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ABSTRACT
We have obtained an analytical expression for the second derivatives of the light curve with
respect to geometric parameters in the model of eclipsing classical binary systems. These
expressions are essentially efficient algorithm to calculate the numerical values of these second
derivatives for all physical values of geometric parameters. Knowledge of the values of second
derivatives of the light curve at some point provides additional information about asymptotical
behaviour of the function near this point and can significantly improve the search for the
best-fitting light curve through the use of second-order optimization method. We write the
expression for the second derivatives in a form which is most compact and uniform for all
values of the geometric parameters and so make it easy to write a computer program to
calculate the values of these derivatives.

Key words: methods: analytical – methods: data analysis – methods: numerical – binaries:
eclipsing.

1 IN T RO D U C T I O N

The task of finding light curve which is the best-fitting light to
the observed values of the stellar flux is often performed using the
model light curve with its first derivative (first-order methods). The
best known of such methods is Gauss–Newton algorithm (Bates &
Watt 1988) that is used to solve non-linear least-squares problem.
This method is derived from application of the general Newton’s
method to the problem of finding the minimum residual if we dis-
regard the term containing second derivatives of the light curve.
Such disregard is justifiable if the residual value is small enough.
However, this condition is not always satisfied, and if not, iterative
sequence for Newton–Gauss algorithm converges slowly or does
not converge at all. In particular, this trouble can arise if the initial
values of the geometrical parameters are far from the minimum
point or observational data contain significant errors. So, when the
second derivatives (a second-order method) are used we can, in
some cases, achieve or enhance the convergence. In spite the prob-
lem of calculation of the light curve and its first derivatives has been
solved in different ways (Mandel & Agol 2002; Pal 2008; Pal 2012;
Abubekerov & Gostev 2013), calculation of second derivatives has
not yet been touched on.

In this work, we give analytical expressions for the second deriva-
tives in the model of eclipsing classical binary systems regarding
linear limb-darkening law and quadratic limb-darkening law. These
expressions are written in terms of elementary functions, elliptical
integrals and easily computable piecewise analytical functions of
single variable, in a manner similar to that we used in our previous
work (Abubekerov & Gostev 2013) for the light curve itself and
its first derivatives. Using of these piecewise analytical functions,
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we can write the final expression uniformly for all values of geo-
metrical parameters. To compute the elliptical integrals the efficient
algorithms exist (Carlson 1995). We also give a general integral
form of the second derivatives for limb-darkening law specified by
arbitrary function. Therefore, this paper is a further development
of the approach to the calculation of transit light curves repre-
sented by Abubekerov & Gostev (2013). We note that the usability
of this method has since been confirmed using the results of that
work for developing a software package PLANETPACK2 (Baluev 2014,
the source code can be downloaded from http://sourceforge.net/
projects/planetpack).

2 M O D E L D E S C R I P T I O N

We considered the model of the eclipse of a spherically symmetric
star with thin atmosphere by another spherical opaque component
(another spherical star or a spherical planet). We denote the radius
of the eclipsed star as R∗, the radius of the eclipsing component as
Ro, the distance between the centres of the discs of the components
as D and the polar radius from the centre of the eclipsed star as ρ.

The brightness at the point of the disc of the eclipsed star with
polar coordinate ρ is given by

J (ρ) = J (0)I

(
ρ

R∗

)
.

Here J(0) is the brightness at the centre of this stellar disc,

I (r) = (1 − f (μ(r))),

μ(r) =
√

1 − r2

f (μ) =
∑

k

�kfk(μ), (1)
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where functions fk are such that fk(1) = 0, are defined by the law
of limb-darkening in question, and �k are the coefficients of limb-
darkening.

In this paper, we consider the linear limb-darkening law, for which
f(μ) =�lfl(μ) =�l(1 −μ) and the quadratic law of limb-darkening,
which is characterized by the presence of the term �qfq(μ) = �q(1
− μ)2 in the expression for f;

3 FO R M U L A F O R T H E F L U X

The decrease of the flux of the binary system due to eclipse is
(Abubekerov & Gostev 2013)

LF − L(D, R∗, Ro) = �L(D, R∗, Ro)

=
∫∫
S(D)

J (|R|) dR = J (0)R2
∗�L(δ, r),

where r = Ro

R∗ , δ = D
R∗ , S(D) is the area of overlapping discs.

