УДК 621.315.592

МЕТОД АНАЛИЗА ДИАГРАММЫ НАПРАВЛЕННОСТИ ИЗЛУЧЕНИЯ ЛАЗЕРНОГО ДИОДА, РАБОТАЮЩЕГО НА ФУНДАМЕНТАЛЬНОЙ МОДЕ

© 2017 г. В. В. Близнюк^{1,} *, Н. В. Березовская¹, М. А. Брит¹, О. И. Коваль¹, В. А. Паршин¹, А. Г. Ржанов²

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ", Москва

²Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" *E-mail: 4059541@mail.ru

Рассмотрен метод и приведен алгоритм определения режима генерации лазерного диода на фундаментальной моле, основанные на натурных измерениях угла расхолимости излучения в лальней зо-

ментальной моде, основанные на натурных измерениях угла расходимости излучения в дальней зоне поля и представлении функции, описывающей диаграмму направленности такого излучения в явной форме без измерений распределения его интенсивности в ближней зоне поля.

DOI: 10.7868/S0367676517010082

введение

В практической метрологии лазерного излучения часто возникает задача определения генерации на фундаментальной моде. Методы решения этой задачи для остронаправленного излучения подробно рассмотрены в ряде стандартов [1–3], а средства измерений коэффициентов распростра-

нения лазерных пучков M^2 , в которых реализуются эти методы, уже более 10 лет мелкими партиями выпускаются фирмами Ophir и Coherent.

Значительно хуже выглядит ситуация с решением задачи определения генерации на фундаментальной моде в случае диагностики сильно расходящегося излучения лазерных диодов (далее – ЛД). В настоящее время нет стандартизованных

методов определения параметра M^2 , характеризующего распространение излучения с большими углами расходимости, и, как следствие, стандартизованных средств измерений параметров такого излучения.

Нестандартизованные методы определения параметра M^2 базируются на измерениях распределений интенсивности излучения F(y) в ближней и $f(\theta)$ в дальней зоне поля только в двух плоскостях – в плоскости, перпендикулярной p–n-переходу (далее – вертикальной плоскости), и в плоскости p–n-перехода (далее – горизонтальной плоскости). Измерения зависимости F(y) являются наиболее сложным этапом реализации таких методов.

Однако при определении режима генерации излучения ЛД на фундаментальной моде можно исключить измерения параметра M^2 и ограничиться анализом зависимости $f(\theta)$. Цель данной работы — разработка метода такого анализа. Не нарушая общности рассуждений, остановимся на анализе распределения интенсивности излучения

 $f^{\perp}(\theta)$ в дальней зоне в вертикальной плоскости.

ОПРЕДЕЛЕНИЕ ВИДА АНАЛИТИЧЕСКОЙ ФУНКЦИИ, ОПИСЫВАЮЩЕЙ ДИАГРАММУ НАПРАВЛЕННОСТИ ИЗЛУЧЕНИЯ В ДАЛЬНЕЙ ЗОНЕ

При разработке метода анализа функции $f^{\perp}(\theta)$ воспользуемся тем, что при генерации излучения на фундаментальной моде нормированное распределение интенсивности излучения ЛД в вертикальной плоскости в ближней зоне имеет вид [4, 5]

$$F^{\perp}(x) = \exp\left[-a^2 x^2\right],\tag{1}$$

а найденное путем фурье-преобразования (1) нормированное угловое распределение интенсивности излучения в той же плоскости в дальней зоне —

$$f^{\perp}(\theta) = G^{2}(\theta^{\perp}) \exp\left(-k_{0}^{2} \sin^{2} \theta^{\perp} / (2a^{2})\right), \qquad (2)$$

Рис. 1. Методика анализа диаграмм направленности в случае симметричных лазерных пучков, направление оси которых задается полярным углом $\theta = 0$.

Рис. 2. Методика анализа диаграмм направленности в случае, когда ось лазерного пучка повернута на угол $\theta_{1/2sm}^{\perp}$ относительно направления, задаваемого полярным углом $\theta = 0$.

где k_0 – волновое число в вакууме; $G^2(\theta^{\perp})$ – возведенное в квадрат значение углового фактора Гюйгенса [5]:

$$G^{2}\left(\theta^{\perp}\right) = \left[\left(m^{2} + \sqrt{n^{2} - \sin^{2}\theta^{\perp}}\right) / \left(m^{2}\cos\theta^{\perp} + \sqrt{n^{2} - \sin^{2}\theta^{\perp}}\right)\right]^{2}\cos^{2}\theta^{\perp},\tag{3}$$

где m = 1 для TE-мод или m = n для TM-мод, а n - mпоказатель преломления волновода.

