VK 512.552.4+4512.554.32+-512.664.2 Matematicheskiye trudy
2007, Tom 10, Ne 1, 29-89

ON RINGS WHICH ARE ASYMPTOTICALLY CLOSE
TO ASSOCIATIVE RINGS

A. Ya. Belov

The subject of this work is extension of A. R. Kemer’s results to a rather
wide class of rings, close to associative rings, over a field of characteristic
0 (in particular, this class includes the varieties generated by finite-
dimensional alternative and Jordan rings) For this case we prove finite-
basedness of systems of identities (Specht property), representability of
finitely generated relatively free algebras and rationality of their Hilbert
series. For this purpose, we extend Razmyslov —Zubrilin’s theory to
Kemer polynomials. For a rather wide class of varieties we prove Shirshov
theorem on height.

Karueswvie crosa u gpasv:  Pl-algebra, representable algebra, universal
algebra, non-associative algebra, alternative algebra, Jordan algebra,
signature, polynomial identity, Hilbert series, Specht problem.

§1. Introduction

An identity in an algebra means a polynomial which vanishes on the whole
algebra. For instance, a (n—1)-dimensional algebra satisfies Capelli identity C,,
of order n:

Cn( f> ?j) = Z (_l)ayﬁxa(l)ylxo'@)yZ o Yn—1To(n)Yn-
o€Sp

Various important classes of algebras (for example, associative, alternative,
Lie, Jordan algebras) are axiomatizable by identities. The class of algebras
which satisfy a given system of identities is a category which is called a variety
(variety), and the free objects of this category are called relatively free algebras.

Various non-associative structures recently have obtained rather numerous
applications in the major areas of mathematics. For instance, A. V. Yagzhev
has elaborated the approach to Jacobian problem based on universal algebra.
This reduced Jacobian problem to problems of PI-theory (this problem occurred
to be equivalent to the question on weak nilpotency of any ternary Engel
algebra over a field of characteristic 0). A. V. Yagzhev’s approach is related to
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quantization theory and operads. It is not casual that I. P. Shestakov, one of
leading experts in non-associative PIl-theory, is actively working in polynomial
automorphismas and quantum theory. Beatiful results of Ye. I. Zelmanov (in
particular, solution of weakened Burnside problem) were preceded by his works
in the theory of Jordan algebras. Numerous mathematicians specializing in
Pl-theory also did work in the theory of polynomial automorphisms. The
monograph [54| is devoted to problems of these theories.

A rather evolved structure as well as combinatorial theory has been elaborated]]
for associative algebras. First of all, this includes radical theory, prime algebras,
Burnside-type problems, finite-basedness problems. Structure theory also is
rather evolved for a certain class of rings close to associative ones, and analogues
of Kemer’s theorem have been obtained. At the same time, investigation of
bounds for finite basedness (which has different nature in zero and in positive
characteristics) and developing of the corresponding theory in a maximally
general form seems to be a very important and actual problem. In the present
paper, we consider only the case of algebras over a field of zero characteristic.

A point of an ordinary algebraic variety is a set of numbers satisfying
some system of algebraic equations. A point of a variety of algebras is an
algebra satisfying a set of identities. To a system of algebraic equations, there
corresponds an ideal in the ring of commutative polynomials. What ideal
corresponds to a set of identities?

Let P(zq,...,x,) be an identity in an algebra A, {H;(y1,...,y,)} an
arbitrary set of polynomials, and R(z, ..., z;) an arbitrary polynomial. Then
the results of substituting P(Hy,..., H,) and multiplying by R (RP and PR)
hold in A as well. These new polynomials are called consequences of the
identity P. Moreover, a linear combination of identities is an identity again.
An ideal generated by the values of a system of polynomials closed under
substitution is called a T'-ideal. To every T'-ideal, there corresponds a T-ideal
in a free algebra or, equivalently, a completely characteristic ideal in a free
algebra, i. e., an ideal closed under all endomorphisms.

Similarly to the notion of T-ideal, the notion of T'-space is introduced in a
natural way; this is the space generated by values of a system of polynomials
closed under substitutions. Some examples of T-spaces not being T'-ideals are:
the commutator subalgebra
[A, AJ; the set of values of central polynomials in the algebra of generic matrices.
This notion is a new one in comparison with the clasical case.

In the classical case we have Hilbert theorem on basis which states that
any ascending chain of ideals in the ring of commutative polynomials in several
variables stabilizes. For identities in associative algebras we have Kemer’s
theorem (which answers the known question posed by W. Specht) stating that,
in zero characteristic, an ascending chain of T-ideals stabilizes. In positive
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characteristic, the similar fact is valid for finite numbers of variables (the case
of an infinite ground field is solved by A. R. Kemer in [29], and the general
case recently by the author in [9]). For infinite numbers of variables, there
exist some counterexamples constructed first by the author in [7; 8] and later
by V. V. Shchigolev [50] and by A. V. Grishin [13].

The Pl-theory produces a new point of view to non-commutative algebraic
geometry. Consider an algebra endowed by a group of automorphisms or a
semigroup of endomorphisms. In classical definitions, replace the notion of
“ideal” by that of “invariant ideal”. For instance, “primarity” means the absence
of nonzero invariant ideals with zero product. Furthermore, Noetherian propertiesj
usually are provided by the transformation (semi)group, and algebraic operationsf]
become an additional structure. This approach makes it natural to work in
multibased algebras of an arbitrary signature (and even in operads).

In many cases, a result obtained for the associative case produced possibilities]]
for non-associative (in particular, alternative or Jordan) situation as well.
Extension of results leads to a fundamentally new insight.

I. P. Shestakov has said that until A. R. Kemer’s work [25] he was sceptical
as regards super-generalizations. His opinion was changed by the “supertrick”
which enables to reduce (in zero characteristic) investigation of identities in
infinitely generated associative algebras to superidentities in finitely generated
superalgebras. The supertrick has obtained a non-associative generalization
but the main fact was that previous counterexamples solving open problems
in the theory of alternative and Jordan algebras (in particular, examples of
infinitely based varieties) obtained their explanation in I. P. Shestakov’s work [47].]}
Non-associative theory often dealt with polynomials whose variables could be
divided into several mutually anticommuting groups. (This property is usual
for extremal polynomials in solvable alternative algebras, consisting of long
associators.) In this case we can check non-vanishing of the corresponding
series of polynomials working in a model which is the Grassmann hull of a
finite-dimensional superalgebra [47| (cf. Kemer’s work [27] which states that
every proper variety of associative algebras over a field of zero characteristic
is generated by the Grassmann hull of a finite-dimensional superalgebra).

I. P. Shestakov’s approach was further developed by S. V. Pchelintsev
and his students |1; 2; 38| which has resulted in constructing infinitely based
varieties of commutative Moufang loops. (The author considers it possible
that the works [1; 2] include the earliest correct proof of this fact, although
they were preceded by publications of another author on the same topic[43].)
In the sequel, the Grassmannian technique enabled to construct examples of
infinitely based varieties for the associative case as well. It is of interest that
systematical study of identities related to a Grassmann algebra was started by
V. N. Latyshev [31; 32] already in 60ths.
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Proofs of finite-basedness and recent solutions of open problems make
it especially actual to clarify the nature of finite-basedness and its bounds.
Moreover, the situation in zero and positive characteristic does differ both
technically and conceptually. This paper treats the case of zero characteristic.

The main result of this paper is the following statement.

Theorem 1.1. (a) Let M be a convenient variety of algebras (see Definition 1.1)]]
over a field of zero characteristic, such that all its subvarieties are representable.
Then the Hilbert series H of an arbitrary T-space () in a relatively free algebra
of M is rational.

(6) A convenient variety of algebras over a field of zero characteristic is a
locally Specht one, and its relatively free algebras are representable.

Definition 1.1. A variety 9 is called structurizable if every finite-dimensionallj
algebra of 99T decomposes into a sum of simple components and of the nilpotent
radical.

A structurizable variety is called convenient if it is generated by some finite-
dimensional algebra.

The varieties of alternative and Jordan algebras which are generated by
a finite-dimensional algebra are structurizable. Nevertheless Theorem 1.1 is
not a generalization of known results by A. V. Iltyakov [22], A. Ya. Vais and
Ye. 1. Zelmanov [12] on finite-basedness of varieties of alternative and Jordan
algebras. We have to require that all identities of some finite-dimensional
algebra hold.

We attempt to work (in particular, to extend A. R. Kemer’s and Yu. P. Razmyslov’s]]
technique) in as general situation as possible. First we develop the technique of
Kemer’s polynomials (which are a convenient generalization of Capelli polynomials)|
in the most general situation. Next we consider a class of rings which are
asymptotically close to associative ones. For this situation, we prove an analoguecj
of Shirshov theorem on height. Passing to Specht-type problems, we impose
additional conditions of structurizability and validity of all identitities of some
finite-dimensional algebra. Closeness to associativity means possibility to extendf]
information concerning an operator algebra D(A) to the algebra A itself. A
considerable part of work can be accomplished using the left multiplication
algebra L[A]. We attempted to formulate criteria of asymptotical closeness to
associative rings and to emphasize some basic concepts and constructions (see,
in particular, Definition 1.1).

Studying finite-basedness problems, we follow Kemer’s program. It consists
in explicit description of an extremal ideal I which “forces” to determine the
maximal possible number of radical specializations as well as the complete
set of specializations related to each prime radical component. In the abstract
non-associative situation, the program needs significant improvements. First of
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all, we have no rather evolved theory of supports which are finite-dimensional
algebras, thus we have difficulties in using supports and the approach is more
functional. On the same reason, instead of consideration of support models we
present a direct, purely combinatorial proof for invariance of internal traces.
By author’s opinion, this is the base of this section.

If the ground field is of characteristic zero, the basic outline of argument can
be extended rather well to the non-associative structurizable case. The only
exclusion is the proof that a Pl-algebra satisfies all identities of some finite-
dimensional algebra. Hence in alternative and Jordan cases we go roundabout.
Local representability has not been proved for this case yet, and we have
no rather evolved theory concerning “supertrick”. This makes the following
problem important:

Problem. When do in a non-associative Pl-algebra satisfying the system C,, i
all identities of some finite-dimensional algebra hold? In particular, how can
we check validity of all identities of a finite-dimensional algebra for alternative
and Jordan Pl-algebras?

Investigating Specht-type problems, we have to postulate validity of all
identities of a finite-dimensional algebra. In the associative case this follows
from Razmyslov — Kemer — Braun theorem on nilpotency of the radical (whose
analogue can be proved for a rather wide class of rings close to associative ones)
and from Levin’s theorem [60] the extension of which is the main difficulty
here. Levin’s theorem is closely related to matrix representation of bimodules.
Respectively, its analogues for non-associative algebras have to be related to
investigation of bimodules. In this aspect, I. P. Shestakov’s study of bimodules
over Jordan prime algebras seems rather promising. Problems of finite-basedness|i
are in some sense problems of describing interaction between prime components
by means of the radical, and bimodules are elementary cells of this interaction.

§2. Preliminaries

We use the following notation. In this section, T(f) denotes the T -space
generated by a polynomial f (and not the T-ideal). The symbol A usually
denotes an algebra, and aq, . . ., a; denote its generators. All rings and algebras,
if the contrary is not specified, are assumed to be finitely-generated. The
formula f | 4 = 0 means that the polynomial f is an identity of the algebra A,
and the formula f ‘ 4 7 0 means the contrary. The ideal generated by the set M
is denoted by id(M). The set of variables 1, ..., z, sometimes will be treated
as a multivariable and denoted by Z, thus using expressions like P( Z,y), K[ Z],
K(Z) etc. Even for rings without unit, we use notation like y(1 + z) (for the
element y+yz). The symbol E;; denotes a matrix unit: this operator maps the
1th basis vector to the jth one, and all others to zero.
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The basis rank of a variety 9t is the minimal s such that 91 is generated by
its s-generated algebras. The basis rank of the variety of all associative algebras
equals 2; that of the variety generated by the algebra of generic matrices also
equals 2; the basis rank of a Grassmann algebra or of the variety defined by
[;1:, [y, z]] = 0 equals infinity.

A. R. Kemer has established that the basis rank of a variety of associative
Pl-algebras equals infinity if and only if this variety contains an infinitely
generated Grassmann algebra [24]. This formed a step in proving representability]]
of varieties of associative algebras over a field of zero characteristic by the
Grassmann hull of a finite-dimensional superalgebra.

The growth function Va(n) of an algebra A is defined as the dimension of
the space spanned by the words of length < n; generating function ) V4 (n)t"
is called the Hilbert series of A. Sometimes we will consider the complete Hilbert
series

Hy(ty, .. t) =Y Va(ng, ... ,n )t -0

where Va(nq,...,ns) is the dimension of the space generated by the words
containing < n; occurrences of the letter a; for each 1.

The growth function depends on the choice of the set of generators. If we
define the following equivalence relation on the set of functions:

f=g < JeceN:Vnf(en) > g(n) ug(en) > f(n)

then the equivalence class V4(n) is now an invariant of the algebra itself. The
Gelfand — Kirillov dimension of an algebra A is the limit

GKdim(A) = nhrgo InVy(n)/Inn
if this limits exists; GKdim is an invariant of the algebra itself.

By Gon(n) we denote the dimension of the vector space generated by the
words of length n and containing each of xy,...,x, once, in the relatively
free n-generated algebra of 9. If M is a variety of associative algebras then
Gom(n) = n!

Definition 2.1. Let Y = {u;} be a set of words. The height of the set
of words W relative to Y is the least h such that every word w € W is
representable in the form ufll ufj e uf; where r < h. An algebra A is of height h
over Y if A is linearly representable by a set of words, having height h over Y.
Furthermore, Y is called the Shirshov basis of A.

We say that Y is an s-basis of an algebra A if there exist a number Hgg
and a finite set D(Y') such that A as a vector space is generated by elements
of the form ¢, -- -ty where N < 2Hgg +1, and for each i either ¢; € D(Y') or
t;, = yfi, y; € Y. Here the number of factors ¢; ¢ D(Y') does not exceed Hpgs.
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The essential height of A over Y is the least number Hgg(A) having these
properties. For varieties with associative powers the definition is similar.

An algebra is Noetherian-type if it is an R-algebra and at the same time
a Noetherian module over a Noetherian associative-commutative ring R. An
algebra is called representable if it embeds into a Noetherian-type algebra.
Then the ring R is called the representaion ring, and we may assume that R
contains unit.

Definition 2.2. We call an ideal I representable if the corresponding quotient]
algebra is representable. An ideal of identities is representable if it is a T-
ideal of a representable algebra or, equivalently, a relatively free algebra of the
corresponding variety is representable.

The least integer n such that the algebra A embeds into an algebra which is
a module of rank n over its center is called the representation order. If an ideal I
is representable then the representation order of I equals the representation
order of A/I.

An algebra is called a PI,-algebra if it belongs to the variety generated by
representable algebras of order n.

Lemma 2.1. The set of representable ideals of a fixed order satisfies ACC.

As a matter of fact, a sufficient level of invariance of an ideal relative to a
sufficiently rich semigroup of endomorphisms results in representability. The
most invariant are T-ideals; hence we have Specht property in the associative
case and in "good"structurizable varieties with a sufficiently rich endomorphism
semigroup.

Lemma 2.2 (On intersection of representable ideals). The intersection off
a finite number of representable ideals is representable.

Jlokazamenvemeo. Let {I,} be representable ideals of an algebra A. Then
the kernel of the homomorphism A — @ A/1, equals (), I, and the direct
sum of representable algebras is representable. Il

Definition 2.3. A representable algebra is called irreducible if it does not
contain a finite set of representable nonzero ideals with zero intersection. An
algebra is called irreducible of order n if it does not contain a finite set of
representable nonzero ideals of order n with zero intersection.

Note that the decomposition into simple components is, in general, not
unique.

Statement 2.1. (a) Every Noetherian-type algebra embeds into a direct
sum of finite number of its irreducible quotients by ideals stable under multiplication]
by elements of the representation ring.