�L(δ, r) can be written as

�L(δ, r) = �L0(δ, r) + �l�Ll(δ, r) + �q�Lq (δ, r). (2)

Thus, the current task is to find the second derivatives of �L(δ, r)
with respect to δ and r.

Let g be a function such that g(ρ) is one of the linear terms in the
expression for I (

√
ρ) [given by (1)], g(−1) is one of its primitives:

g(ρ) = dg(−1)(ρ)
dρ

. As it has been shown in Abubekerov & Gostev
(2013), the contribution to �L(δ, r) caused by the term g(ρ) in the
expression for I (

√
ρ) is∫∫

S(D)

g

(∣∣∣∣ R
R∗

∣∣∣∣
)

dR

= �Lg(δ, r) = �(δ, 1, r)g(−1)(1) − π�(r − δ)g(−1)(0)

+
�(δ,r,1)∫

0

(r2 − rδ cos(x))g(−1)(δ2 + r2 − 2rδ cos x)

δ2 + r2 − 2rδ cos x
dx. (3)

Its first derivatives is

∂�Lg(δ, r)

∂δ
= −2r

�(δ,r,1)∫
0

cos x g(δ2 + r2 − 2rδ cos x)dx (4)

∂�Lg(δ, r)

∂r
= 2r

�(δ,r,1)∫
0

g(δ2 + r2 − 2rδ cos x)dx, (5)

where

�(t) ≡

⎧⎪⎨
⎪⎩

1, t > 0
1
2 , t = 0

0, t < 0,

A x ≡

⎧⎪⎨
⎪⎩

π, x < −1

arccos x, −1 ≤ x ≤ 1

0, x > 1

and

�(D, x, y) ≡ A
(

x2 + D2 − y2

2 x D

)
.

The expression for the decrease of the flux due to eclipse of the
stellar disc with uniform brightness [for �L0(δ, r)] can be obtained
if we put g(x) = 1, g−1(x) = x in (3).

For the term with linear limb-darkening coefficients in (2)

�Ll(δ, r) = �L1(δ, r) − �L0(δ, r), (6)

and for the term with quadratic limb-darkening coefficients in (2)1

�Lq (δ, r) = 2�L1(δ, r) − 2�L0(δ, r) + �L2(δ, r). (7)

Here, �L1(δ, r) is obtained, if we put g(x) = √
1 − x, g(−1)(x) =

− 2
3 (1 − x)3/2. Assuming g(x) = x, g( − 1)(x) = x2/2 we get

�L2(δ, r).
Therefore, now the main task is to find the second derivatives of

�L0(δ, r), �L1(δ, r) and �L2(δ, r) with respect to r and δ. First,
we find these derivatives in a general integral form [for �Lg(δ, r)].

4 G E N E R A L I N T E G R A L F O R M U L A S F O R T H E
S E C O N D D E R I VAT I V E S

Differentiating (4) and (5), we find

∂2�Lg(δ, r)

∂δ2

= −4r

�(δ,r,1)∫
0

cos(x)(δ − r cos(x)) g′(δ2 + r2 − 2rδ cos x)dx

− 2r

δ
	(δ, r)g(δ2 + r2 − 2rδ	(δ, r))(r2 − δ2 − 1) Q1(δ, r),

(8)

∂2�Lg(δ, r)

∂δ∂r

= 4r

�(δ,r,1)∫
0

(δ − r cos(x)) g′(δ2 + r2 − 2rδ cos x)dx

+ 2r

δ
g(δ2 + r2 − 2rδ	(δ, r))(r2 − δ2 − 1) Q1(δ, r), (9)

∂2�Lg(δ, r)

∂r2
= 1

r

∂�Lg(δ, r)

∂r

+ 4r

�(δ,r,1)∫
0

(r − δ cos(x)) g′(δ2 + r2 − 2rδ cos x)dx

+ 2g(δ2 + r2 − 2rδ	(δ, r))(δ2 − r2 − 1) Q1(δ, r). (10)

Here,

Q x ≡
{√

x, x ≥ 0

0, x < 0,

1 See Appendix B.
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Q1(δ, r) ≡ Q
(

1(
1 − (δ − r)2

) (
(δ + r)2 − 1

)
)

.

