 immediately (without use of lemma on letter thinning)
implies

Corollary 5.3. If R(a) = 0 then ha = 0.

The main lemma 5.4 implies
Corollary 5.4. If M is a convenient variety such that all its varieties are

representable then the Hilbert series of any relatively free algebra from M is
rational.

Доказательство. The T -идеал J = T(SΛ) is a Noetherian module over
internal traces. Its Hilbert series HJ is rational, and HA = HJ + HA/J . The
algebra A/J is relatively free, and moreover either b(A/J) < b(A) or b(A/J) =
b(A) and d(A/J) < d(A). The decreasing induction completes the proof.

Thus to prove rationality of Hilbert series it suffices to show local representability.
Definition 5.2. An ideal J ⊆ SΛ is called closed if it is closed under

operators of internal traces δ(a). Let J be an arbitrary ideal. Then J0 is a
maximal closed ideal included in J .

Замечание. The notion of closedness is naturally defined also in the
case b(A, J) = b(A) for ideals lying in the spaces Hr. The corresponding
constructions are presented in Subsection 5.2.1.

If J is a T -ideal then J0 is a T -ideal as well. Moreover

d(A/J0, J) < d(A) = d(A, J).

Suppose I =
⋂s

i=1 Ri ∩R(A)c(A)−1.
Proposition on letter alternators implies
Statement 5.4. If J ⊂ I and J is a nonzero T -ideal then J0 6= 0.

Lemma on refinement and proposition on letter alternators imply
Statement 5.5. (a) Suppose g ∈ T

(
SΛ(f)

)
and g

∣∣
A
6= 0. Then there

exists h ∈ T(g) such that SΛ(h) 6= 0.
(b) Let Q be the T -subspace

⋃
f SΛ(f). Then there exists a closed T -ideal

Γ ⊆ ⋃
f SΛ(f) such that Q0 = Q ∩ Γ is a closed T -space.

Recall that in this section T(f) denotes the T -space generated by f . Hence
our argument retains for T -spaces, and we may reinforce the result of Corollary5.4.

Theorem 5.3. Suppose M is a convenient variety such that all its subvarieties
are representable. Then the Hilbert series HQ of an arbitrary T -space Q in a
relatively free algebra from M is rational.



On rings which are asymptotically close to associative rings 79

Доказательство. Let Q be a T -space in a relatively free finitely generated
algebra B ∈ M. We have to show rationality of HQ. We may assume that
M = Var(B). Let A be a finite-dimensional algebra such that Var(A) = M.
By induction argument, we may assume that A includes no two nonzero ideals
with zero meet.

Suppose Λ is a set of variables, corresponding to a Kemer diagram D,
I =

⋃
g T

(
SΛ(g)

)
, Q′ = Q ∩ I. It suffices to prove rationality of HQ′ , so we

may assume that Q = Q′. It remains to apply assertion (b) of Proposition 5.5
since the Hilbert series HQ0 is obviously rational. Hence we may pass to the
quotient B/Γ and complete the proof by decreasing induction.

Corollary 5.5. The Hilbert series of any T -space in a finitely generated
relatively free associative PI-algebra is rational.

The proof of Theorem 5.3 implies
Corollary 5.6. Let M be a convenient variety such that all its subvarieties

are representable. Then any ascending chain of T -spaces in a finitely generated
relatively free algebra from M stops.

So it remains to consider problems related to finite-basedness and local
representability, for T -ideals.

Enrich an algebra A by the operation of taking the trace δe(a) as well as the
traces of operators from the corresponding operator algebra D(A). Consider
the quotient by the ideal generated by elements

(
δ(a) − δe(a)

)
(f) where f ∈

SΛ(g) to obtain the algebra Â. We have
Statement 5.6. Any algebra from a variety with extended

(by δ-type operators) signature, generated by the algebra Â is a Noetherian-
type algebra. The variety is structurizable. The natural morphism A → Â is
an embedding.

Замечание. The extension of the operator algebra D(A) requires in general
an infinite number of operators. However we can ensure that by Shirshov
height theorem and lemma on tree 3.8 it suffices to use only a finite number
of operators.