(b) For any m > n, any representable algebra of order n embeds into the
direct sum of its irreducible quotients of order m.
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We say that an ideal I contains no obstacle for representation of an ideal J
if there exists a representation p of the whole algebra in a Noetherian-type
algebra such that ker(p) NI =1NJ.

Statement 2.2. Suppose an ideal I contains no obstacle for representabilityf]
of J. Then if A/(I + J) is representable then A/J is representable as well.

Jlokasameavcmso. Let p be a representation of A/.J such that its restriction
to I has kernel equal to I N J. It suffices to consider the direct sum of this
representation and of faithful representation of A/(I + J). O

3ameuanwue. It is not clear whether representability of the meet I N J, of
the sum I + J, and of the ideal I itself implies representability of J. Perhaps
no. It seems probable that an embedding into a Noetherian-type algebra may
expand the ideal J so that some new elements in the meet with [ may arise.
It would be worth while to construct corresponding examples.

FExtensions and the choice of free elements. Let A be a finite-dimensional
algebra. If the ground field is infinite then we can construct a relatively free
s-generated algebra A which generates Var(A) and embeds into the extension
of A by a polynomial ring (and thus is representable). Namely, take a basis
for A as a vector space, multiply each element of the basis by a free variable
and sum up. We get a generator for the algebra A. To get the set of generators
for A, take disjoint sets of variables.

Statement 2.3. (a) The algebra A is relatively free, representable, and
Var(A) = Var(A).

(b) The extension of A by the ring R generated by the values of trace
operators of (forms) is a Noetherian R-module.

Jlokasamenvcmso. Assertion (a) is already proven. Assertion (b) follows
from Proposition 2.5 to be proved below. O]

Let M be a Noetherian module over a Noetherian ring S. Then the finite
sum @;®% M is Noetherian as well. Let A be a representable algebra embedded
into a Noetherian-type algebra fl, and U = {¢;} be a finite set of letters.
Consider the set of words Uy, containing < k occurrences of letters from L.
Furthermore consider various specializations of elements of A in ;.

Statement 2.4. Let A be a representable algebra. Then there exists a
finite set M of elements from A such that for any polynomial F(y,A) of
homogeneity degree < k in variables from a finite set A, constant vanishing of

F(y, K) is equivalent to vanishing of F(y, E) for every 56 MF.

The above statement may reformulated in terms of extensions by restrictedly
free elements of order k. A set of n elements M = {m;} C A is called a free
set of order k if for any polynomial F' of degree < k in variables from {¢;} = A
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we have the following: if the result of substitution m; — t; vanishes in A then
the result of every substitution s; — t; for every s; € A vanishes as well.
Consider an extension Ayga)(A) and various specializations
ti — my; i = 1,...,]A|, each of which corresponds to a homomorphism of
this extension onto A. Since the set M is finite, we get a homomorphism
of the extension Ay, (4)(A) into the direct sum ®" A where k is the number
of all these specializations. Elements of A map to constants, and images of
elements from A will be free elements of order k in the image. We obtain the
free extension of order k by M, which is a free set of order k.
Now we need some universal construction.

Definition 2.4. Suppose B is an associative algebra, {;} are its generators, |
{bi}ier is the set of its elements, {0;; }ier, j=1....m 1s a set of independent commuting]]
variables. The canonical algebraic representation of order m is the algebra

(m) . m m—
B = Boy)/id ({0 + 6ab ™ + -+ + Gim bier) -

If the index 7 runs over the set corresponding to words of degree < s
in the generators of the algebra B then the resulting object will be called
the canonical algebraic representation of length s and of order m and will be

5(m.s)

denoted by B

Definition 2.5. Suppose b € B. Extend the algebra B by free commuting
constants d;, i = 1,...,n — 1, and consuder the quotient by the ideal id(b™ +
5161 + -+ +6,,). The algebra B admits a natural map to this algebra, and
the kernel of this map is called the obstacle for algebraicity of order m for the
element b. The kernel of the canonical algebraic representation of order m is
called an obstacle for algebraicity of order m. The definition of the obstacle for
algebraicity of order m of the system of elements {b;} is similar.

Suppose a system of forms §;(b) satisfies the Hamilton —Cayley identity.
This means that the identity

a" 461 (a)a" 4+ 8,(a) =0

holds in the algebra. Then the canonical Hamilton — Cayley representation of
order n is constructed in a natural way, and the corresponding kernel is called
the obstacle for the Hamilton —Cayley identity of order m.

Informally speaking, if all elements of B (resp. the words of length < s) are
“forcedly” turned into algebraic elements of degree m then we get the canonical
algebraic representation of order m (resp. of length s).

Similarly we define the ideal Jy, the obstacle for representability by matrices
of order k over a Noetherian ring.

Local finiteness of algebraic algebras implies
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Lemma 2.3 (on canonical representation [59]). (a) A canonical algebraic
representation is a Noetherian module over values of the trace operator. The
same is true for the representation of length s if s does not exceed < m
or Pldeg(B).

(b) If B is representable by matrices of order m then the natural maps

B— B"™ and B — B are embeddings.
(c) If B is representable, that is, embeds into a Noetherian-type algebra
then the canonical algebraic representation of some order is an embedding.

3ameuanme. The canonical algebraic representation may be defined in the
non-associative case as well. Then assertion (b) of the above lemma remains
valid, and assertion (a) holds for the so-called Kurosh varieties (see Definition 3.1).]

Definition 2.6. Suppose B is a finite-dimensional algebra, {é;} , is its
basis, {xy };_,]-; are independent variables. The s-generated algebra of generic
elements from B is the algebra generated by a; > ", €.

The above definition immediately extends to multibased algebras of an
arbitrary signature. The algebra of generic elements is relatively free and
generates a homogeneous variety:.

Now we will describe the procedure of linearization. Suppose a polynomial P
has degree n in a variable z. Substitute > | z; for  and take the sum of
terms multilinear in all z;. The resulting polynomial () is called the complete
linearization of P. A partial linearization is the sum of terms having a given
inhomogeneity degree in the variables x;. In characteristic zero which is treated
in the present paper, an identity is equivalent to all its linearizations. In
particular, all identities are equivalent to multilinear ones.

The main idea which is due to Yu. P. Razmyslov is as follows. If we extend a
representable algebra by the values of traces then it becomes a Noetherian-type
algebra.

Suppose f(Z,¥) is a polynomial, multilinear and skew symmetrical in & =
(x1,...,2,), V is a vector space generated by z;, and A € End(V) is an
operator. Then

J(A-7, ) = f(As,..., Az, ) = det(A) [ (7, ).

Now we obtain a linearization. Set A = E + ta. We have a decomposition in
powers of t:

where ®(a) is a form of order k over the operator a. It equals the trace of the
operator A\"(a) which acts on the vector space A*(V) or, equivalently, the sum
of principal minors of order k in the matrix of the operator a. In particular,

®y(a) = Tr(a), Pp(a) = det(a), Po(a) = 1.
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Theorem (Yu. P. Razmyslov). (a) The algebra of generic matrices of
size n satisfies the Capelli identity of order n* + 1 and does not satisfy the
Capelli identity of order n?.

(b) The following equations hold where z; are alternated and y; are ‘“layers”:

, (1)

n2
nTe(Z)C(z1, .. Tp2; Y1y e Yn2) = ZC’(xl, e T2 YLy e ey Yn2)
i=1

det(Z2)C(x1, .y @p2; Y1y oo Yn2) = C(Zx1, .o, ZX025 Y1y ooy Yn2)
=C(T1, - Tp2; Y1y vy Yn2)

r;=Zx;Vi’ (2)

The above theorem and a corollary from Shirshov theorem on height (if all
words of length not exceeding the degree of the algebra are algebraic then the
algebra is finite dimensional) immediately imply

Statement 2.5. (a) Suppose Y is the set of words having length < 2n, in
the generators of the algebra of generic matrices M,, and Z is the following

set of traces:
Z={Te(y”) |y €Y, 0<k; <deg(A)}.

Then the extension M,[Z] of M, is integer over K[Z] and is a Noetherian
module.

(b) The algebra of generic matrices with trace (or with forms) is a Noetherian]}
module over values of the trace operator of (taking the form). In turn, the
values of these operators generate a Noetherian commutative ring.

(¢) A similar statement is valid for any representable algebra A. An extension]
A of a representable algebra A by the value of the trace operator on elements
of the above type is a Noetherian module over a commutative ring. (Traces of
the (form) are determined by the representation.)

The procedure of swap.

Statement 2.6 [52]. Consider the following game. Given n piles of some
objects. The first player may choose any m piles and divide each of them into
right and left part. The second player interchanges right parts non-identically.
Then the first player can guarantee that all piles except m — 1 ones contain
< m — 1 objects each.

oxasameavcmeso. Order the piles and consider the vector whose ith coordinate]]
is the number of objects in the ith pile. Order such vectors lexicographically.
We will show that if the first player cannot increase the vector corresponding
to the present piles then the distribution of objects is as required.

Suppose there are m piles; kq,...,k,, are the corresponding numbers of
objects. Suppose k; > m for any i. Set k; = k. + q;, ¢; = i, ki = k; — i. Since
k; > m, we have k! > 0. It remains to apply Proposition 2.7. O]
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Statement 2.7 [52]. Suppose k; > m. Put k; = k. + ¢;. Suppose k} > 0
and q; > ¢; for j > 4. Then for any non-identity permutation o € S,, the
vector k, = (k1 + do1)s - - - Kkl + Qo(m)) is lexicographically smaller than k=
(Ky+qry- - kL + qm)-

Hoxasamenvcmeo. If o(1) # 1 then o(1) > 1 and k] + ¢o1) > k1 + 1. In
this case k, = k. If o(1) =1 then we get inductive descent from m to m — 1.[]

Proposition 2.6 implies

Lemma 2.4 (on swap). Let A be a Pl-algebra satisfying a multilinear
identity f of degree m. Let a word W be of the form

W = couicy - - UnCst

where c; are letters not occurring in the words v;. Then W can be represented
modulo T(f) as a linear combination of words having the form

/ — . / . DY / .
W' = ¢ ;¢ Uy Cisn

where ¢; do not occur in the words v; and not more than m — 1 words v; have
length exceeding m — 1.

The sense of the lemma is that the identity enables to collect almost all
symbols from “piles” v; into m — 1 piles .
We play for the first player when we represent the word W as a product
Wy - Wi “cutting” the words v;. Then the identity turns Wy - - - W, 1 into
a sum of words where W, are permuted non-identically. The second player
chooses the most “unconvenient” term.
If all v; are powers of the same element then we obtain a gathering procedure.Supposefl
M C A. Let M® denote the ideal generated by kth powers of elements
from M. The swap lemma implies

Statement 2.8 [52]. Suppose A is a finitely generated graded associative
Pl-algebra, M C A is a finite set of homogeneous elements which generates A
as an algebra. Suppose the quotient A/M(™ is nilpotent of degree r. Then A
is generated as a vector space by elements of the form

s
vomEovmit - m T,

where for each i we have |v;| < r, k; > m and furthermore, not more than
m — 1 of the words v; have length > m, m; € M, and there are no m equal
elements among m;.

In other words, A has bounded essential height over M (see Definition 2.1).
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If an algebra satisfies a rarefied identity then there exist k£ and coefficients
a, such that for any polynomial F(zy,...,zk, ¥1,- .., y,) multilinear in z; the
following equation holds:

Z arF(civs0ydy, - . . Vo) i Y1, - - Yr) = 0. (3)

Similarly to the swap lemma, we can prove using this fact

Lemma 2.5 (on rarefied swap [52]). Let A be a Pl-algebra such that for
all F' multilinear in the variables x; the equation (3) holds. Replace x; by v;.
Then F(vy,...,vn,y) is linearly representable by elements of the form F(v},... v} ¢
where not more than k — 1 words v} have length greater than k — 1.

Bameuanne. The equation ) aoF(To(1),- .., Tom),y) = 0 for any F is
the definition of a rarefied identity for the non-associative case (and moreover
for algebraic systems of arbitrary arity).

§3. Capelli polynomials and Kemer polynomials

This section is devoted to one of main tools used in this paper, that is,
to polynomials which are multilinear and skew symmetric in several groups of
variables. The Capelli polynomial C,, of order n is the polynomial of the form

Cn = Z (—1)0960(1)%950(2) © Yn—1To(n)-

UES’n

Here y; are called layers.

In the non-associative case (including algebras of an arbitrary signature 2)
the term the system of Capelli polynomials C, of order n denotes a set of
polynomials which are multilinear and skew symmetric in some set of n variables {xz;}.J}
If in an algebra B each Capelli polynomial of order n vanishes then we say
that B satisfies the system of Capelli identities. The system C,, holds in algebras
of dimension less than n. For instance, the algebra of matrices of order n
satisfies C2, 1 (but does not satisfy C,2).

3.1. Kemer diagrams. 'To each Young diagram D we may attach a collection]
of disjoint sets of variables {A;} corresponding to its columns. The number of
elements in A; equals the length of the corresponding column.By S(D) we will
denote the T'-ideal generated by polynomials, multilinear and skew symmetric
in each A;.

Now we define a non-determinate operator ' on the set of diagrams. If all
columns of D are distinct then the diagram D’ is obtained from D by adding
two unit columns, otherwise we take two maximal coinciding columns. Let
m be their length. Replace one of them by a column of length m — k, and the
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other one by a column of length m + k. Thus we obtain m distinct diagrams
of the form D’ (for k =1,...,m). We do not include zero columns.
It is not difficult to verify

Lemma 3.1. Every diagram of the form D) for s > w includes
a column of length > n.

oxaszameavcmeo. The lemma may be reformulated as follows. Suppose
s > n(n+1)(2n+1)/12. Consider the following operation over a set of numbers.
We add two units if all numbers are distinct. And if m, m is the pair of maximal
coinciding numbers in the set then they are replaced by the numbers m—~h, m+
h where 1 < h < m. Repeated s times, this operation results in appearing a
number not less than n.

First of all, it is clear that the numbers cannot remain bounded. In fact,
consider maximal numbers to which the operation was applied infinitely many
times. If it was applied to a number n more than n times then we get two
equal numbers exceeding n. Hence there is no maximal number to which the
operation was applied infinitely many times.

Thus a number > n will appear, and the only question is on the number
of operations. Consider a process having maximal number of steps before a
number > n appears. Clearly, at the next to last step there are two numbers
equal to n — 1 (otherwise we can avoid appearance of a number > n at the
next step, and the process will not be the longest one.)

Similarly, at the preceding step we must have one copy of n — 1 and two
copies of n — 2. Using induction, we ensure easily that at the kth step from the
end in the longest process we must have single copies of n — (k—1),...,n—1
and two copies of n — k. At the (n — 2)th step from the end we get the set
2,2,3,4,...,n—1, and at the (n—1)th step from the end we have 1,1,2, ..., n—
1 and perhaps one unit more.

It is not difficult to estimate the number of operations which precede the
appearance of this set. Obviously, the operation ' increases the sum of squares
of the numbers in the set not less by 2, and this number does not exceed
(2 + Sy k?)/2 = w + 1. The total number of operations differs
from this number by n. Thus we obtain the required estimate. O

3ameuanue. The same estimate holds for the maximal number of operationsj
necessary to obtain the number n if we must have £ = 1 when replacing n, n by

n—k,n+k. A corresponding problem was suggested by the author at the 27th
international mathematical Tournament of towns.

Define b(91) as the greatest natural b which satisfies the following condition.

There exist diagrams D consisting of arbitrarily many cells, such that their
columns are of length > b and all polynomials from S(D) are not identities of
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the variety M.
For an algebra C, set b(C) = b( Var(C)). If C is nilpotent then b(C) = 0,

and if C' generates the variety of all associative algebras then b(C') = oo.