	 (δ, r) ≡ cos �(δ, r, 1) ≡ ϑ

(
δ2 + r2 − 1

2 δ r

)
,

ϑ(x) ≡ cosA x ≡

⎧⎪⎨
⎪⎩

−1, x < −1

x, −1 ≤ x ≤ 1

1, x > 1.

5 T H E S E C O N D D E R I VAT I V E S FO R
I N D I V I D UA L L AW S O F L I M B - DA R K E N I N G

The expression for ∂�Lg (δ,r)
∂r

, which occurs in (10), was calculated on
the assumption of individual laws of limb-darkening in Abubekerov
& Gostev (2013).

Putting g(x) = 1 in (8)–(10) for zero case (the decrease of the
flux due to the eclipse by the uniform brightness disc), we get

∂2�L0(δ, r)

∂δ2
= −2r

δ
	(δ, r)

(
r2 − δ2 − 1

)
Q1(δ, r)

= Q(δ, r)

δ2
− 2

(
1 + r2 − δ2

)
Q1(δ, r), (11)

∂2�L0(δ, r)

∂δ∂r
= −2r

δ

(
1 − r2 + δ2

)
Q1(δ, r), (12)

and

∂2�L0(δ, r)

∂r2
= 2�(δ, r, 1) − 2

(
1 + r2 − δ2

)
Q1(δ, r). (13)

Here,

Q (δ, r) ≡ Q ((
1 − (δ − r)2

) (
(δ + r)2 − 1

))
.

Putting g(x) = √
1 − x in (8)–(10), we find that the second

derivatives of �L1 are

∂2�L1(δ, r)

∂δ2

= Q (
1 − (r − δ)2

)
(2r2 − 4δ2 − 2)Ê(δ, r)

3δ2

+ Q
(

1

1 − (r − δ)2

)
1

3δ2

× [(
1 − (r − δ)2

) (
(r + δ)2 − 1

)
+ 3

(
r2 − δ2 − 1

) (
r2 + δ2 − 1

)]
F̂ (δ, r)

− 2r

δ
	(δ, r)

√
1 − δ2 − r2 + 2rδ	(δ, r)

× (r2 − δ2 − 1) Q1(δ, r), (14)

∂2�L1(δ, r)

∂δ∂r

= 2r

δ
Q (

1 − (r − δ)2
)
Ê(δ, r)

+ 2r(r2 − δ2 − 1)

δ
Q

(
1

1 − (r − δ)2

)
F̂ (δ, r)

+ 2r

δ

√
1 − δ2 − r2 + 2rδ	(δ, r)

(
r2 − δ2 − 1

)
Q1(δ, r),

(15)

∂2�L1(δ, r)

∂r2
= 6Q (

1 − (r − δ)2
)
Ê(δ, r)

+ 2
(
δ2 − r2 − 1

)Q(
1

1 − (r − δ)2

)
F̂ (δ, r)

+ 2
√

1 − δ2 − r2 + 2rδ	(δ, r)
(
δ2 − r2 − 1

)
Q1(δ, r).

(16)

Here,2

F̂ (δ, r) ≡ F

(
�(δ, r, 1)

2

∣∣∣∣ 4δr

1 − (r − δ)2

)
(17)

Ê(δ, r) ≡ E

(
�(δ, r, 1)

2

∣∣∣∣ 4δr

1 − (r − δ)2

)
, (18)

where F and E are incomplete elliptic integrals of the first and
second kind:

F (φ |m) ≡
φ∫

0

dθ√
1 − m sin2(θ )

,

E(φ |m) ≡
φ∫

0

√
1 − m sin2(θ ).

Next, we write the second derivatives of �L2. Here, it is useful
to note that

sin �(δ, r, 1) ≡
√

1 − 	(δ, r)2 ≡ Q(δ, r)

2δr
.