Из (2) и (3) следует, что функция $f^{\perp}(\theta)$, описывающая диаграмму направленности излучения ЛД на фундаментальной моде, должна быть четной, а сама диаграмма - симметричной относительно оси лазерного пучка.

В случае симметричных лазерных пучков, направление оси которых задается полярным углом $\theta = 0$, функция $f^{\perp}(\theta)$ равна некоторому значению *i* при двух аргументах θ_i^{\perp} , равных по модулю, но противоположных по знаку (рис. 1). Для анализа таких диаграмм в настоящей работе использован половинный угол расходимости $\theta_{1/2}^{\perp}$, определяемый по формуле

$$\theta_{1/2}^{\perp} = 0.5 \theta_{1/2 \text{ trad}}^{\perp},$$
(4)

где $\theta_{1/2 \text{ trad}}^{\perp}$ — полный угол расходимости излучения, измеряемый, по традиции, сложившейся в полупроводниковой квантовой электронике, на уровне 1/2 максимальной интенсивности излучения ЛД (рис. 1).

Использование параметра $\theta_{1/2}^{\perp}$ позволяет анализировать функцию $f^{\perp}(\theta)$ и в том случае, когда ось лазерного пучка повернута на угол $\theta_{1/2sm}^{\perp}$ относительно направления, задаваемого полярным углом $\theta = 0$ (рис.2). Однако при этом следует учи-

тывать, что условие $f^{\perp}(\theta_{1/2}^{\perp}) = 0.5$ выполняется при двух разных значениях параметра $\theta_{1/2}^{\perp}$: θ_1^{\perp} и θ_2^{\perp} , имеющих противоположные знаки, и поэтому сам параметр $\theta_{1/2}^{\perp}$ необходимо рассчитывать по формуле

$$\theta_{1/2}^{\perp} = \theta_{1/2sr}^{\perp} = 0.5 \left(\left| \left| \theta_{1}^{\perp} \right| + \left| \left| \left| \theta_{2}^{\perp} \right| \right) \right| \right), \tag{5}$$

а угол поворота оси лазерного пучка $\theta_{1/2sm}^{\perp}$ находится как разность модуля большего из двух значений параметра $\theta_{1/2}^{\perp}$ и $\theta_{1/2sr}^{\perp}$:

$$\Theta_{1/2sm}^{\perp} = \left| \Theta_{1}^{\perp} \right| \left(u \pi u \left| \Theta_{2}^{\perp} \right| \right) - \Theta_{1/2sr}^{\perp}.$$
 (6)

Найденный из (6) угол поворота оси лазерного пучка $\theta_{1/2sm}^{\perp}$ учитывается при определении параметров θ_i^{\perp} , когда функция $f^{\perp}(\theta_i^{\perp})$ не равна 1/2.

Подставляя $\theta_{1/2}^{\perp}$ в (2) и используя условие $f^{\perp}(\theta_{1/2}^{\perp}) = 0.5$, находим формулу для расчета коэффициента a^2 . Используя эту формулу и (2), без измерений распределения интенсивности излучения в ближней зоне определяем вид функции, описывающей диаграмму направленности излучения ЛД на фундаментальной моде:

$$f^{\perp}(\theta) = G^{2}(\theta^{\perp})\exp(-A^{2}z^{2}), \qquad (7)$$

2017

где

$$A^{2} = \frac{\ln \left[2G^{2} \left(\theta_{1/2}^{\perp} \right) \right]}{\sin^{2} \theta_{1/2}^{\perp}};$$
(8)

$$z^2 = \sin^2 \theta^{\perp}, \tag{9}$$

где $G^{2}(\theta_{1/2}^{\perp})$ – квадрат углового фактора Гюйгенса при $\theta = \theta_{1/2}^{\perp}$, рассчитываемый по формуле (5), *z* – абсцисса точки гауссовой кривой в декартовой системе координат $\varphi_{g}(z) = \exp(-A^{2}z^{2})$ (рис. 2).