Definitions. Suppose 91 is a variety of algebras of signature 2, D is a
Young diagram such that all columns are of length > b = b(9). If furthermore
S(D) ‘sm # 0 then such a diagram will be called curious. We call a diagram D
interesting if there exist arbitrarily large curious diagrams including D. We
call a column in a curious diagram D large if its length exceeds b, and small if
it equals b. The set of variables corresponding to a small (resp. large) column
is small (resp. large). The set of large columns forms the head H(D) of the
diagram D. A diagram is called extremal if it is interesting and moreover for
H(D') D H(D) and D' D D all polynomials from S(D’) are identities of 9t;
k(H) denotes the minimal number of small columns in an extremal diagram
with head H (if there is no such diagram then k(H) = 00). A good diagram
with head H is an extremal diagram having not less than £+ 1 small columns.
An extremal diagram is called a Kemer diagram if all large columns are of
length b 4+ 1. Then d denotes their number, and £ is the minimal number of
small columns in the Kemer diagram. So a minimal Kemer diagram is described
by the parameters b, d and k.Thus for the variety 9t we define the values b(9),
d(9M) and k(9N). The types of varieties or triples (b, d, k) are ordered as follows:
(by,dy, k1) < (ba, da, ko) if any of three conditions holds:

o by < by

o by = by, d; <dsy;

o by =by,dy = dy, k1 > ko.

Intervals between variables which correspond to the diagram are called
layers. If no confusion can occur, we will use the term “layer” when we consider

the values of the corresponding polynomials (if substitutions of variables from
the set | JA; are fixed).

In the sequel, if the contrary is not specified, a Kemer diagram means a
good Kemer diagram.

Extension by generic elements. Suppose B is an algebra from a variety
M, X = {x;}ies is a set of variables. The following lemma is an analogue of
the lemma from [18].

Lemma 3.2. For any lemma B € 9 and arbitrary set of variables X there
exists an algebra Bon(X) € 9 which is generated by B and X and has the
following properties:

e any map X — Bop(X) extends uniquely to an endomorphism Bop(X) €
m;

e X generates a free algebra of IN;



44 A. Ya. Belov

e the algebra Bon(X) € 9 is the universal object with the properties from
the above items.

Similarly, there exists a universal algebra B3 (X) in the class of all extensionsj]
of B by the set of | X| absolutely anticommuting elements from X, as well as
the algebra Bgy(D) corresponding to the diagram D. Here to the columns of
the diagram there correspond absolutely anticommuting sets of variables.

If M = Var(B) then we omit the index 9t in notation for algebras like
Boyn(X) and write B(X).

If 9 is a subvariety in 90U then the algebra Bgyp(X) maps onto Bay (X)
in a natural way. Furthermore, to a morphism of algebras B! — B? there
corresponds naturally a morphism Bg,(X) — B2, (X), and this functor is
faithful.

A set A is called absolutely commuting if
xcy = ycx for any ¢ € A and any z,y € A. If xzcy = —ycx for any ¢ € A
and any x,y € A then the set A is absolutely anticommuting.

3.2. Razmyslov — Zubrilin theory for Kemer polynomials. This subsection
is devoted to the technique presented in [18; 19|, which stem from the paper [41]
by Yu. P. Razmyslov whose student K. A. Zubrilin was. For the associative
case, this technique is presented in [59]. It extends easily to the non-associative
case (and moreover to algebras of arbitrary signature) using the appropriate
definition of Kemer polynomials.

Suppose a polynomial F(#,x1,...,x,) is multilinear and skew symmetric
in variables z;, a € A. Define the operators of internal forms 6% by

6§(F>: Z F(gaxb"wxn) .

1< <ip 1

P (F)=F. (4

:amik

:CLCE,L'I ,...,xik

The polynomial §¥(F) is the homogeneous of degree k in a component in
the result of substitution F| (
It is easily verified that

65(071) = Z Z (_1)Jxa(1)y1 Lo (i) AYiy Lo (iy) Yy, " Yn—1To(n)-

11<-<ip o€ESH

a+1)z;—x;i=1,...,n"

Hence §%(F) also is skew symmetric in the set of variables {x;}1 ;.

Put Tr(a) = §}. Clearly Tr(a + b) = Tr(a) + Tr(b).

The operators 6% are defined only for records of elements, so the result of
their application may depend, in general, on the representation of an element
from A as a polynomial F' and on the choice of {z;}. If F' is multilinear and
skew symmetric in several sets of variables then considering d, we will indicate
the specific set.

We shall use the following technical statement.
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Lemma 3.3 (on absorption of a variable). Suppose an algebra satisfies thej]
system of Capelli identities of order n+ 1; the polynomial F' is multilinear and
skew symmetric in x, ..., x, and moreover linear in the variable z. Then the
following equation holds:

Z=X4 =2

F(z,xl,...,xn,g):ZF(z,ml,...,xn,g’) : (5)
i=1

Joxazamenvcmeo. The difference between right and left sides of the equationfj
is a polynomial belonging to T(C,, 1) because it is multilinear and skew symmetric]
in the set of variables {z, z1,...,2,}. ]

Now we formulate the basic lemma from [18] which is an analogue of
Hamilton — Cayley theorem for operators having an internal definition.

Lemma 3.4. Suppose a polynomial F(y,Zz,x1,...,x,) is multilinear and
skew symmetric in the variables x;, and a € D(A) is an element of an operator
algebra (for instance, an operator of multiplication by a). Then modulo C,, 1,
we have the equation (“Hamilton — Cayley theorem”)

n

P(a(y), 71, n) = S (1808 (F(a" ), Zn, o)) (6)

k=1
Joxazamenvcmeo. Write down equation (6) in the form

n

Z(—l)kéf <F(a”_k(y), Zx1, ... ,xn)> = 0. (7)

k=0
Suppose i1 < -+ <, I = {i; <--- <ig}. Consider the term

tr = F(a”‘k(y),é',xl, . ,xn)|

Ty =QTiy 55Ty, =ATi

For n—k > 0 represent a” *y in the form " *'ay and put y = ay. Forn = k
represent a" ¥y in the form y and put 3’ = y. Now suppose 2} = x; for i ¢ I
and x} = ax; for i € I. Apply identity (5) from lemma 3.3 to ¢;. We get

ty = — ZF(a”—k‘l(mj),Z Tlyeeey QY. . . ,xn)
JEl

_ ZF(“”_k(l"j)’ 2,01, ,aY, . Ty)
jeI

for I # {1,...,n} and

Ty =ATiy 500 Tip, =i,

n
t,m) = Z F(xj, Z,axry,...,ay,. .. ,a:pn).

j=1
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To complete the proof of the lemma, note that in the expression for 3 ,(—1)1l¢;
the terms of the sums

I 1
E F n=lll= z,xl,...,ay,...,xn)
]%I '1:(1271'1 ,,,,, will‘:aiﬂilll

for |I| = k < n cancel with the terms of the sums

ZF |I| le,...,ay,...,xn)
el 1 =T iy e Ti) p =AT4 gy
for |[I| = k + 1, hence >, (—1)!lt; = 0. O
Extend the original algebra A by coefficients \;. Consider the ideal I,
generated by "™t — 3. Na" T
Let Ag(A, X) be the subspace in the algebra Agn(zy,...,x,) consisting of
polynomials which are multilinear and skew symmetric in the set of variables
X ={z1,...,z,}. Put A(n;a) = A[{\}] /L.
To \;, attach the operators d;(a). Lemma 3.4 immediately implies

Statement 3.1. Suppose A € 9, and the variety 9 satisfies the system
Cry1- Then we have the natural embedding

Let K, be the kernel of the map A — A"(a) = A[{\i}] /L.

Corollary 3.1. If h € K,, A = Ay(y), y is a variable not from X,
F(y,X) € Am(A(n), X), then F(y, X)\}Hy =0.

Let S C A be a set of elements from the algebra A. Let us define the
algebras A(n,S), A(n,S)m(X) and the space Ag(A(n;S),X) in a natural
way. Let A(n) be the minimal universal object obtained by forced declaring all
elements of A being algebraic of degree n. It is the injective limit of extensions
Ag = A, Ay = Ap(n, Ag), ..., A1 = Ax(n, Ag). Let K, be the kernel of the
natural map A — A(n).

Note that it suffices to show that F), = 0 if A belongs to the obstacle for
the canonical algebraic representation of order n for any previously fixed finite
subset {a1,...,as} C A, because the joint of these obstacles is an obstacle for
the canonical algebraic representation of order n for the whole algebra. Hence
using induction, from Proposition 3.1 we obtain

Corollary 3.2. (a) Suppose A € 9, and the variety 9 satisfies the
system C,, 1. Then we have the natural embedding

(b) Ifh € K, A = Ay (y), y is a variable not from X, F(y, X) € Am(A(n), X) ]
then F(y, X =0.

|h—>y
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The above corollary implies an important technical statement.

Lemma 3.5. Suppose a polynomial F' is multilinear and skew symmetric
in some set of n variables A and is linear in a variable xy not belonging to A.
Furthermore let v belong to the obstacle Obstr,, for algebraicity of order n.
Then F, = FLHQ:O = 0 modulo C,, 1.

The subspace T(g) skew symmetric in sets of variables from A; is a Noetherian]
module over operators Tr(a) and 0y(a).

Corollary 3.3. (a) C,, Obstr, C C,41.

(b) ObStI‘l cee ObStI‘n g Cn+1.

(¢) (Obstr,)™ C Cpy1. In particular, if an algebra A satisfies C,,+1 then
(Obstr,)" = 0.

(d) If a finitely generated algebra satisfies a system of Capelli identities
then the radical is nilpotent.

Jlokasameavcmso. Assertion (a) is reformulation of the above lemma.
Assertion (b) is deduced from (a) by obvious induction. Assertion (c) follows
from (b) and the inclusion Obstr, C Obstr, for & < n. Thus if the algebra
satisfies (1 then it includes an ideal Obstr, of nilpotency degree n with
representable quotient. But in a representable finitely generated algebra the
radical is nilpotent. Assertion (d) is proved. O

Consider two disjoint sets X and Y having m elements each, and the
symmetric group Ss,, acting on X U Y. In the group algebra ZS,,,, define
elements T'(7), Z C X, as follows:

1(2)= Y. (1Yo, Z+2,

o(2)CY
T(@)= Y (=170
0ESam
Statement 3.2 [18]. The following equation holds:
Y. (VAT(Z) =y (<170 (9)
2CX o(X)=X

The left-hand sum is taken over all subsets Z of X, including X itself and &.

Bameuanne. Suppose X = {1,...,m}andY = {m+1,...,2m}. Consider
an action of the group algebra 7Z.S,,, on the vector space over Z of multilinear
polynomials of degree 2m in 2m variables x1, ..., x9,,: namely,

O T1y---3Tom = Lo(1) " * Lo(2m)

where o € Sy,,. Then T(Z) - xq -+ x9y, is a polynomial, skew symmetric in
variables with numbers from Z and in variables with numbers from X\Z UY".
If Z # X then | X\ZUY| > m+1, and if |Z] = m—k then | X\ZUY| > m+k.
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The next lemma follows from Proposition 3.2 and the above remark.

Lemma 3.6 [18]. Let f(x1,...,xs,) be a polynomial, multilinear and skew
symmetric in the sets of variables xi,...,x, and ,i1,...,%s, and maybe
depending on other variables. Then

fx1, oy @y Tngty ooy Ton) — [(Tpg1y ooy o, @1y .oy xy) =0 mod 1

where I is the sum of T-ideals generated by polynomials which correspond to
diagrams D having a column of length n—k and another column of length n+k,
k=1,...,n.

Corollary 3.4 (on transfer [18]). (a) Suppose an algebra A satisfies the
system of Capelli identities of order n+1, and let a polynomial ' be multilinear
and skew symmetric in variables {x;}"_, and {z;}"_,. Then the value of §*(F)
does not depend on the choice of the group {x;} or {z;}, and the operators §*
and 0; commute.

(b) Furthermore in this case Tr(ab) = Tr(ba).

Lemma 3.7 [18]. Suppose a polynomial F' is multilinear and skew symmetridj]
in each of two disjoint sets of n variables A;, i = 1,2, and moreover is linear
in the variable xy not belonging to A. Suppose v belongs to the obstacle for
Hamilton — Cayley identity of order n. Then F’mo_w = 0modulo ) ;_,(Cryk, Cry) I
The subspace T(g), skew symmetric in sets of variables from A; is a Noetherian]]
module over the operators ¢j,.

Here (C,,Cs) denotes the T-ideal generated by polynomials, multilinear
and skew symmetric in two groups consisting of r and s variables.

Bameuanne. Since the calculations in the proof of Lemma 3.5 (resp. Lemma 3.7)]]
involve variables from a single set A; (resp. from only two sets), the proof of
these lemmas extends to the case of extremal diagrams (that is, of several sets
of variables).

Statement 3.3 (on transfer). Suppose |A;| = |As] =n = b(A), a polynomial FJj
corresponds to the Young diagram D = DyUD; where Dy is an extremal Young
diagram, and the diagram D consists of two columns of length b corresponding
to the sets A and A,.

Then all statements similar to (a) and (b) in Corollary 3.4 as well as
Lemma 3.7 and Lemma 3.4 hold.

Operators 0y (z) are forms defined internally.

The statement below is a complete analogue of Lemma 3.7 for extremal
polynomials.

Statement 3.4. Suppose a Young diagram D includes a pair of columns
of the same length m, a polynomial f € S(D) is linear, besides the variables
corresponding to columns of D, also in a variable xq, and an element v € A
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belongs to the obstacle for Hamilton — Cayley identity of order m, g = f ‘v_mo.
Then g belongs to the sum of ideals of the form S(D;) where the diagram D;
is obtained from D by replacing some pair of columns of length n with a pair
of columns of length n + k and n — k respectively (k > 0). In particular, if

m is the maximal length of coinciding columns then g belongs to the sum
Do, S(D)-

Note that summation extends over all possible results obtained by applying
the operator ’.
Using Lemma 3.1 and induction, we obtain the following

Theorem 3.1. Let an algebra A satisfy the system of Capelli identities
C. Then the operator obstacle for Hamilton — Cayley identity of order n has

nilpotency index not exceeding w

Note that the quotient by this obstacle is a representable algebra, and for
representable algebras Razmyslov — Kemer — Braun theorem is obvious. Thus
we in fact obtain a direct combinatorial proof of Theorem 3.1.

Since in an associative algebra with trace all matrix identities follow from
Hamilton — Cayley identity [17; 40; 61], we have

Corollary 3.5. In the conditions of Theorem 3.1, suppose that A is an
associative algebra. Then the verbal ideal generated by identities of matrices

. . . n(n+1)(2n+1)
of size n _has nilpotency index not greater than ———7;——.

3.3. Representable spaces. A variety 9 is called Kurosh variety if any
algebraic algebra from 91 is locally finite. An algebra is called algebraic if any
1-generated subalgebra is finite-dimensional.

Definition 3.1. A space S C A is called representable if it has zero meet
with the obstacle for representability of some order. We call a space S C B
representable in an algebra B if there exists a morphism B to a Noetherian-type
algebra such that its restriction to S is an embedding.

An equivalent definition: a space S is representable if the restriction to S
of some homomorphism of A to a Noetherian-type algebra is an embedding.

For a diagram D of a variety 9t O Var(A) and for an algebra A, define the
subspace Sp o(A) C Am({A;}) as the space of polynomials, multilinear and
skew symmetric in variables from each set A; corresponding to the diagram D.
If the algebra in question is clear, we simply write Sp am(A).

In view of the remark after Lemma 3.7, the following statement is valid.

Statement 3.5. Let D be an extremal diagram for a Kurosh variety 99t O
Var(A), S = Spon. Then if D includes a small column then the space S is
representable.

3ameuanme. The Kurosh property is necessary because almost all multiplications}
may be subsequently applied to variables which correspond to D, and then
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powers of elements from A not appear. To avoid restrictions of such kind, we
need to consider a pair consisting of the algebra A and the algebra of operators
acting on A.

To a diagram D, attach a system of sets of variables &;; € A; where A; is a
set of strongly anticommuting variables, which corresponds to the jth column
of the diagram D.