Putting g(x) = x in (8)–(10), we get

∂2�L2(δ, r)

∂δ2

= (r	(δ, r) − 2δ)Q(δ, r)

δ
+ 2r2�(δ, r, 1)

− 2r

δ
	(δ, r)(δ2 + r2 − 2rδ	(δ, r))(r2 − δ2 − 1) Q1(δ, r),

(19)

∂2�L2(δ, r)

∂δ∂r
= 4δr�(δ, r, 1) − 2rQ(δ, r)

δ

+ 2r

δ
(δ2 + r2 − 2rδ	(δ, r))(r2 − δ2 − 1) Q1(δ, r), (20)

∂2�L1(δ, r)

∂r2
= 2(δ2 + 3r2)�(δ, r, 1) − 4Q(δ, r)

+ 2(δ2 + r2 − 2rδ	(δ, r))(δ2 − r2 − 1) Q1(δ, r).

(21)

2 See Appendix A.

MNRAS 459, 2078–2081 (2016)

 by guest on M
ay 15, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Binary systems, second derivatives 2081

6 C O N C L U S I O N

Thus, we have obtained analytical expressions for the second deriva-
tives of the flux with respect to geometric parameters, uniform for
all values of parameters. We considered the linear and quadratic
limb-darkening laws. Directly, second derivatives have been calcu-
lated of the flux decrease due to eclipse that is given by (2), (6)
[for the component caused by linear law of limb-darkening] and
(7) [for the component caused by quadratic law of limb-darkening].
The second derivatives of �L0 (the component caused by uniform
brightness disc) are given in (11)–(13). The second derivatives of
�L1 are given in (14)–(16). The second derivatives of �L2 are
given in (19)–(21).

The current expressions seem to be longer and more complicated
than the ones for the first derivatives in (Abubekerov & Gostev
(2013)), but parts of the expressions, the calculation of which takes
most of the time are the same. Each part can be computed once
at the same values of the parameters, so we don’t get any signif-
icant increase in computation time if compared to using only first
derivatives. Furthermore, as noted above, the employed approach to
calculation of second derivatives of the light curve is a direct contin-
uation of the approach developed in Abubekerov & Gostev (2013).
For this reason, someone who has already worked with the soft-
ware implementation of the algorithm from Abubekerov & Gostev
(2013) can effectively use the previous results for easily implement
computation of the second derivatives in line with this paper. As
mentioned above, the results of Abubekerov & Gostev (2013) have
been used in Baluev (2014).

The algorithm is implemented in ANSI C in the form
of functions for computation of the individual component
�L(δ, r) and its derivatives. This implementation is available at
http://lnfm1.sai.msu.su/∼ngostev/algorithm.html.
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APPENDIX A

If �(δ, r, 1) < π, incomplete elliptic integrals in (17) and (18)
match its special cases:

F

(
arcsin

(
1√
x

)∣∣∣∣ x

)
= 1√

x
K

(
1

x

)
,

E

(
arcsin

(
1√
x

)∣∣∣∣ x

)

= √
x

[
E

(
1

x

)
+

(
1

x
− 1

)
K

(
1

x

)]
,

where K(x) = F
(

π
2

∣∣ x
)
x, E(x) = E

(
π
2

∣∣ x
)

are complete elliptic
integrals of the first and second kind, respectively. Thus, in the
mentioned case

F̂ (δ, r) =
√

1 − (r − δ)2

4δr
K

(
1 − (r − δ)2

4δr

)
, (A1)

Ê(δ, r) =
√

4δr

1 − (r − δ)2

[
E

(
1 − (r − δ)2

4δr

)

+ 1 − (r + δ)2

4δr
K

(
1 − (r − δ)2

4δr

)]
. (A2)

This remark may be useful to optimize the computing. Moreover,
if we replace the right parts of (A1) and (A2) by its real parts, the
resulting expressions are valid for all values of δ and r. It should be
noted that the algorithms which are described in the Carlson (1995)
are applicable for computing the complex values of the complete
elliptic integrals.

APPENDI X B

It is noticed the erratum in our previous work (Abubekerov & Gostev
2013). Wrong version of formula (29):

�Lq (δ, r) = 2�L1(δ, r) − �L0(δ, r) − �L2(δ, r),

Lf
q = 2L

f
1 − L

f
0 − L

f
2 = π

6
.

Correct version:

�Lq (δ, r) = 2�L1(δ, r) − 2�L0(δ, r) + �L2(δ, r),

Lf
q = 2L

f
1 − 2L

f
0 + L

f
2 = −π

6
.

It does not affect the rest.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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