

19th Internarional Symposium of ISTU
5th European Symposium of EUFUS
Barcelona 2019 | 13th - 15th June

ABSTRACT BOOK

A PROTOTYPE SYSTEM FOR BOILING HISTOTRIPSY IN ABDOMINAL TARGETS COMPRISING A 256-ELEMENT SPIRAL ARRAY COMBINED WITH A POWER-ENHANCED VERASONICS ENGINE

V.A. Khokhlova^{1,2}, B.W. Cunitz¹, M.A. Ghanem¹, W. Kreider¹, C. Hunter¹, C.R. Bawiec³, A.D. Maxwell⁴, G.R. Schade⁴, O.A. Sapozhnikov^{1,2}, T.D. Khokhlova³

¹Center for Industrial and Medical Ultrasound, University of Washington, Seattle, USA

e-mails: verak2@uw.edu; bwc@uw.edu; mghanem@uw.edu; wkreider@uw.edu; tdk7@uw.edu

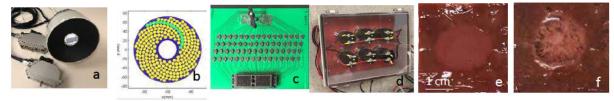
OBJECTIVES

Boiling histotripsy (BH) uses millisecond-long ultrasound bursts with high amplitude shocks to mechanically fractionate tissue. For pre-clinical BH studies of abdominal organs in large animals with aberration correction for body wall inhomogeneities, a high-power multi-element phased array system is needed.

METHODS

A BH system was built comprising a custom 256-element 1.5 MHz phased array (Imasonic, Besanson, France) with a central opening to mount a P6-3 probe for real-time ultrasound imaging (a, b). The array was electronically matched (c) to the Verasonics V1 engine with a 1.2 kW external power source, and driving electronics were supplemented by an extra capacitor bank (d). System performance was characterized by hydrophone measurements in water. Volumetric lesions were generated in *ex vivo* bovine liver with 1 mm spacing, 10 ms pulse length, 5 pulses/focus, and 1 % duty cycle (e, f). Doppler sequences were used to monitor tissue liquefaction.

RESULTS


The maximum pulse average acoustic power of the system was 3.5 kW sustained for 10 ms. Fully developed shocks of 100 MPa amplitude formed at the focus at 275 W acoustic power. The -3 dB steering range was 19 mm laterally and 38 mm axially. As measured on Doppler imaging, bubble velocities within lesions increased during lesion formation.

CONCLUSIONS

A BH prototype system was constructed and successfully implemented to produce volumetric mechanical lesions in *ex vivo* tissue using electronic steering. Lesion formation was confirmed in real time by evaluating the degree of tissue fractionation using Doppler US imaging.

ACKNOWLEDGEMENTS

Work supported by NIH R01EB7643, R01GM122859, and R01EB25187.

Figure Caption: (a) Photo and (b) sketch of a 256-element 16-arm spiral array. (c) Custom-designed matching network and (d) extra bank of capacitors. Bisected volumetric BH lesions generated *in ex vivo* bovine liver with (e) and without (f) content.

²Physics Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia

³Division of Gastroenterology, University of Washington School of Medicine, Seattle, USA

⁴Department of Urology, University of Washington, Seattle, USA