Let I be the intersection of ideals generated by Ri and
(
c(A)− 1

)
th power

of the radical. Recall that the algebra A is irreducible and involves a nonzero
polynomial f taking values only in I. We may assume that f is multilinear, and
any specialization of variables with nonzero result requires (c(A) − 1) radical
specializations and for each semisimple component, a specialization connected
with it.

Suppose Γ is a nonzero T -ideal, Γ ⊂ I. Then there exists a nonzero T -ideal
Γ0 ⊂ Γ generated by polynomials of the form

{
g = SΛ(f)

∣∣ f ∈ Γ
}
and closed

under the operators δ(a).
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Suppose ai ∈ R′
i. Apply to ai the refinement procedure, that is, represent ai

as a linear combination of monomials Mij(Ψi, ~y ) containing c(A) occurrences
of Ψi. Take an arbitrary set of specializations for g and apply to g the product of
δ(ai). Then using Ψi and elements from radical specializations construct c(A)
sets of b(A) + 1 elements each. Alternating in these sets produces additional
terms where the radical specialization is inside ai, as well as terms where the
content of Ψi is inside Ψj (i 6= j). These additional terms vanish.

The reason is that displacement of a variable whose value belongs to A(i)

inside a monomial in elements of A(k) for k 6= i results in zero. Moreover, the
result of applying δ to a radical element from f ∈ Γ0 is linearly representable
by elements of the form

∑
fiδi where fi ∈ Γ0 involve strictly less than c(A)−1

radical specializations, hence each of these polynomials vanishes. See a similar
argument in [27] for the case of absence of mixed elements.

Since the T -ideal Γ0 is closed under multiplication by operators δ then the
corresponding ideals in the original and the enriched algebras coincide. Thus
we have proved a non-associative analogue of second Kemer lemma.

Statement 5.7 (the second non-associative Kemer lemma).
If there exists a nonzero T -ideal Γ0 ⊂ I then d(A) = c(A)− 1.

Corollary 5.7. The ideal H(D) corresponding to the Kemer diagram D
of an algebra A is representable.

Corollary 5.8. If there exists a nonzero T -ideal Γ0 ⊂ I then there exists
a faithful representation of the algebra such that internal traces coincide with
external ones.

5.2.1. The spaces Hr. The relative form of second Kemer lemma. Let
Γ be a T -ideal in the algebra A. For it, define relative extremal diagrams,
Kemer diagrams, parameters b, d and k and all other constructions from the
beginning of 3.

If Γ ⊆ ⋂
R′

i then by the non-associative analogue of first Kemer lemma 5.2
we have b(A, Γ) = b. Such T -ideals are of main interest for us.

Let Sr be an alternation operator related to a diagram Dr including r large
and not less than k + 2 columns. Here r ≤ d(A).

Definition 5.3. The space Hr is the maximal T -ideal Γ such that d(Γ, A) =
r and b(Γ, A) = b(A). Set H ′

r = Hr ∩ SDr(A) where SDr(A) is a T -ideal
generated by polynomials of the form SΛr(f), here Λr is the set of variables
corresponding to the diagram Dr.

In other words, alternation in the set of variables corresponding to a diagram
which has greater number of large columns than Dr and not less than k + 2
small columns, being applied to an element of Hr results in zero.

The correctness of the definition is obvious since the joint of any family of
ideals with this property retains it.
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Proposition 5.5 implies the important

Corollary 5.9. If r1 < r2 then Hr1 ∩ SDr2
(A) = 0.

The spaces H ′
r have the same properties as the extremal ideal I, and the

analogues of the results of the above parts. The formulations are below.
Recall that a space S ⊂ B is representable in an algebra B if there exists

a morphism B to a Noetherian-type algebra, such that its restriction to S is
an embedding.

Statement 5.8. Let A/SDr+1(A) be an algebra.
(a) The space H ′

r is representable in A/SDr+1(A).
(b) The space H ′

r contains no obstacle for representability of A/SDr+1(A).

