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ASYMPTOTIC EFFICIENCY OF THE MOMENT METHOD
FOR ESTIMATING THE COMPOUND POISSON DISTRIBUTION

A. G. Belov  and  V. Ya. Galkin 
1 UDC 519.233.24

Point estimation of distribution parameters is considered for a three-parameter compound Pois-
son process.  Formulas are derived for moment method estimation, including estimate biases and
the covariance matrix.  Asymptotic efficiency of the parameter estimates with a series informant
is examined.  The efficiency of moment method estimation is computed and analyzed for typical
parameter values.

Introduction

We investigate numerically the asymptotic efficiency of parameter estimates of the compound Poisson dis-
tribution.  Let us briefly enumerate some of the previously established properties of compound Poisson [1, 2, 3,
p. 15].  The probability generating function is written in the form 
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or in matrix form
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The distribution function has the form 
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Below we use the following facts concerning the distribution (2) [1 – 3]:

– representations of the derivatives with respect to the parameters  θν ,  λν ,  ν = 1, k :
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– recurrences for  pn ,  n = …1 2, , :
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– expressions for the cumulants
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including the initial moments and the five lowest central moments

κ α θ θ θ ελ ελ ελ1 1 1 2 3 1 2 32 3 2 3= = + + = + + ,

κ µ θ θ θ ελ ε ε λ ε ε λ2 2 1 2 3 1 2 34 9 2 1 3 1 2= = + + = + +( ) + +( ) ,

κ µ θ θ θ ελ ε ε λ ε ε ε λ3 3 1 2 3 1 2
2

38 27 2 1 3 3 1 6 2= = + + = + +( ) + + +( ) ,

κ θ θ θ µ µ4 1 2 3 4 2
216 81 3= + + = − ,

κ θ θ θ µ µ µ5 1 2 3 5 2 332 243 10= + + = − ,

κ θ θ θ µ µ µ µ µ6 1 2 3 6 4 2 3
2

2
364 729 15 10 30= + + = − − + ;

– the elements of the Fisher information matrix [4]
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are the elements of the information matrix  B Iθ θ
kxk kxkN=   in the system of parameters  θν ,  B Iλ λ

kxk kxkN= ;

– the determinant of the matrix  Bλ
kxk   for  k ≥ 2
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where for  k = 3  we have
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In what follows we investigate the asymptotic efficiency of the consistent estimates  λ̃λ   defined as [6,
p. 389]
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where  V( ) = ( )˜ cov ˜ , ˜λλ λ λν µ   is the covariance matrix of the estimates.  As an alternative to the maximum

likelihood method [5 – 7], which produces asymptotically normal and efficient estimates with bias  O N( )−1 ,  we
consider the method of moments for estimating the parameters  λλλλ  of distribution (2).
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Estimates, Bias, and the Covariance Matrix

For our distribution the estimates  λ̃   given (3) can be obtained from the linear algebraic system 

W C λλλλ  =  κκκκ,

where  W W= =kxk µν ,  ν µ, ,= 1 k   is the Vandermonde matrix,  κκκκ  is the column vector of sample

cumulants.  Then
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In the important particular case  k = 3  the moment method system takes the form 
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where  a1  is the sample mean,  m2 ,  m3  are the sample second and third central moments.  The moment method
estimates are
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where any of the three restrictions is a consequence of the other two.
Noting that [7]
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with accuracy  O N( )− 3 2/ ,  where the derivatives are evaluated at  a1 1= α ,  mi i= µ ,  mj j= µ ,  we obtain with
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where

A = +( ) + +( ) +2 9 9
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In (4) multiplying the first equality by  1 2+( )ε   and subtracting the second equality from the first, we ob-

tain for the estimates  λ̃1,  λ̃2  the equality
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For  ε = 1  we obtain the same expressions for the estimates  λ̃1,  λ̃2,  λ̃3,  their biases, and the covariance
matrix elements as in [8].