Suppose M is a variety of algebras, D is a Kemer diagram. Consider the
algebra Ko(A, D) = A xon ({&;})/Q where the ideal Q is generated by non-
associative monomials M, containing two occurrences of any variable &;;, and
by elements of the form M (&;;,,&:5,) + M (&ij,, &ij,)- The algebra Ko(A, D) is an
extension of A in 9 by a system of strongly anticommuting variables, which
is defined by the diagram D. Usually 9t = Var(A), and this is assumed if the
index 9 is omitted. In any case, the inclusion 9t O Var(A) is necessary for
correctness of constructions. This is always assumed.

Let Jy1 be the ideal in Ky(A, D) generated by values of polynomials of
the form f(uy,...,upr1,y) where uy are monomials in generators of A, and f
is multilinear and skew symmetric in w;. Put Ky(A,D) = Ko(A, D)/ Jys1.
Let K (A, D) be the space (the ideal) in K;(A, D) generated by monomials,
multilinear in all variables of the form &;;. Extremality of D implies a natural
isomorphy between the corresponding spaces in the algebras K;(A, D) and
Ky(A, D).

Statement 3.6 (on representable spaces). Let D be an extremal diagram.
Then the following is true.

(a) Var(A) = Var (Ko(4, D)) = Var (K1(A, D)).

(6) The spaces Si(A, D) and Sy(A, D) (sometimes denoted by S(A, D)) in
the algebras K1(A, D) and Ky(A, D) respectively, generated by monomialsf
multilinear in all variables of the form &;; are isomorphic in a natural way.

(B) If 9 is a Kurosh variety then the above spaces are representable.

If the ground field is of characteristic zero then K (A, D) is isomorphic to the
subspace Ag(X), the space of polynomials with coefficients in A, multilinear
and skew symmetric in the corresponding sets of variables.

In the space K (A, D) multiplication by internal traces (forms) is defined
in a natural way, and if 91 is a Kurosh variety then this action determines the
structure of a Noetherian module on K (A, D).

Now we formulate an additional useful statement concerning the above
constructions.

Statement 3.7. The correspondence A — Kgy(A, D) is a covariant functor
(the index 9 specifies the variety in question). The space Kon(A, D) always is
representable and moreover isomorphic to Kon(A', D) where A" is a quotient
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of A by some representable ideal. The T-ideal H (D) of the algebra Kygn(A, D)
lies in the space Kgn(A, D).

We will prove a somewhat different statement concerning representable
spaces.

Statement 3.8. Suppose D is a rectangle of size
(k:(i)ﬁ) + d(OM) + 1) X b(IM),

and M is a Kurosh elastic variety (that is, a variety with associative powers).
Then the space S = Sp gn is representable.

oxasamenavcmeo. 1t suffices to show that S is disjoint with the obstacle
to algebraic representation of some order (which depends on 9 only) for an
arbitrary element r € B. Pass to the algebra B [51(7“)} which we will consider
as an algebra over the associative-commutative ring F[éi(r)}, choose a new
element " € B, and so on. Thus we obtain that we can pass from B to
its operator canonical algebraic representation of some order, and the latter
algebra is a finite-dimensional module over an associative-commutative ring.

Suppose b = b(A) and 1); are operators of the form x; — r(x;). It suffices to
show that the operator r is algebraic over the operators 1; (and the algebraicity
order depends on 9t only). Then we may interprete the coefficients in the
algebraicity relation using operators ); and argue as in the proof of Lemmas 3.5
and 3.7.

Thus the statement will be proved if we will show that for some m every
polynomial F'(Z,y,r™ ), multilinear and skew symmetric in variables from the

sets A; satisfies
k

F(Z,4,r%) =Y W,F(&5rm")
i=1
where the coefficients W; are polynomials in the operators v; and do not depend
on F'.
Let 6;,(r) be the operator of an internal form of order k defined by the set
of variables A;. If a polynomial G is of the form G (g, U, Ai,rb,d) then the
difference

b
6( 7 U d) - Yo 6( 7 Urur )
7 k=1 7

is representable as a linear combination of polynomials obtained by choosing b+
1 subwords inside some polynomial G’ and by alternating these subwords; here
the subwords containing any variable from A; are not alternated for j # 4, and
furthermore only those occurrences of r are involved which are contained in

the chosen power 7°.
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Suppose m = b - (d+ 1). Then r™ divides into d + 1 parts of length b, and
the difference

G(gj,L;JAi,rm) —i i O1y (1) 0oy (1)

ki=1ko=1  kgi,=1

. §d+1,kd+1 (T)G('gj, UA“ rm—zi kn)

b

belongs to the T-ideal which corresponds to the diagram including d + 1
columns of length b 4+ 1 and k(A) columns of length b. But in 9 any ideal
with these properties is zero. Il

Note also the following useful

Statement 3.9. A finite set of elements which are values of polynomials

from representable spaces described in this subsection generates a Noetherian
A-module (left, right, bimodule).

Aoxasamenvcmeso. 1t suffices to prove the proposition for a polynomial
f € Spyvara)- The latter follows from the fact that any increasing chain of
representable ideals stabilizes. Il

3.4. Thinning of alternators. Here we consider one of the basic tools which
enables to guarantee that alternated constructions have bounded degree. We
will use Kemer polynomials.

We start from the associative case. Let a pair (A, H) be given where A is
an algebra with a fixed set of generators, and H € N is a positive integer.

Suppose D is a diagram, f € S(D) N A3m< U, Ai> is a polynomial, g is
obtained from f by substituting the words {v,} € A instead of variables from
|U; A;. If all these words have length < H then we call the polynomial ¢ (and
the sets A;) thin relative to D. If at least one v; has length > H then g is thick.

3ameuanwme. In fact, the notions <thick> and <thin> relate not to g itself
but to its recording. (We permit this inaccuracy when the specific recording is
clear and so any confusion is impossible.)

If H is not fixed, we may speak of h-thin and h-thick polynomials for each
h € N.

If each Capelli polynomial of thickness h vanishes then we say that the
algebra satisfies the system of Capelli identities of thickness h. If h = H
then the algebra satisfies the system of thin Capelli identities. Similar is the
definition of somewhat more general notions of validity of a system of rarefied
identities of thickness h, a thin system of rarefied identities, a thick set A; and
a set \; of thickness h as well as of thickness of a variable considered as a set
of a single variable.
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To generalize these notions to an algebra of an arbitrary signature €2, we
have to modify the notion of the word length. Here a word is an arbitrary
monomial in generators. To the layout of operations, there corresponds a tree
such that the generators correspond to its end vertices (except the root),
and the monomial itself corresponds to the root. This tree is called the tree
of the monomial. A branch is a part of a path without self-intersections,
which leads from the root to an end vertex. The length of a monomial v
is the maximal possible length of a branch in its tree, it will be denoted
by I(v). The value [(v) is the maximal length of a chain of submonomials
mutually comparable by inclusion; br(v) denotes the total number of branches
of length /(v). The parameter C'H (v) is the vector (I(v),br(v)). Its values are
ordered lexicographically (first by the first coordinate, then by the second one).

The following lemma due to K. A. Zubrilin [19] concerns the structure
of trees of monomials for algebras with rarefied identities. Its proof is easily
obtained using the swap procedure.

Lemma 3.8 (on a tree). Suppose an algebra A satisfies a system of rarefied
identities of order m. We call a branch long if its length is > m.

Then any monomial is linearly representable by monomials such that the
corresponding tree has not more than m — 1 disjoint long branches.

It is easy to see that all notions related to thickness are immediately
extended to the general case. In the associative case, there is no need to consider
the parameter C'H: it suffices to use lengths of monomials only. This reduces
the technical aspect of proofs, so the reader may originally have in mind just
the associative case.

Note that the degree of a monomial v does not exceed ¢! where ¢ is the
maximal arity of an operation in the signature €.

The swap procedure enables to prove directly

Statement 3.10. Suppose an algebra B satistfies a system of rarefied identities}
of order h and of thickness h, and g € S(D). Then g is linearly representable
by polynomials ¢’ € S(D) such that for each of them not more than h sets
of variables A; are of thickness greater than h. Moreover the total number of
variables (in all sets) of thickness greater than h does not exceed h — 1.

Corollary 3.6. If an algebra B satisfies the system of Capelli identities of
order m and of thickness m then it satisfies the Capelli identity of order 2m — 1
as well.

We consider polynomials from Agm< U, Ai> together with a family of correspondencesl
between monomials and variables from (J; A;, which determines a substitution
resulting in g. This allows to speak of thick or thin variables from | J, A; as well
as of variables having thickness h.
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Definition 3.2. Sg’?g“’m% .. 1s a space generated by polynomials which correspondl
to a diagramm D U FE having the following properties:

e the diagram FE consists of m; + my columns of length k;

e not more than m; sets of variables corresponding to these columns have
length greater than m.

Clearly Sl(;f%hm%k is an ideal.

We also will need the following corollary from Proposition 3.10 and Lemma 2.5
on rarefied swap.

Corollary 3.7 (Thinning of small sets). Suppose an algebra satisfies a system]]
of rarefied identities of order m and of thickness m, m' = my +my > m. Then
we have the equality

Sg%f,o,k = Sg?r)n,m’—m,k
and the inclusion
S0 S S5 0umt—mi-

Now we turn to the procedure of thinning large sets in Kemer polynomials.
This procedure is based on the following relation. Let a polynomial f be
multilinear and skew symmetric in the set of variables {y;}/", and retains
these properties after adding the variable x. Consider

m

f=r=>1

=1

(10)

T—Yi; Yi—T

The polynomial f”is multilinear and skew symmetric in the set of variables
{z} U{uiity

3ameuanmne. Similarly, starting from a polynomial, multilinear and skew
symmetric in each of the sets of variables {y;};", and {x;}]**, we can construct
a polynomial f’, multilinear and skew symmetric in the joint set ' = 3" __(=1)%0-]
f where S is a system of representatives of cosets of S,,,+m, relative to S,,, x
Sy -

Lemma 3.9. Supposem = |A|, a polynomial f € Asm(AU{x}) is multilinearf
and skew symmetric in the set of variables A and is linear in the variable x.
Suppose the polynomial g € T(f) is obtained by replacing xy by a monomial
vg of length k, k > m+ 1, and by replacing the variables from A by monomials
of length < m.

Then g is linearly representable by

(1) the values of substitutions to f such that CH (v}) < CH(v);

(2) the polynomials which correspond to substitutions of thickness m+ 1 of
elements from A to a polynomial from Agy(A U {zo}), multilinear and
skew symmetric in the set of variables A Uz, and of arbitrary elements
to another set A’ where |A'| = m.
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Joxasameavcmeso. Choose a submonomial of thickness m+1 in the monomial vy}
denote it by z{, and use the expression (10). It remains to observe that the terms

corresponding to
fr=r=>r
i=1

satisfy condition (2), and those corresponding to the terms of the sum
2.1
i=1

satisfy condition (1) of the present lemma. Let u be a submonomial in the
monomial v and u belongs to some chain of submonomials which increases by
inclusion and has maximal length. Then replacing v by a monomial of smaller
length we decrease the parameter of the original monomial. O

T—Yi Yi— T

)
ToYis Yi—T

Consider a pair (A, H). Suppose H > k. Similarly to the above, we can
prove the following

Statement 3.11. Suppose a polynomial f belongs Aoy U}:o Ai), [Ao| =
k, |A1| = k + 1. Suppose the set A; contains just s thick variables, and all
variables in the set |Ag| are thin. Then the following holds.

(a) Ifs > 1 then the polynomial g corresponding to f is linearly representable
by values of polynomials g, which correspond to not more than one thick
variable in the set A;.

(b) Suppose s = 1. Then the polynomial g corresponding to f is linearly
representable by values of polynomials g, such that parameters (CH) of
all but one its variables in the set A are the same and a single parameter
is strictly smaller.

(AH polynomials g, correspond to f for some verbal substitution x; — wv;
where x; € |J)_, A

Jloxasamenvcmeo. Assertion (a) uses a construction related to formula (10),]]
and assertion (b) follows from (a) applied to the thick variable in A;. O

Bameuanwne. Similarly, if [Ag] = |A;| — s then in view of the remark
preceding Lemma 3.9 we may guarantee that not more than s variables from A4
have thickness exceeding m. But for s > 1 no analogue of assertion (b) has
been proved. This is one of the reasons for using Kemer diagrams and not
arbitrary extremal diagrams.

Thus we can make a large set thinner at the price of «thickening» a small
set. Combine this process with the swap procedure which enables to thin almost
all small sets. Summing up the results of Proposition 3.11 and of Corollary 3.7
we obtain
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Statement 3.12. Suppose I is a variety of algebras with parameters
(b,d, k) satisfying a rarefied identity of degree m, and Sy, m, is the space
of values of Kemer polynomials with my + my small columns, such that all
variables corresponding to large sets have thickness < m + 1 and not more
than my variables from small sets have thickness > m (the number of large
sets for a Kemer polynomial always equals d). Then the following holds:

(a) If my = m—1 and my; +my > k+1 then the space Sy,, m, coincides with
the space generated by all values of Kemer polynomials which have the
diagram D consisting of d large and my + mo small columns.

(b) Suppose c is the number of small columns in the Kemer diagram D and
the diagram E consists of m columns of length b. Then we have the
inclusion S(D U E) C S(0,c).

The sense of this proposition (and of this subsection) is in the inclusion:
the space of values of polynomials corresponding to the Kemer diagram DU E
is contained in the space of thin values of Kemer polynomials corresponding
to a somewhat smaller diagram D.

Corollary 3.8. Suppose A is a PI-algebra with parameter (b, d) satisfying
a system of rarefied identities of order m, A’ is the quotient by the ideal
generated by polynomials of thickness max(m, b+ 1) which correspond to some
Kemer diagram for the variety Var(A). Then the pair (b,d) for Var(A’) is
strictly smaller than the pair (b,d) for Var(A).

3ameuanue 1. The thinning technique is used for extremal polynomials
corresponding to diagrams which contain > m small columns and with a large
column of length ¢ contain a column of length ¢ — 1.

3ameuanwme 2. For associative and structurizable algebras, the possibility
for thinning follows also from the fact that an extremal ideal is a Noetherian
module over traces.

3.5. Rings with operators. Suppose B is an algebra with signature €2, and
D(B) is an operator algebra for B. To each element of D(B) there corresponds
a monomial from Bva(g) (X), linear in the variable x. To multiplication of
operators D x Dy there corresponds a substitution of D; — x to D,, and to
action of an operator on an element v there corresponds a substitution v — x.

Thus we obtain a pair (B, D) where D is an operator algebra. We want to
investigate identities of this pair. We may define in a natural way the variety 9t
of double-based algebras (multiplication operators must belong to the operator
algebra D) as well as extensions B(Z,¢) where & denotes free variables of the
algebra, and g denotes free operator variables. Similarly we define the algebra
Bon(Z,y) for any variety 9t of double-based algebras (to every variety of
ordinary algebras there corresponds, in a natural way, a variety of double-based
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algebras.) Note that investigation of alternative and Jordan algebras involves
using of multibased systems (alternative systems, Jordan triple systems).

We will investigate varieties such that the corresponding operator algebra
is a Pl-algebra. This is a natural class of algebras. The necessity of restrictions
of such kind is evident from the following example.

ITpumep. Suppose M is a variety of algebras determined by the identity
z(yz) = 0, B is a free 2-generated algebra of 9t and 9’ = Var(B). It is easy
to see that the basis 91 consists of monomials of the form

((( o ((xilxi2)xi3) Ii4) T ) xlk) )

and substitution of monomials of length greater than 1 to all positions except
the first one results in zero. Hence if z;, is fixed then substitutions of the form
X, — X x4 realize the action of left multiplication in the operator algebra. It
is easily seen as well that the variety 90U satisfies a system of rarefied identities,
namely, the Capelli identities of order 4. At the same time, the growth in a
free algebra of M’ is exponential, GKdim(B) = oo, and the variety 9t itself
is neither locally Specht nor locally representable.

