NUMERICAL METHODS

ASYMPTOTIC EFFICIENCY OF JOINT ESTIMATION OF PARAMETERS
OF A COMPOUND POISSON DISTRIBUTION

A. G. Belov and V. Ya. Galkin

1. PRELIMINARY REMARKS

This is a numerical study of the asymptotic cfficiency of parameter estimators of the compound Poisson distribution [1,
p. 53; 2, p. 115] with the generating function [3; 4; 5, p. 15]
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The probability function of this distribution has the form
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We use the following results for the distribution (3) [3-5]: the derivatives with respect to the parameters 6, 4, v = 1, ...,

k, are representable in the form
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the probabilitics p,, n = 1,2, ..., are expressible by the recurrences
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the cumulants x,, r = 1,2, ..., are expressible by
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where o, are Stirling numbers of second kind, )y =@ = 1) . (u—1+1).
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2. DETERMINANT OF INFORMATION MATRIX

The regularity conditions for the first and second derivatives with respect to 4, and 68, from (4) are casily verified. First
consider the structure and the properties of the determinant of the information matrix B = B**k = || by, I, by, = E;#%In
N
L/a,lva/l# (L= I1 Pn; is the likelihood matrix). The elements of this information matrix are given by
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Proposition. For the determinant of the matrix B>k with & = 2 we have the recurrences
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To prove the first relationship, note that any element in £th row (column) of the matrix /; (7) is expressible in terms of
the clements of the preceding rows (columns):
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It suffices 1o substitute p,_, from (4) in (7) and to carry out simple manipulations. For the last element
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Successively multiplying the rows and then the columns in /; by ;ulﬂ, u# = 1,.. .k — 1, and adding them 10 row & and
then to column &, we obtain the determinant of a matrix with the last row (column)
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Successively muitiplying the first k — 1 rows by &(r + 1)A,,,,r = 1,.., k — 1, subtracting them from the last row, and repecating
the same procedure for the columns, we obtain the first equality in (8).
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To verify the second equality in (8), we first factor out €2 from each row in | B|. In the first step, successively multiply-
ing the f{irst row by ver~l v = 2,..., k, we subtract it from the second, third, ..., k&th row and factor out ¢ from cach row;
precisely the same procedure is applied to the first column. Then successively multiplying the second row by C,2e"~2,v = 3, ...,
k, we subtract it from the third, fourth, ..., kth row and factor out ¢ from each row; and similarly for the second column.
Continuing in the same way, in the (k — 1)-th step we multiply the (k — 1)-th row by C,*~1%, subtract it from the kth row and
factor out ¢; the same combination of columns (k — 1) and k gives the multiplier ¢ in the determinant, as required.

Finally, by (5), write the last row and column in | Bgt*k| = Nk|T &>k in the form
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T =iyp =k~10;" (v— y rB,L':,), v=1,k—1,
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Multiply the first & — 1 rows and columns by r8,, r = 1,..., K — 1, and add to the kth row and column respectively.
Seeing that from (2) 6, = &K1, we obtain the third cquality in (8).
Note that for & = 1 the distribution (1), (3) coincides with the Poisson distribution Po(ed;) and clcarly

det B! = Niy, =Ne¥iy, = Ne2 (¥ puciipy—1) = Neidy.
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Let us now investigate the asymptotic efficiency of various consistent estimators 4, which is defined [6, p. 389] as

ey (A) = ¢, (L) = (lim| B |V (})|)~",
Nowo

where V() = [l cov(d,, }{”) ” is the estimate covariancc matrix. As alternatives to the maximum likelihood method [9], which
produces asymptotically efficient estimators, we consider five simpler methods for cstimation of the parameters 4 of the
distribution (3).