Estimate Efficiency

For the asymptotic efficiency of the moment method estimates we obtain the equality 
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Its evaluation thus reduces to computing the sums of three numerical series.  The accuracy of
approximating the sums of series with partial sums can be estimated either empirically (the result is satisfactory
if repeatedly increasing the number of terms in the partial sums leads to small changes in the computed value) or
by bounding the residual term through a comparison of the numerical series.  In fact, we have the inequalities
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which give bounds for the series residuals.

The values of e0( )λ̃λ    as a function of the parameters  λ1,  λ2,  λ3  for various  ε  are shown in Figs. 1 – 6 in

the form of level lines and surfaces.  The sums of the series  i11,  i12 ,  i22   are evaluated with accuracy to  10 20−
 

in their residuals.  

Fig. 1.  ε  =  0.1,  λ3  =  0.1.

Fig. 2.  ε  =  0.1,  λ3  =  10.
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Fig. 3.  ε  =  0.5,  λ3  =  0.1.

Fig. 4.  ε  =  0.5,  λ3  =  10.

Fig. 5.  ε  =  0.9,  λ3  =  0.1.
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Fig. 6.  ε  =  0.9,  λ3  =  10.

We see that for small  ε  =  0.1  the estimates  λ̃1, λ̃2, λ̃3  are inefficient e0 0 9<( ).   only when the values of

λ1,  λ2,  λ3  are constrained.  In the limiting case  λ3  =  0  k =( )2   the estimates  λ̃1,  λ̃2  are asymptotically
efficient virtually on the entire set of admissible parameter values [4].  As  λ3  increases  0 5 103< < −( )λ   the
low efficiency regions increases to  λ λ λ λ λ λ1 2 1 2 1 20 13 13, : , ;( ) < < = − +{ }   (Figs. 1, 2).  It more actively
grows in the parameter  λ1  (the surface flattens out).  As  λ3  is further increased  λ3 10>( ),  the efficiency zone
e0 0 9< .   shrinks (the surface becomes more horizontal), and for  λ3 25>   there is virtually no region of effi-
ciency (the surface is almost totally horizontal).  This demonstrates the asymptotic efficiency of the moment

method estimates  λ̃1,  λ̃2,  λ̃3.
As  ε  increases, the low-efficiency region clearly expands while preserving the previously noted features.

Thus, in the limiting case  λ3  =  0  k =( )2   [4] we have the following: for  ε  =  0.5  this region almost reaches
λ λ λ λ1 2 1 20 3 0 8, : ,( ) < < < <{ };  for  ε  =  0.9  it approximately equals  λ λ λ λ1 2 1 20 5 0 15, : ,( ) < < < <{ };

and for  ε  =  1   [4, 9] it virtually reduces to the strip  λ λ λ λ1 2 1 20 4 0, : ,( ) < < <{ } .   A s   λ3  increases
0 5 103< < −( )λ , the zone e0 0 9< .  expands and reaches its maximum for λ3  =  5 – 10:  for ε  =  0.5 (Figs. 3, 4)

it expands approximately to  λ λ λ λ λ λ1 2 1 2 1 20 30 30, : , ;( ) < < = − +{ };  for  ε   =  0.9,  1.0  (Figs. 5, 6) it
expands to  λ λ λ λ λ λ1 2 1 2 1 20 50 0 25 2 50, : , ;( ) < < < < = − +{ }.  As  λ3  is further increased  λ3 10>( ),  the
efficiency zone e0 0 9< .  shrinks and for large λ3 it is virtually not observed for ε  =  0.5, λ3  >  43  and  ε  =  0.9,
λ3  >  40.  However, for  ε  =  1,  λ3  >   40  the low-efficiency region  {( ) < < < <λ λ λ λ1 2 1 20 10 0 10, : , ;
λ λ1 2 10= − + }  remains unchanged.

Our calculations and comparative analysis provide new insights and revise earlier notions [8] of the
efficiency of using the moment method for point estimation of the parameters  λ1,  λ2,  λ3  of distribution (2)
for  k = 3  and various  ε.
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