Similarly to the case of ordinary algebras, we may consider polynomials,
multilinear and skew symmetric in sets of operator variables (these polynomials
may also include ordinary variables). Corresponding diagrams will be called
operator diagrams, and the space of polynomials, which corresponds to an
operator diagram D will be denoted Sy(D); to a pair D = (D, D) consisting
of an ordinary and an operator diagram, there corresponds in a natural way the
space S(D) = S(Dy, Ds). Let Dy be an extremal diagram for an algebra B. An
operator diagram Dy is compatible with the diagram D; if the algebra Bop( ¥, i)
contains a nonzero polynomial from S(Di, Ds), and Dy admits Dy if Dy is
compatible with any extremal diagram D’ D D;. Fix an extremal diagram D,
and consider the set of operator diagrams which admit it. Similarly to the case
of ordinary algebras, define operator diagrams extremal relative to Dy, their
heads and tails (the remaining parts of the diagrams). We may define, in a
natural way, a pair of extremal diagrams D = (D;, D). (The diagram D, has
to be extremal in the class of diagrams which admit arbitrary large extremal
diagrams containing D;.)

3ameuanwme. In the definition of an extremal diagram Dy we require non-
vanishing of a polynomial which is not necessarily purely operator polynomial.
Moreover it is quite possible that the space S(D3) in the operator algebra D
is zero.

We call a family of diagrams regular if together with any diagram it contains
all its subdiagrams.
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Lemma 3.10. Every descending by inclusion chain of regular families
stabilizes.

Let Dy be a Kemer diagram for an algebra B. When D; increases, the set of
diagrams compatible with D; decreases and at some moment stabilizes. Now
the symbol £ will denote the minimal number of small columns necessary for
stabilization. A good diagram will mean a Kemer diagram with > &k + 2 small
columns. Considering diagrams compatible with a good Kemer diagram D,
we define the operator Kemer diagram Dy corresponding to D; as well as
parameters by, dy and ko. The pair (Dy, D») is called the pair of Kemer diagrams.

Note that operator alternators and alternators of elements from the algebra
are disjoint. All statements related to thinning of alternators and to representable]]
spaces extend immediately to this case. We formulate only the eventual result.

Statement 3.13. Let 9N be a variety of double-based algebras with parametersj
(b,d, k) satisfying a rarefied identity of degree m and an operator rarefied
identity of the same degree. Let S, m); my,myn e the space of Kemer polynomialsj]
which have my +m} and msy + m{ small columns in the first and in the second
diagram respectively and satisfy the following conditions.

(1) For each type, the variables which correspond to large sets are of thickness}
not exceeding m + 1 (this means that we substitute to these variables
from A monomials of thickness not greater than m + 1).

(2) Not more than m; variables in small sets are of thickness greater than m.

(3) All variables from A contained in the alternated sets are of thickness
not exceeding n.

Then the following holds.

(a) Ifmiy =mg=m—1,my+m| > k+1, mg+ml, > k+1 then the space
Sy m);ma,m;, coincides with the space generated by all values of Kemer
polynomials having the pair of diagrams (D1, Dy) where D; consists of d;
large and m; + m/, small columns.

(b) Suppose ¢; is the number of small columns in D;, and E; consists of m
columns of length b;. Then we have the inclusion

S(DyU Eyr, Dy U Ey) C Sy miima amtym C S0.m); 0.mbm-

Since the operator algebra D is a PI-algebra and every finitely generated
subalgebra of it is a Kurosh algebra, the lemma on tree implies

Statement 3.14. Let D = (D1, Ds) be an extremal pair of diagrams for a
variety 9t O Var(A) of double-based algebras with operators, S = Sp sn. Then
if each D; includes a small column then the space S is representable.
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§4. Height theorem for the non-associative case

Definition 4.1. An algebra A has bounded L-length if for some k the
algebra L[A] of its left multiplications is linearly representable by a set of
elements of the form L(p;)--- L(p,) where ¢ < k and L(z) is the operator of
the left multiplication by x. A variety 91 is called not bad if the algebra of left
multiplications of any finitely generated algebra from this variety

(1) is finitely generated,

(2) is of bounded L-length,

(3) and moreover the algebra A is elastic, that is, any 1-generated algebra
from 9N is associative or M is a variety with associative powers.

The above conditions mean that the associative algebra L[A] is close to the
original algebra A and enable to extend to A statements related to L[A].

Definition 4.2. A class of rings € is called a Kaplansky class if for any
R € € the following holds:

(1) if R is prime and Nil(R) = 0 then R has nontrivial center;

(2) the quotient R/ Nil(R) € € is a subdirect product of simple rings;
(3) ReF[\ € ¢

(4) Nil(R) = 0 = Jac (R®@F[)]) = 0.

The condition (4) is equivalent to the following two assertions:

e if R is prime and Nil(R) = 0 then localization by the center Z(R) is

simple;

o if Nil(R) = 0 then R®F[}A] is a subdirect product of prime algebras. The

intersection of any ideal with Z(R) is nontrivial.

3ameuanme. Any variety of non-nilpotent Lie algebras cannot be not bad
because [-length is unbounded. It does not belong to a Kaplansky class as well.

A variety 9 is called good if it is not bad, that is, satisfies (1)—(3) from the

definition of a not bad variety, and moreover
(4) the algebra of left multiplications of any finitely generated algebra from
this variety is a Pl-algebra.

An algebra is called representable if it embeds into a finite-dimensional
algebra over an associative-commutative ring.

Statement 4.1. (a) In the category of n-dimensional representations there
exists a universal object.

(b) An algebra C' is representable if and only if there exist a family of ideals
{J:}ier and a number n € N such that

(1) mz‘e[ Ji=0;
(2) dimC/J; < n.
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Jloxazamenvcmeo. Assertion (b) is an immediate consequence of assertion (a)f
which is well-known. Now we describe the construction of universal n-dimensionalll
over the center representation. Let {€;}!; be the basis vectors. The multiplication]]
is determined by structure coefficients ij: €ie; = ijék. To every ith generator
of the algebra C, attach the element i Aij€;. Furthermore impose relations
on the coefficients C’fj and \;;, which follow from the relations of the algebra C'.
These coefficients are determined from the quotient of the ring of commutative
polynomials by the above relations. O

3ameuanue. Note that the class of n-dimensional algebras over a field,
even in the associative case, may contain no universal object.

Now we introduce the following notation:

Mon,. is the set of non-associative monomials of degree r;

M®) is the ideal generated by kth powers of elements from M.

If J is an ideal in C then [ is the ideal in L[C] generated by operators
of muliplication by elements of J. Suppose D C C; Ip, denotes the ideal
in L[C] generated by operators of left multiplication by elements of the form
W (ty,...,t;) where W € Mong, k < s and there exists i such that ¢; € D. If
I is an ideal in L[C] then define the ideal J; as the set

{z e C:Vdeid(z) L(d) € I}.

Let g(r) denote the number of generators in the left multiplication algebra for
M., the free r-generated algebra of M. Let I(r) denote the I-length of IM,.
Since the algebra of left multiplications is finitely generated, there exists a
function denoted by Gan(r) (or simply G(r)), such that for s > G(r) we have
the inclusion Ip s 3 [iq(p) in an r-generated algebra C' from 9.

The fact that algebras of left multiplications are finitely generated implies

Statement 4.2. There exists a function h(r) such that L[9,] is generated
by operators of left multiplication by monomials of degree not exceeding h(r)
in the generators of the algebra IM,..

Statement 4.3. If[ is an ideal in L|C| of codimension k then the codimension}
of the ideal [J; does not exceed k- N where N is the number of non-associative
monomials of degree not greater than G(r+1), and r is the number of generators

of C.

Jloxazameavcmeo. The fact that the algebra of left multiplications is finitelylj
generated implies that = € J; if L(d) € I for any non-associative monomial d
of degree not greater than G(r + 1), including z. Hence the codimension of J;
does not exceed the product of the codimension of I by the number of these
monomials. [
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Theorem 4.1. (a) Let 9 be a not bad variety, C € 9 be a finitely
generated algebra. Then representability of C' is equivalent to representability
of L|C].

(b) If a variety MM is good and C' € M is a semiprime algebra then C' is
representable.

(c) If a variety 9 is good and C' € M is a simple algebra then C' is finite-
dimensional.

(d) If a variety 9 is good and an algebra C' € 9 has no ideals with
non-nilpotent quotients then C' is simple

(e) If a variety 9t is good and any simple algebra from 901 has no basis
consisting of nilpotent elements then for 91 Kurosh problem has positive
solution. Moreover, if C' is homogeneous and finitely generated then there
exists M C C such that the algebra C/M® is nilpotent for every k.

(f) The lattice of prime ideals in a variety satisfying a system of Capelli
identities satisfies both ACC and DCC.

Jlokasameavcmso. Assertion (a) follows from Propositions 4.1-4.3. Assertions (c)Jj
and (d) follow from (b). Assertion (e) follows from (a)—(d), and assertion (f) from]]
the rank theorem. Now we prove assertion (b). In the algebra L[C] there exists
a sequence of ideals {/,} such that its intersection lies in the radical R(L[C])
and any quotient L[C/I, embeds into the algebra of m xm matrices for some m
the same for all /,. The corresponding sequence of ideals J;, in C is such that
any quotient C'/J;, embeds into an algebra of dimension over the center, not
exceeding some m/. If v € NJ;, then L(z) € R(L[C]) and x € R(C). Primarity
of C' implies R(C') = 0. It remains to apply Proposition 4.1. O

Suppose ¢(n) is the nilpotency degree of C/M™, s is the number of
generators of the algebra C. Denote by I(M,n) the ideal in L[A] generated by
elements of the form L(¢;)--- L(t,) for which there exists m € M such that
t; = m" for any i (the element m € M is the same for all ;). The definition
of not bad variety implies

Statement 4.4. The operator L(z?) generates for some q a proper ideal
in L[B] if and only if x* for some t generates a proper ideal in B.

The next proposition establishes a connection between nilpotency of nil-
algebras and local finiteness condition.

Statement 4.5. Let all nil-algebras in a good variety )M be nilpotent.
Then there exist functions Fyn(n, k) and Hgy(n, k) such that any k-generated
algebra from M having algebraic of order n elements which are sums of monomialsj
of length < Hon(n, k), is of dimension not exceeding Fyn(n, k).

The next statement is related to combinatorics in not bad varieties. It
also enables to pass from an algebra to its algebra of left multiplications, and
conversely.
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Statement 4.6. (a) The quotient L[A]/Iyw) is nilpotent of degree < q(k)-
I(s+1).

(b) We have the inclusion 1d(D) 2 Ip,, and if r > h(s + 1) then for all D
the equality 1d(D) = Ip, holds.

(c) For k sufficiently large (for k > g(r+1)) we have the inclusion Iy;w) , C
I(M,n) (k> K(|M|,n,s)).

(d) For n > k-1(2) we have the inverse inclusion I(M,n) C Iy w .

Jloxazameavcmeo. (a) An element of L[A]" belongs to the ideal generated
by the operators of left multiplication by elements of L[AY!)].1f t/I(s) > q(k)
then AY'®) D M®),

(b) The inclusion Id(D) D Ip, is obvious. The converse inclusion for r >
h(s + 1) follows from Proposition 4.2.

(c) Suppose z € Id(m*). Denote the element m* by a new letter m’. Then
L[z] lies in the ideal generated by m’ and by monomials of degree not exceeding
G(s + 1) in the generators of A. Let 2’ be such a monomial. Now replace m/
by m” to obtain a monomial w (in generators of the algebra and in the letter m).

The operator L(w) is linearly representable by products of the form [ L(w;)
where the degree of each w; does not exceed h(s+1) (the alphabet consists of s
generators of the algebra and of m). We say that a monomial w; is of the first
kind if it contains a letter distinct from m, and of the second kind otherwise.
The number of monomials of the first kind does not exceed G(s + 1) — 1,
and taken together they contain not more than (h(s+1) —1)(G(s + 1) — 1)
occurrences of m. Thus we have not less than k — (h(s+1) —1)(G(s+1) — 1)
occurrences of m in monomials of the second kind.

An operator of multiplication by a monomial of the second kind is linearly
representable by a product of monomials of the second kind of degree not
exceeding h(2) (a monomial of the second kind includes the letter m and also
the letter corresponding to the element of the algebra to which the operators
are apllied). Hence we may assume that the number of operators of the second
kind is not less than

k—(h(s+1)—1)(G(s+1)—1)
h(2) '
Since the number of monomials of the first kind is not greater than G(s+1)—1,
there is an interval consisting of not less than

k—(h(s+1)—1)(G(s+1)—1)
h(2)(G(s+1) — 1)

operators of multiplication by monomials of the second kind, disposed succesively.|]
Thus for

k>n-h(2)- (G(s+1)—1)+ (h(s+1)—1)(G(s+1) — 1)
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we have the required inclusion Iyw , € I1(M,n).
(d) Observe that in transformation of expressions of the form

x - Ljw] - L(wy,)

where w; are powers of m, two symbols are involved: m and x. Hence assertion (d)[]
follows from the fact that the L-length of the algebra generated by elements x
and m is bounded by [(2). O

Let a number n exceed the degree of an identity valid in L[A]. Apply
proposition 4.6 and the swap lemma to obtain the following

Lemma 4.1. Suppose C' is a finitely generated graded Pl-algebra from a
good variety, M C C' is a finite set of homogeneous elements, such that for
any k the quotient algebra C'/M®*) is nilpotent. Then there exist a number H
and a finite set D(M) such that L[C] is linearly representable by elements of
the form tity---t;, where k < H, and either t; € D or there exists m; € M
such that t; = L(xn)L(x42) - - - L(x,;) where ( for a fixed i) all x;, are powers
of the same m;.

Boundedness of the L-length implies

Statement 4.7. Let all x, be powers of the same element m. Then the
product L(x1)L(x3) - - - L(x;) is linearly representable by elements of the form
L(y1)L(y2) - - - L(yx) where A < (1) and all y,, are powers of m.

Definition 4.3. An algebra C' has essentail height not greater than H
over a set M which is called an s-basis of C' if there exist a finite set D(M)
and a number N such that C is lineraly representable by elements of the form
Q(t1,...,t;) where @ € Mon,;, [ < N, and for any i either ¢; € D or there exist
m; € M u k; € N such that ¢, = mf, and the number of ¢t; ¢ D does not
exceed N. The minimal of these H is called the essential height. If for some H
we may assume D = & then M is a Shirshov basis of C. This is equivalent to

the following condition: M generates C' as an algebra.

Note that in the associative case we may set N = 2H + 1.
The theorem below follows from Lemma 4.1 and Proposition 4.7.

Theorem 4.2. Suppose C' is a finitely generated graded Pl-algebra from
a good variety, M C C' is a finite set of homogeneous elements. Then if the
algebra C' /M) is nilpotent for any k then C has bounded height over M.
Furthermore if M generates C' as an algebra then M is a Shirshov basis for C'.

3ameuanme. Theorem 4.2 holds even without the associativity condition

for 1-generated algebras. In this case, the condition Im; € M : t; = mf

in the definition of essential height must be replaced by the condition of
representability of ¢; in the form of a monomial in a single element of M.
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Corollary 4.1. Suppose C' is a finitely generated graded Pl-algebra from
a good variety, M C C is a finite set of homogeneous elements. The set M is
an s-basis if and only if every simple quotient of C' contains a non-nilpotent
image of an element from M.

Using the fact that simple algebras in good varieties are finite-dimensional,
we obtain

Corollary 4.2. Let 9t be a good variety such that any simple algebra
from 9 has no basis consisting of nilpotent elements. Let C' be a homogeneous
finitely generated algebra from M. Then C' has bounded height over some finite
set M.