Доказательство. Assertion (b) is a reformulation of assertion (a). Let us
prove (a). Let Â′ be the quotient of Â by the ideal generated by

(
δ(a)−δe(a)

)
(f)

where f ∈ H ′
r for some r. Then in view of the above, the natural morphism

A → Â′ also is an embedding and the analogue of Proposition 5.6 holds.
Note that the space H ′

r and its image in A/SDr+1(A) are isomorphic. The
same is true for extended algebras.

The basic lemmas for the relative case are proved similarly.
This results in the following statement.

Statement 5.9.
(a) The spaces H ′

r are closed under multiplication by internal traces.
(b) If b(A, Γ) = b then Γ ⊆ ⊕

H ′
r.

(c) Suppose Γ is a T -ideal, Γ ⊆ H ′
r and b(A, Γ) = b. Then d(A, Γ) = r.

(d) For any nonzero T -ideal Γ ⊆ H ′
r there exists a closed T -ideal 0 6= Γ′⊆Γ.

Also there exists a polynomial h∈Γ′ such that SDr(h) 6= 0.
(e) Suppose g ∈ H ′

r. Then any value of g in A is linearly representable by
values of letter alternators corresponding to the diagram Dr and applied to
elements of T(g) ∈ H ′

r.

Consider the quotient of Â by the ideal generated by elements of the form(
δ(a)− δe(a)

)
(f) where f ∈ H ′

r

(
r = 1, . . . , d(A)

)
. Denote it by Â′. Again the

algebra A embeds into a Noetherian-type algebra Â′ which generates (as an
enriched algebra) a structurizable variety.

Now we formulate a relative analogue of second Kemer lemma.

Lemma 5.5 (second Kemer lemma for H ′
r). Suppose the projection of a

T -ideal Γ to the algebra A(q − 1) is zero and to A(q) is not, and furthermore
b(A, Γ) = b. Then Γ ⊆ H ′

r и d(A, Γ) = q.

Since the proof is similar to the absolute case, we do not present it.
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5.2.2. Test algebras. In this subsubsection we reduce a finite-dimensional
algebra determining a variety, to some canonical form. This procedure is related
to constructing the algebra Ǎ when proving local representability of rings as
well as algorithmic solvability of the problem of identity inference.

The next proposition specifies the results of Proposition 3.6 for the structurizable
case. It follows from the above considerations.

Statement 5.10. (a) If M = Var(A) is a Kurosh variety then the space
K(A, D) is representable in any quotient algebra A′ = A/J . Furthermore for
the natural morphism of A′ to the «extended» algebra Â/Ĵ , its restriction to
K(A, D) is an embedding.

(b) SΛ

(
F (A)

) ' SΛ

(
F

(
K1(A, D)

))
where F (B) is the space of values of

polynomials on B.
The space K(A,D) is naturally isomorphic to the space of letter alternators

corresponding to the diagram D.
Statement 5.11. To any closed T -ideal M there corresponds a closed T -

ideal K(M) of K1(A,D), which is a subspace of
K(A, D). This correspondence preserves inclusion and strict inclusion (of verbal
ideals of the corresponding algebras but not of T -ideals).

The above proposition means that as regards testing ideals for some extremal
properties, the algebra A is equivalent to K(A,D). Note that the results of
Subsection 3.3 (see Propositions 3.5 and 3.6) mean that the space of polynomials
in a relatively free algebra with extremal alternators is representable. On the
other hand, Lemma 5.3 on letter thinning enables to return to these spaces
when necessary. We will make use of this.

Доказательство. The first part of the proposition is obvious, so it suffices
to show that strict inclusion is preserved. The assertion in question means that
if the ranges of polynomials from two T -ideals M1 and M2 in K1(A,D) agree
then the same is true for their ranges in A.

If we pass from the language of supports to the purely combinatorial
language, coincidence of ranges in K1(A,D) means coincidence of ranges of
letter alternators corresponding to the set of variables Λ. But this is already
proven (see propositions 5.2 and 5.5).