3. METHOD OF MOMENTS ESTIMATORS

Using (6), we sce that the method of moments estimators A™ for our distribution can be obtained from the system of
linear algebraic equations

WCh=Kk,

where W = ||WExk| = [luv||, v, u = 1,..., k, is the Vandermonde matrix, k is the column vector of the sample cumulants. Then

V(M) = V(C'W="k) = C=1W=1V (k) (W—1C—!Y,
e (W) = | W|2| C|%/|B] |V (k)] .
In the important cxperimental case & = 2 |7, 8, taking 1 < myla; < 1 + ¢, we obtain
MP=e"2((1+e)ar — ma), A"==1/2e"2(my — ay),
where a, is the sample mean, n1, is the sample second central moment. The estimate bias is written in the form
E(M™— 1) =p2(e2V) !, E(r"— Ao) = —puo(2e2V) -1,
and the elements of the estimate covariance matrix are accurate to O(N~2):
e NDAT = e, - 4 (1—2e) 6, + 2u3 + O (N1),
e*N cov (A1, M) = — %68, —pd — O (N—1),
2e*NDAD = 20, + 3+~ 0 (N™1),

123



TABLE 1. £ = 0.1

M l l ‘ :

o1 | 03 | 05 | 68 | 10 | 15 | 2 3 1 5
Ao |
0,1 92 94 95 97 98 99 100 100 100 100
0,3 87 89 91 + 95 97 98 99 100 100
0,5 8 | 87 | 8 | 9t | 93 ! 96 | 97 | 98 | 99 | 100
0,8 85 ’ 87 89 91 92 94 96 98 99 99
1.0 8 | 87 38 90 92 94 95 97 98 99
1,5 86 87 89 90 91 93 95 96 98 98
2,0 87 88 90 91 92 93 94 96 97 98
3.0 90 91 91 92 93 94 95 96 97 98
4,0 91 92 92 93 93 94 95 96 97 97
5,0 93 93 93 94 94 5 95 96 97 97
10,0 96 96 96 96 96 97 97 97 97 98

TABLE 2. e = 1
7
) o1 | 03 o050 | 08 | 10 | L6 | 20 | 30 | 20 | 50
0,1 18 38 57 78 85 9 97 99 99 | 100
0,3 3 i1 22 43 57 78 87 94 97 98
0.5 1 5 11 26 39 66 80 91 95 97
0,8 i 2 5 15 25 57 74 87 92 94
1.0 2 4 11 19 47 68 84 90 93
1,5 1 2 6 11 35 61 82 88 9l
2,0 1 3 7 27 56 81 87 90
3,0 | 4 17 47 81 88 90
4,0 1 2| 12 39| 8| 8| 9
5.0 I 1 8 33 83 90 92
10,0 2 14 80 93 94
where s, = u, = 6 + 40, = €Ay + 2e(1 + e)dy, 6; = ed; + 2e€d,, 6, = €%, Denoting A = | 12X2| = g0 — 1 and

seeing that from (8) | B;2%2| = N2e2A/4A,2, we obtain an explicit expression for the asymptotic cfficiency:

60(74“1, h;}m) =8922/A(20\62+u32). (9)
The computation of asymptotic efficiency thus reduces to summation of one numerical series

=

i—11 = Z /J;_;_I/pn_' L.

e

The valucs of ¢, as a function of the parameters A;, A, for various ¢ are listed in Tables 1 and 2 (in percent) and are
shown in the form of e, level lines in Fig. 1. We see that for small ¢ the estimators 4;™, 1,™ arc almost asymptotically cfficicnt
for virtually all 4;, A,. As ¢ increases, a low-efficiency region (¢, < 0.9) clearly emerges for small ;, A,. For ¢ = 1 (scc Table
2, the blank entrics are zeros), the low-efficiency region is essentially 4; < 4.

4. ESTIMATORS USING EVEN FREQUENCIES AND THE SAMPLE MEAN

For any discrete distribution, from the definition of generating function we obtain P(1) + P(=1) = 2 Z Doy, 1., if we
=0

write P, =Z Pans then P(—1) = 2P, — 1. In our case (k = 2 by (1)), denoting the sum of even frcquencics by H, = thn

n=0

this gives ed; + 2eed, = %In(2H, — 1). Combined with the equation x; = a, this leads to the "even-frequency” estimators
A (In (QH — 1) + 28 a,)/2¢2, A3 =(In (2H,— 1) + 2a,)/4e?,

which are admissible for %(1 + ¢~ %) < H, < (1 + e~ 291,
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Fig. 1. e = 0.5.