ИСПОЛЬЗОВАНИЕ ХАРАКТЕРНЫХ ОСОБЕННОСТЕЙ ГАУССОВОЙ КРИВОЙ ДЛЯ АНАЛИЗА ДИАГРАММЫ НАПРАВЛЕННОСТИ ОДНОМОДОВОГО ИЗЛУЧЕНИЯ

Воспользуемся тем, что точки перегиба *B* и *C* гауссовой кривой имеют координаты $\pm 1/(A\sqrt{2})$, $1/\sqrt{e}$ [6], а касательные к кривой в этих точках описываются функцией

$$\Theta(z) = \exp(-1/2)(2 - |z|/|z_p|),$$
(10)

где $\pm z_p$ — абсциссы точек *B* и *C*.

Так как $z_p = \pm 1 / (A\sqrt{2})$, то $|z_p| = 1 / (A\sqrt{2})$. То-гда (10) принимает следующий вид:

$$\Theta(z) = \exp(-1/2) \left(2 - A\sqrt{2} |z| \right), \tag{11}$$

где, с учетом (9), $-1 \le z \le 1$.

Для проведения анализа функции $f^{\perp}(\theta)$ с использованием функции $\Theta(z)$ выразим из (11) *z* через $\Theta(z)$:

$$|z| = \left[2 - \sqrt{e} \Theta(z)\right] / (A\sqrt{2}), \qquad (12)$$

а затем, после ряда простых преобразований, найдем, что

$$A^{2}z^{2} = 2 - \sqrt{e} \Theta(z) - e\Theta^{2}(z)/2.$$
 (13)

Тогда (7) принимает следующий вид:

$$f^{\perp}(\theta) = G^{2}(\theta^{\perp}) \exp\left[e \Theta^{2}(z)/2 + \sqrt{e} \Theta(z) - 2\right]. (14)$$

АЛГОРИТМ ОПРЕДЕЛЕНИЯ РЕЖИМА ГЕНЕРАЦИИ НА ФУНДАМЕНТАЛЬНОЙ МОДЕ

Задавая некоторое значение $\Theta(z_i)$, из (14) находим, что

$$f^{\perp}(\theta_i) = G^2(\theta_i^{\perp}) \times \\ \times \exp\left[e \; \Theta^2(z_i)/2 + \sqrt{e} \; \Theta(z_i) - 2\right],$$
(15)

где, согласно (9), $z_i = |\sin \theta_i^{\perp}|$. Используя (13) и то, что функция $\Theta(z)$ линейна, можно легко определить аргумент z_i , а значит, и угол θ_i^{\perp} , при котором функция принимает заданное значение Θ

$$\sin^{2}\theta_{i}^{\perp} = \sin^{2}\theta_{1/2}^{\perp} \times \\ \times \left[(2 - \sqrt{e} \ \Theta(z_{i}) - e\Theta^{2}(z_{i}) / 2 \right] / \ln \left[2G^{2}(\theta_{1/2}^{\perp}) \right],$$
(16)

где $\theta_{1/2}^{\perp}$ — параметр, рассчитываемый по формуле (6), когда $\theta_{1/2sm}^{\perp} = 0$, или по формуле (7), если $\theta_{1/2sm}^{\perp} \neq 0$.

В силу четности функций $\sin^2 \theta_i^{\perp}$ и $\Theta(z_i)$ имеются два значения параметра θ_i^{\perp} . При $\theta_{1/2sm}^{\perp} = 0$ модули этих значений равны, а знаки противоположны. Используя найденные из (16) значения θ_i^{\perp} , по массиву экспериментально определенных значений нормированной функции углового распределения интенсивности излучения ЛД в свободное пространство определяем соответствующие им значения $f^{\perp}(\theta_i^{\perp})$. В том случае когда диаграмма направленности симметрична, эти значения должны быть равными с точностью, определяемой погрешностью измерений. При $\theta_{1/2sm}^{\perp} \neq 0$ в правую часть (16) вместо найденного по (6) параметра $\theta_{1/2}^{\perp}$ подставляем значение $\theta_{1/2sr}^{\perp}$, определяемое по (7). И в этом случае расчетный параметр θ_i^{\perp} имеет два значения противоположного знака: θ_3^{\perp} и θ_4^{\perp} , однако их модули не равны. Поэтому для определения экспериментально измеренного значения $f^{\perp}(\theta_i^{\perp})$ в качестве аргумента необходимо подставить значения, равные алгебраическим суммам $\theta_3^{\perp} + \theta_{1/2sm}^{\perp}$ и $\theta_4^{\perp} + \theta_{1/2sm}^{\perp}$.