Замечание. The above proposition implies isomorphy of lattices of verbal
ideals in the algebra A and in its «extension» K1(A,D). Namely, if Γi ⊆⋂

j T
(
A(j)

) ∩ Jd(A) then
(
b(Γi, A), d(Γi, A)

)
=

(
b(A), d(A)

)
, and coincidence

of ranges in K(A, D) (that is, of extremal letter alternators of elements from Γi)
implies coincidence of ranges of corresponding polynomials in A. This does not
automatically imply coincidence in rings of polynomials with coefficients from
these algebras, in particular, in relatively free algebras, algebras of generic
elements.
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Proposition 5.11 and lemma 5.3 on letter thinning imply
Corollary 5.10. Let M be a closed T -ideal in SΛ(A). Then the ideal SΛ(A)

contains no obstacle for representability of M .

Statement 5.12. Suppose b(A, Γ) = b(a) and d(A, Γ) < d(A). Then
Γ ∩ SΛ = 0 in A (as well as in the extended algebra Â).

Доказательство. It is obvious that the intersection in K(A,D) is zero.
This implies that the intersection in Â of the maximal closed T -ideal Γ0 ⊆ Γ
and the ideal SΛ is zero as well. Pass to the quotient by Γ0 and complete the
proof by decreasing induction.

The results of the present part together with second Kemer lemma for the
relative case imply

Lemma 5.6 (on the canonical support). Suppose M = Var(A) is a convenient
variety, A = A/J(A), {Ai} is a set of quotients of A by various sets of
prime components. Then M is generated by a finite set of algebras of the
form K(Ai, Di) where Di is a rectangular diagram consisting of d(Di) columns
of length dim(Ai) + 1.

If b(A, Γ) = b0, d(A, Γ) = d0 then Γ does not vanish in some of algebras K(Ai, Di)
where dim(Ai) = b0 and d(Di) = d0.

We can construct a somewhat different convenient support such that external
traces agree with internal ones. Specifically, let A be a relatively free representable
algebra from a convenient variety M. Consider the extended algebra

A′ = A[Tr]
/

id
(
SΛ(A) · (δ(a)− Tr(a)

))
, c(A) = d(Λ).

Then Var(A′) = Var(A) and moreover the quotient algebra A1 = A′/SΛ(A) has
smaller complexity parameters:

(
b(A1), d(A1)

)
<

(
b(A), d(A)

)
, and representability

of A1 implies representability of the relatively free algebra A(1) from Var(A1).
Starting with A(1), we construct the algebras A2 and A(2) and so on. The
required algebra A∗ is ⊕Ak.

Statement 5.13. In the algebra A∗ external traces agree with internal
ones.

5.3. Completion of the proof of Theorem 1.1. Let A be a free representable
algebra from a good structurizable variety M. Representability of A/SΛ(A)
follows easily from second Kemer lemma. The algebra A may be interpreted as
the algebra of generic elements in a finite-dimensional algebra with nilpotency
degree of the radical equal to d(A)+1. Then in the space SΛ(A) external traces
agree with internal ones, and the space itself is closed under internal traces.
Hence the ideal SΛ(A) is representable.
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We will show how this implies Theorem 1.1. First of all, representability of
closed ideals is obvious because extension by operators of the form δ(a) results
in a Noetherian-type algebra.

Let Γ be a T -ideal. If Γ∩SΛ(A) = 0 then we can pass to the quotient A/SΛ(A)
and use decreasing induction on complexity parameters.

If J = Γ ∩ SΛ(A) 6= 0 then there exists a nonzero closed T -ideal J0 ⊆ J .
Since it is representable, we may use decreasing induction to complete the proof
under the assumption of finite-basedness for T -ideals. Thus we have managed
to deduce local representability from local Specht property.

To avoid local Specht property (and moreover to prove this property), we
will argue as follows. Take for J0 the maximal closed T -ideal included in J .
Consider the quotient A′ = A/J0 and define the spaces S ′Λ(A′) in it as well as J .
Decreasing induction shows that it suffices to consider the case b(A′) = b(A)
and d(A′) = d(A).

The set Λ′ corresponds to the Kemer diagram D′ of A′, which may differ
from D by greater number of small columns (for getting to the required space
when applying the operator S ′Λ).