In a number of works, asymptotical closeness of certain algebras to associativel]
ones is proven. In fact, what is proved is the property of a variety to be
«goody». In [44] and in [46] it is shown that [-length of finitely generated Jordan
and, respectively, alternative algebras is bounded. In [46] it is proved that
the algebra of left multiplications of an alternative or special Jordan finitely
generated Pl-algebra is a Pl-algebral. In the same work it is shown that for
a finitely generated alternative Pl-algebra of degree m, the condition of the
theorem holds if for M we take the set of words of degree not exceeding m?.
In [34] condition (4) is proved for finitely generated Jordan Pl-algebras, in [16]
it is established that a Jordan Pl-algebra of degree m such that all words of
degree < m? are algebraic, is locally finite. Thus we have

Corollary 4.3. (a) Suppose A is a finitely generated graded associative
(alternative, Jordan) Pl-algebra, M C A is a finite set of homogeneous elements
which generates A as an algebra, M) is an ideal generated by kth powers of
elements from M. Then if for any k the quotient algebra A/M® is nilpotent
then A has bounded essential height over M.

(b) Let B be an alternative or Jordan finitely generated Pl-algebra of
degree m. Then B has bounded height over the set of words of degree < m?.

Statement 4.8. Let B be the Cayley — Dickson algebra over an arbitrary
field. Then some word of length not exceeding 2 in the generators of B is non-
nilpotent.

This proposition, Theorem 4.2 and Theorem 4.1 imply

Theorem 4.3. Suppose B is a relatively free alternative algebra, M is a
some set of (non-associative) words in its generators. Then M is a Shirshov
basis (an s-basis) for B if and only if M is a Shirshov basis (an s-basis) for
the quotient of B by the associator ideal.

L'a Jordan algebra is called special if it embeds into AT for some associative algebra A,
and is called a Pl-algebra if it satisfies an identity not valid in the free special algebra.
An alternative Pl-algebra is an alternative algebra with an identity not valid in the free
associative algebra



On rings which are asymptotically close to associative rings 65

Combinatorial-asymptotic notions and results can be extended to good
varieties. The complexity of a variety 91 is defined as the class of simple algebras
belonging to 901.

Theorem 4.4. Let M be a good variety. Then the following holds.

(a) The essential height of a representable algebra from 9, if it exists, is
equal to the Gelfand — Kirillov dimension of the algebra as well as to
the essential height and the Gelfand — Kirillov dimension of its algebra
of left multiplications, and the dimension in question is finite.

(b) Any finitely generated algebra from 90t satisfies the strong algebraicity
identity as well as the natural analogue of the Capelli identity. Hence its
algebra of right multiplications also is PI.

(c) The radical of a finitely generated algebra from 9t is nilpotent (an
analogue of Braun theorem).

(d) Ifevery simple algebra from 9 has center then a complete analogue of the
theorey of Razmyslov polynomials is valid. In particular, a localization of
a prime algebra by the center is finite-dimensional over the center, and a
prime algebra embeds into an algebra finite-dimensional over the center.
The Gelfand — Kirillov dimension equals the transcendence degree of the
center.

(e) Homogeneous components of identities form an algebraic ideal which
satisfies the identity x"~! — 2™ = (.

Moreover, as was established above, finite-dimensional algebras from good
Kurosh varieties satisfy the height theorem.

Here we do not present the proof of Theorem 4.4 as well as the definitions
of some involved notions since the situation is quite similar to the associative
case. All argument concerning swap immediately extends to good varieties.

The notion of a good variety generalizes to (multibased) algebras of arbitrary
signature. An operator D is called elementary if there exists a monomial M of
degree n + 1 and constants ¢y, ..., ¢, € B such that D(z) = M(z,cq,...,c1).
An operator algebra for a finitely generated algebra has bounded length if it is
generated as a vector space by products of elementary operators in a bounded
number.

Definition 4.4. A variety 91 is called not bad if the following conditions
hold:

(1) for a finitely generated algebra from 9, the operator algebra also is
finitely generated;

(2) an operator algebra for a finitely generated algebra has bounded length.
A not bad variety is called good if in addition to (1), (2) it has the following
property:
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(3) the operator algebra for a finitely generated algebra from 90 is a PI-
algebra.

Bameuanue. For an algebra A (of arbitrary signature) satisfying C,, there
exists the maximal locally nilpotent ideal [20] but the «Bair chain» stops at
the nth step. This means that the algebra includes the maximal locally solvable
ideal By(A), the quotient A/By(A) includes the maximal locally solvable ideal By (A),}
similarly the quotient A/B;(A) includes By(A) and so on. Furthermore we have
B,,(A) = 0 (see [21]). For good varieties, the Bair radical coincides with the
nilradical (and with the Jacobson radical), and B;(A) = 0.

4.1. On Burnside-type problems. It is of interest of describe Shirshov
bases for Lie and Jordan cases. This problem reduces to the case of varieties
generated by simple algebras.

It is known that a simple Jordan algebra is either an algebra of a quadratic
form or a non-special algebra HCj; or an algebra of matrices with operation
AoB = AB+ BA or the algebra of symmetric matrices with operation o. In the
first case the generators may be nilpotent but then all words of length 2 are non-
nilpotent and the Shirshov basis must consist of words having length 1 and 2.
In the latter case the set of monomials is a Shirshov basis if for any regular
word u of length not exceeding the matrix size n there exists a monomial
in this set such that after removing parentheses the leading coefficient is wu.
Hence to improve the estimates in Ye. I. Zelmanov’s result [16], it suffices to
calculate in HCs. In any case the bound for the degree of words does not
exceed max(m/2, const). Note that since various bracketings are possible, the
above condition for the set of Jordan (Lie) monomials is sufficient but not
necessary. To all appearance, it may be weakened. In this context the question
arises on description of monomials which are Shirshov bases. Theorem4.3
provides that it suffices to check only Kurosh condition. Seemingly the latter
has some connection with tensor ranks of expressions. It would be of great
importance to clarify this connection.

It is of interest to compute the lattice of ideals of identities in prime algebras
for PI-rings close to associative ones and to obtain theorems on finiteness of
the lattice for as general situation as possible.

It is known that all simple PI (), §)-algebras are associative. So the question
arises:

Is the variety of PI (\,¢)-algebras good?

It is easy to see that a finitely generated Engel — Lie algebra generates a
not bad variety. Is it possible to prove directly that it is good (i.e., that the
algebra of multiplications is PI)? For this, it suffices to estimate from above
the growth order of codimensions as o(n)!. Then we shall obtain another proof
of nilpotency of these algebras (a well-known result by Ye. I. Zelmanov).

Also the following questions arise:
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Is any algebra which is good from the left also good from the right? Is
this valid in zero characteristic? Is the class of not bad (good) varieties in the
finitely generated case closed under tensor product? Is this true in the general
case?

Since a tensor product of associative Pl-algebras is also PI, the left multiplication]]
algebra in a tensor product of good varieties is PI. Moreover it is obvious that
the tensor product of algebras A and B with bounded L-length has bounded
L-length as well; and if the algebras L[A] and L[B] are finitely generated then
L(A ® B) is finitely generated as well. However is it true for a free object of
the variety Var(A ® B)?

When solving the Kurosh problem, we imposed the condition of absence of a
nil-basis in a simple algebra. It does hold in associative, Jordan and alternative
cases. On the other hand, a finite Lie algebra with a nil-basis generates a good
variety. It is of interest to obtain any general criteria of absence of a nil-basis.
Is it possible in Corollary 4.2 to replace this condition by a weaker condition
of absence of simple nil-algebras?

§5. Finite-basedness problems

Dealing with a wide class of algebras, it is difficult to perform specific
calculations, so we will use only abstract tools.

Definition 5.1. Define the complexity of a variety as the set of prime
algebras belonging to it. Each prime algebra is considered up to the variety
generated by it. Order complexities of algebras as follows: A; < A; means that
Var(A;) C Var(4;).

The complexity type of a variety 9N is the family of sets of prime algebras
subordinate to 9. A set of prime algebras {A;} is called subordinate to the
variety M if M contains an algebra including &;A; and having a nonzero non-
associative monomial which includes an occurrence of some element from A;
for each 1.

In contrast to the associative case, for arbitrary 91 the set of complexities
of prime algebras is, in general, only partially ordered. However Martindale’s
theory provides that this set satisfies both ACC and DCC if some rarefied
identity holds.

Similarly to the associative case, we deal with the sets of algebras {A;}
(some of them may be identical) connected by means of the radical. Two
complexity types T and Ty for these sets of algebras will be ordered as follows.
If a prime algebra A; is contained both in 77 and T3, decrease the multiplicity
of its occurrence by 1 to obtain the sets of algebras 7] and T3 which have to
be in the same relation as 77 and 7T5. Thus it suffices to order the sets without
common elements. In this case we have T; < T} if and only if each element of
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T; is smaller (relative to <) than some element of 7). The obtained relation of
the sets of algebras is a relation of partial strict ordering. Replacing any of A;
by any set of strictly smaller algebras decreases the complexity type.

In this section, the ground field has zero characteristic. Any finite-dimensionall]
algebra, if the contrary is not specified, is assumed to be irreducible, that is, it
does not include two nonzero ideals with zero meet. All varieties are assumed
to be structurizable.

The main aim of this section is to prove Theorem 1.1.

5.1. The Martindale centroid, the rank theorem and first Kemer lemma.
We start with considering prime components. For use in the sequel, we have
to introduce two new essential restrictions on the variety in question, namely,
to pass to structurizable and convenient varieties (see definition 1.1).

Let 9 be a prime Pl-algebra of arbitrary signature 2. Then its Martindale
centralizator is a finite-dimensional algebra over some field, of dimension equal
to the maximal degree of a Capelli polynomial non-vanishing on this algebra.

Let R be a prime algebra of signature (). Recall the construction of the
Martindale centroid. 1t is defined as the injective limit of equivalence classes
of morphisms

lim { Homp(Z, R) [ 0 # I < R}.

Equivalence of pairs (¢, ;) and (19, I) means coincidence of restrictions
of ¥y and 1, to the meet I; N I. The sum of morphisms 1; and 9; is defined
in a natural way, and the product is the composition 1; 0 1);. So we obtain the
structure of a commutative ring C'(R).

The central closure Q(R) is the set of formal sums > u;r; where r; € R,
with the natural equivalence relation and naturally defined operations.

Theorem 5.1 [42]. Suppose C'(R) is a commutative ring with unit, Q(R) =}
C(R)R, any nonzero D-submodule in Q(R) intersects R in a nonzero ideal,
and for any D-homomorphism x of a nonzero D-submodule J from Q(R) to
Q(R) there exists an element ¢ € C(R) such that c¢j = x(j) for any j € J.
If J is a large D-submodule in Q(R) then the element c is uniquely determined
by the homomorphism Y.

A submodule M of a module P is called large in P if any nonzero submodule
in P has nonzero meet with M.

Another definition of the Martindale centroid may be given using the
injective envelope (see [42]). The central closure of a prime algebra A is constructed]]
as the injective envelope of A as a D(A)-module; here the ring of D(A)-
endomorphisms of this module occurs to be a field such that D(A)-endomorphisms|]
of A embed into it. This field is called the Martindale centroid.

Suppose a polynomial F(¥,xy,...,x,) is multilinear and skew symmetric
in variables z;. Substitute e; — x; and §' — § where ¢;,y;. € A. Now for each
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i, fix ¢ and all e; except e; and put ¢;(e;) = F(¥,e1,...,e,) and p;(e;) =0
for j # i (no confusion because of skew symmetricity of F).

We have obtained a non-associative analogue of matrix units. Instead of
basic units F;; we have e;. Instead of the position * between facings F;; * Ey,
for substituting the matrix unit £;), (substituting other matrix units results in
zero), there are positions in the polynomials ;.

Nonvalidity of the system ), means «essential linear independence». Let R bel]
a prime algebra such that C,,,; does hold but C), does not. Then R embeds into
a central simple algebra R’ of dimension n over a field, generating the same
variety (see, for example, [62] or [42]). The precise formulation is as follows.

Theorem 5.2 (on rank [42|). Let V' be a subspace in a prime algebra A
of signature Q. If rank(A, V') < oo then for the central closure QQ(A) we have

dime(a) C(A)V = rank(A, V) — 1.

The rank rank(A, V) of a vector space V relative to an algebra A is the
least positive integer k such that V' satisfies all Capelli identities of order k.
We say that V' satisfies all Capelli identities of order k if any polynomial
F(zy,...,2,9), multilinear and skew symmetric in a set of variables {z,
..., g} vanishes on A after replacing z; by elements of V' skew symmetric in
a set of k variables.

The proof of Theorem 5.2. We present this proof because we will use similarf]
argument in the sequel. Suppose a = C (v, ..., v, 2) # 0, v € A, G(z,,1)
is bilinear in x and y. Put

a;(u) = Cp(vy, ..o, Vi1, Uy Vg1, - vy Upy 2.

Using Lemma 3.3 on absorption of a variable (equation (5)) we get

n

g(ai(u),a,f) = Zg(ai(vj),aj(u),f).

Jj=1

If u = vy and also k # i then a;(u) = 0 by skew symmetricity of the Capelli
polynomial. If & = i then a;(u) = a;(v;) = a. Hence the preceding equation
implies the identity
g(ai(u),a,f) Eg(a,ai(u),f). (11)
Since the algebra A is simple for any g,a € A\{0}, n € N, there exist
o € Id(a)" and a nonzero multilinear polynomial G such that G(g,a,t) # 0.
Together with the equation (11) which enables to transfer occurrences this
easily implies that the operator ¢;(a, u) replacing a by a;(u) is well defined and
does not depend on a specific recording. Moreover this operator belongs to the
field of D(A)-endomorphisms of the central extension of A.
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To prove the rank theorem, it suffices to establish the equality

n

b=u— Zci(a,u)vi = 0.

i=1

However for any polynomial H bilinear in the first two arguments we have

H(b,a,t) = H(u,a)— ZH(vi,ci(a,u)a, t) = H(u,a)— ZH(vi,ai(u),f) = 0.

=1

The last equality holds by virtue of the identity (5) from Lemma 3.3
(taking u for the variable z). The rank theorem is proven. O

The properties of the Martindale centroid and of the central closure imply

Statement 5.1. Let A € 9 be a prime algebra which satisfies the system
of Capelli identities of order (n+ 1) but does not satisfy the system of Capelli
identities of order n. Then A embeds into an algebra B, finite-dimensional over
an associative-commutative ring K, so that for any a € D(A) there exists a
A(a) € K such that for any polynomial F(y,x1,...,x,), multilinear and skew
symmetric in xy, ..., x,, we have

a(z;)—x;

> F(§a,... ) = Na) - F(4,x1,..., ).
=1

Here the ring K is generated by these A(a) and is Noetherian.

Joxazamenavcmeo. In view of properties of the Martindale central closure
it suffices to ensure that if a polynomial Fj(Z,2) is multilinear and skew
symmetric in the sets of variables z1,...,x, and z1,..., 2z, then the operation

determines a morphism of D(A)-modules (from D(A) to the operator algebra)
generated by the values of F' on the T-ideal of A, generated by C,,. The latter
follows from Lemma 3.6. [

Corollary 5.1. The lattice of T'-prime ideals in a finitely generated algebra
of arbitrary signature, satisfying a system of Capelli identities satisfies ACC
and DCC.

In some cases it suffices to consider only operators of multiplication by
elements of A.

Let {e;} be a basis of the ring R’ considered as a vector space. Then the rank
theorem implies the existence of a polynomial F(xy,...,2,,¥), multilinear
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and skew symmetric in the set of variables {z1,...,x,} and such that ¥ =
Fley,... e, t) # 0. Since R’ is simple, any element = € R’ belongs to the kth
power of the ideal J generated by ¥, and there exists a linear combination of
monomials containing k occurences of V.

Let now R be a representable algebra from a structurizable good variety.
It can be embedded into a finite-dimensional algebra R’ such that Var(R') =
Var(R). Moreover R’ decomposes into the sum of its prime components and the
radical. Here every prime component R is of dimension n; equal to the maximal
degree of the Capelli identity not valid in R;. Then to R] there corresponds
some ;.