[t is casy to verify that up to o(N~1)
E (Maf_ }“1) =(e'h—1)j4e2N, E (Aif_ A= (l—e 160, 862N,

To find the estimate variances (functions of a;, H.), we need DH,, and cov(ay, H,) in addition to Day {12]. Clearly,

DH =Y Dhy, 2y cov (hy, hy) = N='P (1 —F,),

i<j

cov (a, Hy) — [ (X‘ nhy,—ny | (Hy—Py) = E ncov (h,, Hy).

n

But it is easy to show that

N='p, (1—P), n=2i,

cov(h,, H )=
( € {N"‘/J._‘MP, n=2i--1, 1=0,1, ....

Hence cov(a;, H) = N™! [Z Qip.li—lee), Now note that for any discrete distribution 2 ¥ 2ip,, = P'(1) = P'(-1).
=0 (={i
Finally, for our casc
cov (ay, Hy) =& (i, + 2ed,) (1 —2P) N=1 = — 0,0~ 20 N1,
We can now write out the elements of the matrix H cov(d, /1”0‘) I:
eNDLEE =174 (' — 1) — (1—¢2)8;+4e20,2+ O (N-72),
254N cov (}"?f’ }\'ejf) = 01—4.562— 1/4 (840‘—‘ 1) ‘TI"O (Af-} J)'
4esNDASE = 1/4 (% — 1) —0; + 40, 4-O (N-12).
Note that cov(4;°, A,°l) is best computed from 4,0 + 24,¢f = q,e~1.
Thus, for the asymptotic efficiency of the even-frequency estimators we have
eo (1% 12%H =646,2/A (np (¢4 — 1) — 40,2). (10)

The computed values of ¢, (10) are shown in Fig. 2 (the level lines of the function ey(A,f, A,%T| A, 1,)) and in Table 3
(the biank entrics are zeros). We see that the high-efficiency region (e > 0.9) is observed only for small A, 4,, and e. Thus, for
¢ = 0.1, we have ¢; > 0.9 in the triangle 4, + 1, < 1.5. As ¢ increases, the asymptotic efficiency decreases, and the high-
efficiency regions shifts to small Ay, Ay, For example, for ¢ = 0.5, we have ¢ > 0.9 in the triangle 24; + 4, < L.
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Fig. 2. e = 0.1
TABLE 3. ¢ = 0.5.
By ’ ‘
o 0.1 03 | 05 | 08 ' 10 150 20 | 30 | 40 | 50
|
0,1 100 96 87 68 ‘ 56 l 31 ' 17 5) 1 0
0,3 49 95 87 70 58 33 17 4 1
0,5 97 a2 83 606 55 31 16 4 [
0,8 92 84 7t 58 47 26 13 3 I
1,0 87 78 68 51 41 22 11 2
1,5 70 60 49 35 27 14 6 1
2,0 51 41 33 22 17 8 4 i
3.0 20 15 11 7 5 2 1
4,0 6 4 3 2 1 1
5,0 1 1 I 4}

5. ESTIMATORS USING THE ZEROTH FREQUENCY AND THE SAMPLE MEAN

Here py = hy and %, = a;. We write these estimators in explicit form with the corresponding admissibility condition:
MW=e—2((e—2)a,—2Inky),
= (e o 1, 1—e/2 <—Inhya, <1.

A9 =e=2 (a, -+ Iny) J

The expressions for biases, variances, and covariances arc writlen in the form
E (M —2A)) = (1—po)/e*pN + o (N=1), E (A)—R,) =(py—1)/2€*p,N +0(N7'),
eANDA = 4 (po ' —1) +&(6—2) (e +2) &, + 2(2 —ee)d,) + O(N—2),
etV cov (A0, AY) = 1—p5 '+ & (A + (2—2e + £) Ay) + O(NT2),
eANDA) = py ' — 1 —e (M + Zeh,) + O (N—172),

The asymptotic efficiency of the estimators is thus given by

eo (1% 22°) =4peB2?/A (ne — poua), (1n

where a, = 6, + 46, + (6; + 26,)? is the second initial moment.