Замечание. If we take the quotient of A′ by the elements of δ-torsion(
that is, the elements with nontrivial annihilator in the ring generated by
elements of the form δ(a)

)
then the Kemer diagram for the resulting algebra A′′

is included in D. On the other hand, the torsion ideal Torδ(A
′) satisfies b

(
A′, Torδ(A

′)
)

<
b(A). Hence instead of enlarging the Kemer diagram we may use the algebra A′′.

It suffices to show that in A′ the meet of the projection π(Γ) with S ′Λ(A′)
is zero; otherwise this meet includes a nonzero closed T -ideal the preimage of
which is a closed T -ideal sstrictly including the preimage of 0, that is, J0. But
this contradicts maximality of J0. Thus

(
b(A/J0, J), d(A/J0, J)

)
<

(
b(A, J), d(A, J)

)
=

(
b(A), d(A)

)
.

The proof of the basic theorem
(
under the assumption of representability

of A/SΛ(A)
)
is complete.

On the other hand, representability of A/SΛ(A) follows from closedness of
the ideal SΛ(A).

Замечание. Argument related to refinement and closedness of T -ideals
as well as to spaces KM(A,D) works for the multilinear case in positive
characteristic.

Previously, considering closed ideals and passing to quotients by them we
reduced the situation to the case when either b(A, Γ) < b(A) or b(A, Γ) = b(A)
and d(A, Γ) < d(A). Now we examine this situation in more detail.

So we have SΛ(Γ) = 0. Furthermore by the induction argument the algebra
A′ = A

/(
SΛ(A)+Γ

) (
here b(A′) ≤ b(A) and if b(A′) = b(A) then d(A′) < d(A)

)
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may be assumed to be representable. Thus we have a morphism h1 of the
quotient A/Γ to a representable algebra SΛ(A/Γ).

Hence to prove representability of A/Γ it suffices to construct another
morphism of this algebra h2 to some representable algebra, such that its kernel
is disjoint with SΛ(A/Γ). Then the sum of morphisms h1 ⊕ h2 is the required
embedding.

Let H be a sum of T -ideals Γi such that either b(A, Γi) < b(A) or b(A, Γi) =
b(A) and d(A, Γi) < d(A). Since H ∩ SΛ(A) = 0 and H ⊇ Γ

(
because SΛ(Γ) =

0
)
, it suffices to establish representability of A/H. Hence we may assume H =

Γ.
Furthermore the ideals Hr are closed and hence representable. Consider the

quotient A1 by the sum of ideals
⊕

r<d(A)

Hr.

For this new algebra we have b(A1, H) < b(A1) = b(A).
Now by the non-associative analogue of first Kemer lemma, in the algebra

A1 the range of polynomials from H is disjoint with the ideal generated by
all prime components Ri of A1. Consider morphisms ϕi : A1 → A1/Ri and
ϕ =

⊕
i ϕi. The kernel of the latter morphism is disjoint with the range of

polynomials from H, and it determines an embedding of the corresponding
spaces of non-commutative polynomials.

Let Q be the space in A1 generated by homogeneous elements zi such
that each of them generates an ideal disjoint with the R-component of A1

generated by monomials including elements of each Ri. Then Q and R are
ideals in A1, and A1 embeds into the sum A1/Q⊕A1/R. Hence in view of the
non-associative analogue of first Kemer lemma the range of H lies in Q, and
the range of SΛ(A1) lies in R. Now it is clear that if the ring of polynomials
with coefficients in A1 is extended by traces of operators then the extended
spaces H and SΛ(Â1) are disjoint.

The proof of local finite-basedness and local representability for convenient
structurizable varieties over a field of zero characteristic as well as of rationality
of their Hilbert series is complete. 2

Замечание. Wemay extend algebras by systems of absolutely anticommuting
variables (any monomial including two identical new variables is zero), consider
the canonical algebraical representation of appropriate order for the resulting
algebras and deal with them.

The author is grateful to all participants of the seminar <Ring theory>
(MSU) and to its chiefs V. N. Latyshev, A. V. Mikhalyov, V. A. Artamonov
and Ye. S. Golod for helpful discussion.
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