Consider an arbitrary polynomial G and its specializations in R’ (the
variables are replaced by elements of prime components and of the radical).
Suppose a specialization H of a polynomial G does not vanish and to a variable
y; there corresponds an element z; of R;. For any k € N, such a specialization
is linearly representable by specializations of polynomials of T(G) obtained by
substitutions of the form y; — M; where M; is some non-associative monomial
and an element WU; replaces k variables in which M, is multilinear. Since the
specialization H is nonzero, all these specializations of the new polynomial
from T(G) cannot vanish.

Furthermore if for any ¢ the specialization H contains an element from R;
then the basis elements {e;;}j",;_; occiring in ¥; can be joined into a single
set and alternated. Since replacing e;;, by e;;, for ji # jo results in zero, the
result of alternation coincides with the original specialization and is not zero
(the argument is similar to that of A. R. Kemer [27]).

Since we have substituted £ terms ¥; into M;, we can perform alternating
relative to k sets. (In the sequel, we will take k sufficiently large.)

Summing up the above, we obtain

Lemma 5.1 (on refinement). Let a polynomial g take a nonzero value
g for some specialization involving all prime components R,. Then for any
arbitrarily large ¢ € N there exists a consequence of T(g) which is obtained
from g by replacing variables by nonassociative monomials and alternating in q
sets of b(A) variables, and has the same value.

Thus for convenient structurizable algebras of arbitrary signature we have

Lemma 5.2 (Kemer’s first lemma). Let 9t be a structurizable convenient
variety of arbitrary signature, A € M, AW is the quotient of A by the ideal
generated by the ith prime compoment.

Then either Var(A) = Var(|J A®) or b(A) = 3" dim(A®).

IfT is a T-ideal in A then either T'(); AV = 0 or b(A,T) =Y dim(AD).

3amevanue 1. Similar argument is used in the proof of the rank theorem.
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3ameuanue 2. The proof of the non-associative analogue of second Kemer
lemma differs fundamentally from the associative case. The point is that in
the non-associative case the interaction between prime components and the
radical may have different properties. In particular, any power of a composition
of elements from operator algebras D(A®) with distinct i can have nonzero
action on the radical (for instance, in the case of Jordan algebras). Hence we
cannot apply argument from [27| which uses moving a mixed element into a
monomial such that all other elements of it have semisimple specializations
only.

Since an explicit «chasing» the radical as in A. R. Kemer’s work is rather
difficult here, we use a more abstract and complicated method. We will show
that internal traces in the structurizable case are defined invariantly and do
not depend on the way of recording. This is the main content of this section.

5.2. Structurizable varieties. second Kemer lemma. The aim of this subsectionll
is construction of internal traces in an extremal ideal and proof of their invariance.|]
Also we present here the main technical results of the section, in particular, a
non-associative analogue of second Kemer lemma.

Let A be a finite-dimensional algebra with generators aq,...,as from a
structurizable variety 9, A = A/J(A). Put

A(q) = Axm Fl1, ..., 0,) /01

where © = 1d(6y, . ..,0,). This is the «free extension of the semisimple part of
A by the radical with the nilpotency degree g». The construction is similar to
the associative case.

Suppose D is a Kemer diagram,

k+2 d

A= JNuln
i=1 j=1

is the corresponding set of variables, and
k > max (k(A),c(A)), d=d(A), |Aj| =0b(A),

|A7] = b(A) + 1. To each polynomial f multilinear in variables from A there

corresponds a polynomial Sy (f) from S(D) obtained by alternating in the sets

A} and AJ. Moreover for some f the polynomial f' = S(f) does not vanish.
We call the T-ideal consisting of polynomials of the form Sx(f) extremal.
Suppose g € S(D). Then g can be represented in the form ZSAgAvﬁxi

where v; are some monomials which replace variables. We will use recordings
of g, or expressions of the form
9=>_ S\ogi
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where alternated are the words corresponding to variables from A.
For any recording of this form and for any element a € A define the

expression
3(a)(g) =Y D Sawg
ik

where {v}, } is the set of words corresponding to variables from the set A} for
the ¢th term.

Results of Subsection 3.2 imply that the operators d(u;) commute.Moreover
the result of applying the operator d(a) does not depend on the choice of
the small subset A} in A which is used to determine (by substitutions) the
operator d(a) (see Lemma 3.6 and Proposition 3.3).

Our aim is to establish the invariance of these operators, that is, their
independence of recordings of an element g € S(D) from the extremal ideal to
which the operators of the form d(a) are applied. For this, it suffices to check
that a recording of the zero element turns into a recording of the zero element.

In fact, suppose

1
AV Vi

ZSA(i)gi =g=h= ZSA(j)hj.
Then
> Saigi = Y Sanhy

is a recording of the zero element g — h, and if 6(a)(g) # d(a)(h) then d(a)(g —
h) # 0. Thus the recording of the zero element has turned into a recording of
the zero element.

We shall require some auxiliary statements and constructions.

A recording Sy g; will be called a letter recording if all variables from the
set A are replaced by words of length 1, that is, all alternations involve single
letters.

Semisimplicity of the group algebra for the symmetric group implies

Statement 5.2 (on letter alternators). (a) Let f be a sum of multilinear
polynomials of the form Sx(f;) where all alternations are in single letters.
Then f can be represented in the form

f= (Z OéjSAj) (h)

where «; € K and Sy, is the operator of alternating in sets of variables
corresponding to columns of the diagram D.
(b) Moreover Sy,(f) # 0 for some j.
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Joxasamenavcmeso. It suffices to observe that in the group algebra, the

elements )

(b+ 1)lapli+2

are idempotents and any linear combination of these does not vanish when
multiplied by an element suitably chosen among them. n

Sh,

3ameuanue 1. The above statement is a fact from tensor algebra and
holds for any algebra of arbitrary signature over a field of zero characteristic.

3ameuanme 2. Semisimplicity of the group algebra results in the following
fact: if the alternation procedure can be performed once then it can be repeated
unboundedly. Lemma 5.3 on letter thinning may be considered as a far-reaching
generalization of these considerations. Perhaps this approach enables to establish]
PI,-properties for good structurizable Specht varieties, that is, to deduce
from the Specht property local representability by constructing 7T-ideals such
that after any T-space operation we can return to 7T-ideals represented in a
convenient form.

Proposition 5.2 and results of Subsection 3.3 imply

Corollary 5.2. The space of polynomials which are letter alternators correspondingf
to a Kemer diagram D is representable.

The following result is rather important:

Lemma 5.3 (on letter thinning). Suppose A is a finite-dimensional algebral}
from a structurizable good variety and g = Y . Sy ¢;. Then any value of g in A
is linearly representable by values of letter alternators from T (g) corresponding
to a Kemer diagram D.

3ameuyanme. We emphasize that this statement relates to T-spaces and
moreover that we substitute elements from a structurizable representable algebra, |}
that is, we substitute semisimple and radical components separately.

Hoxasameavcmeso. In view of Proposition 5.2 it suffices to verify our assertionfi
for a single term S, ¢g;. We may assume that g = Sy g; and g is multilinear.
We argue as in the proof of Lemma 5.2. Consider an arbitrary specialization
of variables such that g # 0. To this specialization, attach the following system
of substitutions M; — z;.

e To a specialization of a variable x; to a radical element there corresponds
the identity substitution z; — z;.

e To a specialization of a variable z; to a prime component A® of A there
corresponds a substitution of the form M; — x; where M; is a non-
associative monomial containing a sufficient number of occurrences of a

monomial ¥;, multilinear and skew symmetric in some set of n; variables,
n; = rank(A®).
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e All variables in the monomials ¥; are distinct.

We will call a variable passive if it occurs in a (non-associative) word v;
which replaces a variable contained in a large set corresponding to A; otherwise
the variable is active. Substitutions to small sets of active variables create
multiplications by traces and the structure of a Noetherian module.

Since the specialization is fixed, to each of the original variables there
corresponds either a radical specialization or a prime component A, and thus
to each U, there corresponds some component A,

Note that for any specialization with nonzero result there is a small set of

variables (see definitions 1) which contains elements from each prime component R..J]

Hence we can find a sufficient number of sets of active variables A; such that

e cach of these sets A; is a joint of some sets of n, variables, relative to
which W;; is skew symmetric;

e for each A; the set of prime components of A which correspond to sets
from W,;; coincides with the set of prime components of A taken once;

e thus any set A; consists of b(A) variables.

Now we alternate relative to all sets A;.

Thus we have produced a sufficient supply of letter alternators corresponding]]
to small sets of variables and consisting of active variables. The value of the
resulting polynomial equals the originally fixed specialization for the original
polynomial g by virtue of construction of ¥; and results of Subsection 5.1.
(If a variable specialized in A® gets to the nest corresponding to A®) where
k # i, the result is zero, hence alternation does not change the value of the
polynomial for the given specialization.)

The procedure of turning large sets of variables into letter sets is similar to
the procedure of thinning, used in the proof of Lemma 3.9 and Proposition 3.11.
Let a polynomial f be multilinear and skew symmetric in a set of variables
{yl}fg and this is preserved after adding a variable z, and let

T—Yi3 Yi— T

b(A)
f=r=31 . (12)

Then the polynomial f’ is multilinear and skew symmetric relative to the
b(A)

set {o} U{yitisy -

Consider a system of small sets A; (see definitions in Subsection 3.1).

Any of these A, is a letter alternator, and the variables belonging to it do
not appear in large sets.

For any radical specialization appearing in a large set, add the corresponding
variable to some of small sets and use relation (12). Now the original value of
the polynomial G will be represented as the sum of a value of a letter alternator
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(which we have to construct) and a value of a polynomial from T(G) such that
large sets involve a smaller number of its specializations.

It suffices to observe that if words corresponding to large set do not include
radical specializations then the polynomial vanishes because the dimension of
the semisimple part equals b(A) and is less than the number of elements in the
large set relative to which we alternate. O

3ameuanme. Instead of applying proposition 5.2, we may construct for
cach Sy@»g; a sufficient number of sets of active variables A;, disjoint for
distinct ¢, and deal with each item separately. (Is a variable passive or active,
this depends on the choice of the item g;, this is the matter of fact.) The
fact that dealing with the previous items will multiply the subsequent ones
is not dangerous because «multiplied> items are equivalent for the sequel.
The reason is that the sets A; are disjoint, and the procedure of alternation
changes positions of variables inside these sets (these variables will not be used
at subsequent steps of «splitting-out») as well as positions of variables having
radical specialization, whose number is bounded by ¢(A) — 1. The number
of variables necessary for constructing the required number of sets of active
variables is estimated by 2r(b(A) + 1) (d(A) + 2).

Suppose now
h=>Y Syo(hi)=0
i=1

and

s T

= 25(a)5/\(i>(hi) # 0.

i=1

AV —Vik

So h, is an obstacle for correctness of the definition of the internal trace
(for the element a). The idea of the proof is to construct a nonzero element
h! € T(h,) (without any substitution into a) having a sufficient number (2)
of active small and d(A) large letter alternators. Then the operator d(a) may
be «transferred» to these small alternators not changing the result, and then
applying of this operator amounts to some substitutions using these variables,
that is, to a T-space operation. This results in h], € T(h') and A’ € T(h) =
T(0) = 0. A contradiction with A, # 0.

Now  apply the lemma on  letter  thinning to  each
d(a)Sye(g;) occurring in this sum. Then we obtain a nonzero polynomial

h € T(h) representable in the form

ha =7 Y 6(a)Sxen (hiy)
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where all alternators are letter ones and for each h;; the number of letters
occurring in large alternators equals (b + 1)d.
Here the corresponding polynomial h vanishes:

h - Z Z SA(ij)(hl'j) - 0
i=1 j

The number of h;; can be estimated by examining the proof of the lemma
on letter thinning and does not exceed ¢?. Call a variable passive if it occurs in
some large alternator, and active otherwise. The number of passive variables
is easily estimated by 7(b+ 1)dc?. In this way, we can provide any number of
small alternators consisting of active variables.

Furthermore we assume additionally (for the sake of «transfers») that for
any Sp(h;;) there exists a small set of alternated active variable (letters) {z}
and a small set of alternated monomials {vi} such that no z, occurs in any
U3.

In all h;; we may fix the same set of active variables which form a small
alternator, and define using them the operator d;(a). Since

h=>Y "> Syin(hy) =0
i=1 j

and the range of d;(a) is included in the T-space and adjusted for all terms,
we have d;(a)(h) = 0. On the other hand, by virtue of argument concerning
«transfer» (see Proposition 3.3 and Corollary 3.4), the difference 6;(a)(h;;) —
d(a)(hi;) lies in the ideal H(D;) where the diagram D is obtained from D by
extending the small column to the large one. Hence 6;(a)(hi;) — d(a)(hi;) =0
and consequently h, = d;(h) = 0.

We have proved vanishing of the obstacle for correctness of the definition
for the internal trace. Thus we have established the basic

Lemma 5.4 (on internal traces). For convenient varieties, the operators
of the internal trace are defined correctly, that is, independently of a recording
of the element.

Similarly, the «transfer» procedure enables to prove

Statement 5.3. Let the radical component Rad(a) of an element a be
zero. Then ¢(a) amounts to multiplication by the trace of the corresponding
operator.

oxazameavcmeo. The assertion is obvious if all specializations of the
small set of variables involved in the definition of d(a) are semisimple. On
the other hand, by Proposition 3.3 the substitutions forming é(a) can be
«transferred» from one set of variables to another. Lemma on refinement
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enables to provide that the number of small sets exceeds ¢(A) and for any
specialization of variables all specializations in some of these small sets are
semisimple. O

Proposition 5.3 immediately (without use of lemma on letter thinning)
implies
Corollary 5.3. If R(a) = 0 then h, = 0.

The main lemma 5.4 implies

Corollary 5.4. If 9 is a convenient variety such that all its varieties are
representable then the Hilbert series of any relatively free algebra from 9 is
rational.

Joxazameavcmeo. The T-unean J = T(S,) is a Noetherian module over
internal traces. Its Hilbert series H is rational, and Hy = H; + H,/;. The
algebra A/.J is relatively free, and moreover either b(A/J) < b(A) or b(A/J) =
b(A) and d(A/J) < d(A). The decreasing induction completes the proof. [

Thus to prove rationality of Hilbert series it suffices to show local representability. |}

Definition 5.2. An ideal J C S, is called closed if it is closed under
operators of internal traces d(a). Let J be an arbitrary ideal. Then J° is a
maximal closed ideal included in J.

3ameuvanme. The notion of closedness is naturally defined also in the

case b(A,J) = b(A) for ideals lying in the spaces H,. The corresponding
constructions are presented in Subsection 5.2.1.

If J is a T-ideal then J° is a T-ideal as well. Moreover
d(A/JO, J) < d(A) =d(A,J).

Suppose I = (;_, B; N R(A)A)-1,
Proposition on letter alternators implies
Statement 5.4. If J C I and J is a nonzero T-ideal then J° # 0.

Lemma on refinement and proposition on letter alternators imply

Statement 5.5. (a) Suppose g € T (Sa(f)) and g‘A # 0. Then there
exists h € T(g) such that Sxy(h) # 0.

(b) Let Q be the T-subspace (J; Sa(f). Then there exists a closed T-ideal
I' C U, Sa(f) such that Q° = QNT is a closed T-space.

Recall that in this section T(f) denotes the T-space generated by f. Hence
our argument retains for T-spaces, and we may reinforce the result of Corollary5.4.J]
Theorem 5.3. Suppose N is a convenient variety such that all its subvarietiesj
are representable. Then the Hilbert series H¢ of an arbitrary T-space () in a
relatively free algebra from 9 is rational.
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Joxasamenavcmeso. Let () be a T-space in a relatively free finitely generated
algebra B € 9. We have to show rationality of Hgy. We may assume that
M = Var(B). Let A be a finite-dimensional algebra such that Var(A4) = 9.
By induction argument, we may assume that A includes no two nonzero ideals
with zero meet.