Analysis of the computation results for ¢,(4,% 1,%) as a function of A;, 4,, and & shows that for large e the high-
efficiency region is localized. For instance, 0.5 < A; + A, < 3fore =05and4; < 15,04 <4; -4, <08 fore =1 Ase
decreases, this region becomes substantially larger: for e = 0.1, we have 1; + A5 < 4 (see level lines in Fig. 3).
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6. ESTIMATORS USING THIE SAMPLE MEAN
AND THE RATIO OF FIRST TWO FREQUENCIES
In this case (x, = ay, pyipy = hy/hy), the estimators are written in the form

KEE o= (hy sy — ), AE = — e (ay,— By ho), (e <yt < @y)-

o]~

Here
E (i) o p o3V 0 (A1), E (ATF=hy) = —p, 222N + 0 (N71),
PRNDAT = pi = p,p, + piip, +0 (N-19),
4ppet N cov (Aff, kgf) = —Pi— PopPy — PoEpy =~ O (N=13),
4p3 NDAE = pi + pypy - piu, + O (N=V2),
where p; = 6y p, = €(4; + 2eAy)p,, and therefore

eo (ML 1E5) = 1693021808, (P + p0)-

(12)

Table 4 lists the values of ¢, (12) (in percent) for & = 0.1. We sce that ¢g < 0.6 for all 1), 4. As ¢ increases, ¢
increases. Thus, for e = 0.5, we have 0.8 < ¢y < 0.9 in the parallclogram 1 < A, + A, < 2,4, < 1 (sec level lincs in Fig. 4).

7. ESTIMATORS USING THE FIRST TWO FREQUENCIES

In this case (pg = hg, py = hy), the estimators have the form

Mmf=e2(2einhot (1) ifio), hot=—e=2(In fia+ftyiig)

and are admissible for 1 < —hgln hg/h; < 'A(1 + €71).
Their biascs are expressed up o o(N™1) by
E (i —2y) = (1 + &) py— po (1 —po)) /&2, E (hE—1,) = (py (1—pp) — 20,1203
and the elements of the covariance matrix are
BN DA = 48805 (1= po) + (1 +2) (1—38) pop, + (1 + 2} +O(N™),
PRESN cov (ir, ) = 26 pop, —2ep5 (1—p,) = (e—2) p +O (N ™"%),
PRANDAS = py (P —po) + Pi (1 —pg) + O (N7,
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TABLE 4. ¢ = 0.1

R ! i ‘
) 0.1 0.3 0.5 0.8 1.0 1.5 } SO I t 1
IS
2 | | {
0.1 17016 | 17 | 20 20 97 | a1 37 40
0.3 % | 26 | of | .- 30 31 { 57 1 i3
0.5 3000 B9 o33 ) ue N 4 45
0.8 3 | 40 | 40 | a2 ¢ a3 D 3o 46 | 47 | 47
1.0 a3 | 43 | 44 | 45 46 1 47 | 48 | 48 | a8
13 50 { 51 | 51 | 5l 5000 Ar 5o 51 49
2 5 | 55 | 55 | 55 55 230 5 52 | 49
3 58 | 58 | 58 | 57 57 55 { 54 51 47
4 57 | 57 | 56 | 5 | 54 55 | 51 g 4
5 54 | 53 | 52 | B 50 | 48 ! 46 | 43 | 39
|
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Fig. 4. ¢ = 0.5.

) 1 1 ] | I 1 L !
0 ! Z 4 5 l 7 8 g Ly
Fig. 5. e = 0.1
The asymptotic cfficiency in this case is given by
f,f 2
€0 (b1, h2) = 4p503/Ap, (1 —py—py). (13)
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Numecrical calculations show that high-efficiency regions are observed only for small 4, 1,, e.g., for ¢ = 0.1 we have

¢y > 0.9 in the region 4; + Ay < 1.5 (Fig. 5). With the increase of e the efficiency declines and the region where ¢, > 0.9
becomes smaller. Thus, for € = 0.5, we have 4, + 1, < 0.5.

8. COMPARATIVE ANALYSIS

Our numerical analysis of asymptotic efficiencies leads to the following conclusions. For small ¢, thc most cfficient

estimates are 4,™, 4,M. Other estimators can be used only for small parameter values. For instance, for & = 0.1, we have A, +
Azd < 1.5, /1]0 + }.20 < 4, 44¢ + 1,° < 1.5. As ¢ increases, the low-cfficicncy region for 1,m, 1,™ becomes larger, but it is

completely covercd by the high-efficiency regions of the estimators 4,% 4,0 and A, 1, (sec Figs. 1 and 4). Thus, for small 4,,
45, the estimators 4,9, 1,0 and A, , 4,7 are efficient for any ¢ in addition to 4,™, 12m,

w3
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