Зная θ_i^{\perp} и используя (5), находим квадрат углового параметра $G^2(\theta_i^{\perp})$ и численное значение функции $f^{\perp}(\theta_i^{\perp})$:

$$f_{rasch}^{\perp}\left(\theta_{i}^{\perp}\right) = G^{2}\left(\theta_{i}^{\perp}\right)\exp\left[e \;\Theta^{2}\left(z_{i}\right)/2 + \sqrt{e}\;\Theta\left(z_{i}\right) - 2\right].$$
(17)

Если значение $f^{\perp}(\theta_i^{\perp})$, найденное из массива чисел, полученного при измерениях нормированной функции углового распределения интенсивности излучения ЛД с учетом смещения оси диаграммы направленности $\theta_{1/2sm}^{\perp}$, равно правой части (17), имеет место генерация ЛД на фундаментальной моде.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 81 № 1 2017

Проверку режима генерации лазерного диода на фундаментальной моде по разработанному в настоящей работе методу можно осуществлять при любом значении θ_i^{\perp} , лежащем в рабочем диапазоне таких значений. Верхняя граница этого диапазона определяется отношением сигнал/шум, при котором еще обеспечивается требуемая точность измерений пространственно-энергетических параметров излучения лазерного диода [7, 8].

Разработанный метод анализа диаграмм направленности излучения ЛД в свободное пространство использован нами для определения режима генерации тридцати двух экземпляров из разных партий серийно изготовленных лазерных диодов. У двадцати пяти лазерных диодов натурно измеренные диаграммы направленности описываются функцией (15) при значениях этой функции, превышающих 0.05 ее максимального значения. Это позволяет заключить, что режим их генерации – это режим генерации на фундаментальной моде. У семи лазерных диодов отмечалось отклонение диаграммы направленности излучения от функции (15) при значениях этой функции, меньших 0.25 ее максимального значения. Здесь можно говорить о том, что только центральная часть лазерного пучка близка к гауссовому пучка. Определение границы этой части пучка играет важную роль при конструировании узла связи излучения и одномодового оптического волокна.

ЗАКЛЮЧЕНИЕ

Показана возможность определения режима генерации на фундаментальной моде без измерений распределения интенсивности излучения ЛД в ближней зоне, что значительно упрощает его диагностику. Получены в явном виде формулы, аналитически описывающие диаграмму направленности излучения ЛД в свободное пространство, что позволило разработать простой алгоритм определения режима генерации на фундаментальной моде. Установлено, что лазерные пучки некоторых диодов являются гауссовыми только в центральной области, что необходимо учитывать при согласовании излучения с оптическим волокном.

СПИСОК ЛИТЕРАТУРЫ

- 1. ГОСТ Р ИСО11146-1-2008. Лазеры и лазерные установки (системы). Методы измерений ширин, углов расходимости и коэффициентов распространения лазерных пучков. Часть 1. Стигматические (гомоцентрические) и слабоастигматические пучки.
- 2. ГОСТ Р ИСО11146-2-2008. Лазеры и лазерные установки (системы). Методы измерений ширин, углов расходимости и коэффициентов распространения лазерных пучков. Часть 2. Астигматические пучки.
- ГОСТ Р/ТР ИСО11146-3-2008. Лазеры и лазерные установки (системы). Методы измерений ширин, углов расходимости и коэффициентов распространения лазерных пучков. Часть 3. Стигматические (гомоцентрические) и слабоастигматические пучки.
- 4. *Кейси Х., Паниш М.* Лазеры на гетероструктурах. М.: Мир, 1981. Т. 1. 299 с. Т. 2. 364 с.
- 5. *Thompson G.H.B.* Physics of semiconductor laser devices. N.Y.: J. Wiley and Sons, 1980. P. 185.
- 6. Бронштейн И.Н., Семендяев К.А. Справочник по математике. М.: Гос. изд-во технико-теорет. лит., 1957. 608 с.
- 7. *Некоркин С.М., Звонков Б.Н., Карзанова М.В. и др. //* Квантовая электроника. 2012. Т. 42. № 10. С. 931.
- Слипченко С.О., Пидоскин А.А., Винокуров Д.А. и др. // Физика и техника полупроводников, 2013. Т. 47. № 8. С. 1082.