Suppose A is a set of variables, corresponding to a Kemer diagram D,
I = UgT (SA(g)), Q' = QN I. It suffices to prove rationality of H, so we
may assume that = @Q'. It remains to apply assertion (b) of Proposition 5.5
since the Hilbert series Hgo is obviously rational. Hence we may pass to the
quotient B/I" and complete the proof by decreasing induction. Il

Corollary 5.5. The Hilbert series of any T-space in a finitely generated
relatively free associative Pl-algebra is rational.

The proof of Theorem 5.3 implies

Corollary 5.6. Let 91 be a convenient variety such that all its subvarieties
are representable. Then any ascending chain of T-spaces in a finitely generated
relatively free algebra from 901 stops.

So it remains to consider problems related to finite-basedness and local
representability, for T-ideals.

Enrich an algebra A by the operation of taking the trace d.(a) as well as the
traces of operators from the corresponding operator algebra D(A). Consider
the quotient by the ideal generated by elements (6(a) — dc(a))(f) where f €

Sa(g) to obtain the algebra A. We have

Statement 5.6. Any algebra from a variety with extended
(by d-type operators) signature, generated by the algebra A is a Noetherian-
type algebra. The variety is structurizable. The natural morphism A — A is
an embedding.

Bameuanne. The extension of the operator algebra D(A) requires in generall]
an infinite number of operators. However we can ensure that by Shirshov
height theorem and lemma on tree 3.8 it suffices to use only a finite number
of operators.

Let I be the intersection of ideals generated by R; and (C(A) — 1)th power
of the radical. Recall that the algebra A is irreducible and involves a nonzero
polynomial f taking values only in /. We may assume that f is multilinear, and
any specialization of variables with nonzero result requires (¢(A) — 1) radical
specializations and for each semisimple component, a specialization connected
with it.

Suppose I' is a nonzero T-ideal, I' C I. Then there exists a nonzero T'-ideal
'Y € T generated by polynomials of the form { g = Sx(f) | fe I‘} and closed
under the operators d(a).



80 A. Ya. Belov

Suppose a; € R.. Apply to a; the refinement procedure, that is, represent a;
as a linear combination of monomials M;;(V;,¥) containing ¢(A) occurrences
of ¥;. Take an arbitrary set of specializations for g and apply to g the product of
d(a;). Then using ¥; and elements from radical specializations construct ¢(A)
sets of b(A) 4+ 1 elements each. Alternating in these sets produces additional
terms where the radical specialization is inside a;, as well as terms where the
content of W, is inside W; (i # j). These additional terms vanish.

The reason is that displacement of a variable whose value belongs to A®
inside a monomial in elements of A% for k # i results in zero. Moreover, the
result of applying d to a radical element from f € I'V is linearly representable
by elements of the form > f;6; where f; € I'? involve strictly less than ¢(A) —1
radical specializations, hence each of these polynomials vanishes. See a similar
argument in 27| for the case of absence of mixed elements.

Since the T-ideal I'Y is closed under multiplication by operators § then the
corresponding ideals in the original and the enriched algebras coincide. Thus
we have proved a non-associative analogue of second Kemer lemma.

Statement 5.7 (the second non-associative Kemer lemma).
If there exists a nonzero T-ideal I'y C I then d(A) = c¢(A) — 1.

Corollary 5.7. The ideal H(D) corresponding to the Kemer diagram D
of an algebra A is representable.

Corollary 5.8. If there exists a nonzero T-ideal 'y C I then there exists
a faithful representation of the algebra such that internal traces coincide with
external ones.

5.2.1. The spaces H,. The relative form of second Kemer lemma. Let
I' be a T-ideal in the algebra A. For it, define relative extremal diagrams,
Kemer diagrams, parameters b, d and k and all other constructions from the
beginning of 3.

If I' € () R; then by the non-associative analogue of first Kemer lemma 5.2
we have b(A,T") = b. Such T-ideals are of main interest for us.

Let S, be an alternation operator related to a diagram D, including r large
and not less than &k + 2 columns. Here r < d(A).

Definition 5.3. The space H, is the maximal T-ideal I" such that d(I", A) =
r and b(I';A) = b(A). Set H. = H, N Sp,(A) where Sp_ (A) is a T-ideal
generated by polynomials of the form Sy (f), here A, is the set of variables
corresponding to the diagram D,..

In other words, alternation in the set of variables corresponding to a diagram
which has greater number of large columns than D, and not less than k + 2
small columns, being applied to an element of H, results in zero.

The correctness of the definition is obvious since the joint of any family of
ideals with this property retains it.
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Proposition 5.5 implies the important
Corollary 5.9. If ry <ry then H,, N Sp, (A) =0.

The spaces H] have the same properties as the extremal ideal I, and the
analogues of the results of the above parts. The formulations are below.

Recall that a space S C B is representable in an algebra B if there exists
a morphism B to a Noetherian-type algebra, such that its restriction to S is
an embedding.

Statement 5.8. Let A/Sp, ., (A) be an algebra.
(a) The space H, is representable in A/Sp,,,(A).
(b) The space H, contains no obstacle for representability of A/Sp,  (A).

Jlokasameavcmeso. Assertion (b) is a reformulation of assertion (a). Let us
prove (a). Let A’ be the quotient of A by the ideal generated by (6(a)—0e(a))(f)
where f € H/ for some r. Then in view of the above, the natural morphism
A — A also is an embedding and the analogue of Proposition 5.6 holds.

Note that the space H and its image in A/Sp,,,(A) are isomorphic. The
same is true for extended algebras. O

The basic lemmas for the relative case are proved similarly.
This results in the following statement.

Statement 5.9.

(a) The spaces H|. are closed under multiplication by internal traces.

(b) If b(A,T) =b then T' C € H..

(c) Suppose I' is a T-ideal, I' C H] and b(A,T") = b. Then d(A,T") =r.

(d) For any nonzero T-ideal I' C H] there exists a closed T-ideal 0 £ CT'.
Also there exists a polynomial h € I such that Sp,_(h)#0.

(e) Suppose g € H|. Then any value of g in A is linearly representable by
values of letter alternators corresponding to the diagram D, and applied to
elements of T'(g) € H).

Consider the quotient of A by the ideal generated by elements of the form
(6(a) — be(a))(f) where f € H] (r=1,...,d(A)). Denote it by A’. Again the
algebra A embeds into a Noetherian-type algebra A’ which generates (as an
enriched algebra) a structurizable variety.

Now we formulate a relative analogue of second Kemer lemma.

Lemma 5.5 (second Kemer lemma for H!). Suppose the projection of a
T-ideal I' to the algebra A(q — 1) is zero and to A(q) is not, and furthermore
b(A,I') =b. ThenI' C H] n d(A,T) =gq.

Since the proof is similar to the absolute case, we do not present it.
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5.2.2. Test algebras. In this subsubsection we reduce a finite-dimensional
algebra determining a variety, to some canonical form. This procedure is related
to constructing the algebra A when proving local representability of rings as
well as algorithmic solvability of the problem of identity inference.

The next proposition specifies the results of Proposition 3.6 for the structurizable]]
case. It follows from the above considerations.

Statement 5.10. (a) If 9 = Var(A) is a Kurosh variety then the space
K (A, D) is representable in any quotient algebra A" = A/J. Furthermore for
the natural morphism of A" to the «extended» algebra 121\/ J, , Its restriction to
K(A, D) is an embedding.

(b) Sa(F(A)) ~ Sa(F(K1(A,D))) where F(B) is the space of values of
polynomials on B.

The space K (A, D) is naturally isomorphic to the space of letter alternators
corresponding to the diagram D.

Statement 5.11. To any closed T'-ideal M there corresponds a closed T'-
ideal ~K(M) of K;(A,D), which is a  subspace  of
K (A, D). This correspondence preserves inclusion and strict inclusion (of verbal
ideals of the corresponding algebras but not of T-ideals).

The above proposition means that as regards testing ideals for some extremallj
properties, the algebra A is equivalent to K(A, D). Note that the results of
Subsection 3.3 (see Propositions 3.5 and 3.6) mean that the space of polynomialsf]
in a relatively free algebra with extremal alternators is representable. On the
other hand, Lemma 5.3 on letter thinning enables to return to these spaces
when necessary. We will make use of this.

Joxazamenvcmeo. The first part of the proposition is obvious, so it suffices
to show that strict inclusion is preserved. The assertion in question means that
if the ranges of polynomials from two T-ideals M; and M, in K;(A, D) agree
then the same is true for their ranges in A.

If we pass from the language of supports to the purely combinatorial
language, coincidence of ranges in Kj(A, D) means coincidence of ranges of
letter alternators corresponding to the set of variables A. But this is already
proven (see propositions 5.2 and 5.5). ]

3ameuanme. The above proposition implies isomorphy of lattices of verbal
ideals in the algebra A and in its «extension» K;(A, D). Namely, if I'; C
N, T (A(5)) N Jaay then (b(I;, A),d(I';, A)) = (b(A),d(A)), and coincidence
of ranges in K (A, D) (that is, of extremal letter alternators of elements from I';)
implies coincidence of ranges of corresponding polynomials in A. This does not
automatically imply coincidence in rings of polynomials with coefficients from
these algebras, in particular, in relatively free algebras, algebras of generic
elements.
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Proposition 5.11 and lemma 5.3 on letter thinning imply

Corollary 5.10. Let M be a closed T-ideal in Sy(A). Then the ideal Sy(A)
contains no obstacle for representability of M.

Statement 5.12. Suppose b(A,I') = b(a) and d(A,T") < d(A). Then
'Sy =0in A (as well as in the extended algebra A).

Jlokazamensvcmeo. 1t is obvious that the intersection in K (A, D) is zero.
This implies that the intersection in A of the maximal closed T-ideal T® C T
and the ideal Sy is zero as well. Pass to the quotient by I'’ and complete the
proof by decreasing induction. O]

The results of the present part together with second Kemer lemma for the
relative case imply

Lemma 5.6 (on the canonical support). Suppose 9t = Var(A) is a convenient]
variety, A = A/J(A), {4;} is a set of quotients of A by various sets of
prime components. Then 9 is generated by a finite set of algebras of the
form K(A;, D;) where D; is a rectangular diagram consisting of d(D;) columns
of length dim(A4;) + 1.

Ifb(A,T") = by, d(A,T') = dy then T does not vanish in some of algebras K (A;, D; )]
where dlm(AJ = b() and d(DZ> = do.

We can construct a somewhat different convenient support such that externall]
traces agree with internal ones. Specifically, let A be a relatively free representablel]
algebra from a convenient variety 9. Consider the extended algebra

A = ATy / id (SA(A) - (6(a) — Tr(a))), c(A) = d(A).

Then Var(A’) = Var(A) and moreover the quotient algebra A' = A’/Sy(A) has
smaller complexity parameters: (b(A'),d(A")) < (b(A),d(A)), and representabilityf]
of A' implies representability of the relatively free algebra AW from Var(A%).
Starting with A", we construct the algebras A% and A® and so on. The
required algebra A, is @AF.

Statement 5.13. In the algebra A, external traces agree with internal
ones.

5.3. Completion of the proof of Theorem 1.1. Let A be a free representable
algebra from a good structurizable variety 9. Representability of A/Sy(A)
follows easily from second Kemer lemma. The algebra A may be interpreted as
the algebra of generic elements in a finite-dimensional algebra with nilpotency
degree of the radical equal to d(A)+1. Then in the space Sy(A) external traces
agree with internal ones, and the space itself is closed under internal traces.
Hence the ideal Si(A) is representable.
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We will show how this implies Theorem 1.1. First of all, representability of
closed ideals is obvious because extension by operators of the form §(a) results
in a Noetherian-type algebra.

Let I' be a T-ideal. If 'NSA (A) = 0 then we can pass to the quotient A/Sx(A)l]
and use decreasing induction on complexity parameters.

If 7 =TnNSA(A) # 0 then there exists a nonzero closed T-ideal J° C J.
Since it is representable, we may use decreasing induction to complete the proof
under the assumption of finite-basedness for T-ideals. Thus we have managed
to deduce local representability from local Specht property.

To avoid local Specht property (and moreover to prove this property), we
will argue as follows. Take for J° the mazimal closed T-ideal included in J.
Consider the quotient A’ = A/J? and define the spaces S} (A’) in it as well as J.
Decreasing induction shows that it suffices to consider the case b(A’) = b(A)
and d(A") = d(A).

The set A’ corresponds to the Kemer diagram D’ of A’, which may differ
from D by greater number of small columns (for getting to the required space
when applying the operator S} ).

Sameuanme. If we take the quotient of A" by the elements of J-torsion
(that is, the elements with nontrivial annihilator in the ring generated by
elements of the form ¢ (a)) then the Kemer diagram for the resulting algebra A”
is included in D. On the other hand, the torsion ideal Tors(A’) satisfies b(A’, Tors(A")) <J}
b(A). Hence instead of enlarging the Kemer diagram we may use the algebra A”.

It suffices to show that in A’ the meet of the projection 7(I') with S} (A4’)
is zero; otherwise this meet includes a nonzero closed T-ideal the preimage of
which is a closed T-ideal sstrictly including the preimage of 0, that is, J°. But
this contradicts maximality of J°. Thus

(b(A/J°, J),d(A)J°, ])) < (b(A,J),d(A, ) = (b(A),d(A)).

The proof of the basic theorem (under the assumption of representability
of A/Sx(A)) is complete.

On the other hand, representability of A/Sx(A) follows from closedness of
the ideal Sy (A).

3ameuanme. Argument related to refinement and closedness of T-ideals
as well as to spaces Kgn(A, D) works for the multilinear case in positive
characteristic.

Previously, considering closed ideals and passing to quotients by them we
reduced the situation to the case when either b(A,I') < b(A) or b(A,T") = b(A)
and d(A,T") < d(A). Now we examine this situation in more detail.

So we have S)(I') = 0. Furthermore by the induction argument the algebra
A'=A/(Sa(A)+T) (here b(A’) < b(A) and if b(A") = b(A) then d(A’) < d(A))
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may be assumed to be representable. Thus we have a morphism h; of the
quotient A/T" to a representable algebra Sy (A/I).

Hence to prove representability of A/I' it suffices to construct another
morphism of this algebra hy to some representable algebra, such that its kernel
is disjoint with Sy(A/I'). Then the sum of morphisms h; @ hs is the required
embedding.

Let H be a sum of T-ideals I'; such that either b(A,I';) < b(A) or b(A,I';) =
b(A) and d(A,T;) < d(A). Since H N Sy(A) =0 and H D T (because Sy(T) =
O), it suffices to establish representability of A/H. Hence we may assume H =
I.

Furthermore the ideals H, are closed and hence representable. Consider the
quotient A; by the sum of ideals

&P H.

r<d(A)

For this new algebra we have b(A;, H) < b(A;) = b(A).

Now by the non-associative analogue of first Kemer lemma, in the algebra
Aj the range of polynomials from H is disjoint with the ideal generated by
all prime components R; of A;. Consider morphisms ¢; : A; — A;/R; and
¢ = @, pi- The kernel of the latter morphism is disjoint with the range of
polynomials from H, and it determines an embedding of the corresponding
spaces of non-commutative polynomials.

Let @@ be the space in A; generated by homogeneous elements z; such
that each of them generates an ideal disjoint with the R-component of A;
generated by monomials including elements of each R;. Then @) and R are
ideals in A;, and A; embeds into the sum A;/Q @ A;/R. Hence in view of the
non-associative analogue of first Kemer lemma the range of H lies in ), and
the range of Sy(A;) lies in R. Now it is clear that if the ring of polynomials
with coefficients in A; is extended by traces of operators then the extended
spaces H and Sjy(A;) are disjoint.

The proof of local finite-basedness and local representability for convenient
structurizable varieties over a field of zero characteristic as well as of rationality
of their Hilbert series is complete. O

3ameuyanue. We may extend algebras by systems of absolutely anticommuting]j
variables (any monomial including two identical new variables is zero), consider
the canonical algebraical representation of appropriate order for the resulting
algebras and deal with them.

The author is grateful to all participants of the seminar <Ring theory>
(MSU) and to its chiefs V. N. Latyshev, A. V. Mikhalyov, V. A. Artamonov
and Ye. S. Golod for helpful discussion.
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