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Abstract—The properties of neutron-star matter up to the appearance of hyperons are calculated with
the aid of Skyrme potentials. The conditions for the appearance of Λ hyperons in matter and values of
the density at the point of their appearance are analyzed for various parametrizations of nucleon–nucleon
and hyperon–nucleon interactions. The dependence of the results on the magnitude of density-dependent
forces, the degree of nonlocality, the behavior of the symmetry energy, and incompressibility of nuclear
matter is examined.
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1. INTRODUCTION

The presence of hyperons in the interior of neutron
stars is a question that has been a subject of discus-
sions since the publication of the articles of Ambart-
sumyan and Saakyan [1] and Cameron [2]. Interest
in it was quickened by the discovery [3–5] of massive
neutron stars (of mass about two Sun’s masses). It is
well known that the appearance of hyperons entails
softening of the equation of state for neutron stars.
Soft equations of state lead to inability of the matter
of a heavy neutron star to withstand gravitational
compression. As a result, the maximum mass of a
neutron star for soft equations of state turns out to
be substantially less than two Sun’s masses. Various
ways to overcome this contradiction were proposed in
a number of theoretical studies (see, for example, [6–
8]), but it has not yet been explained conclusively.

Investigations into this issue led to revealing
that there are substantial uncertainties in the cal-
culation of the equation of state for neutron stars.
First, available information about nucleon systems
comes basically from the properties of atomic nuclei,
which are systems of inner density not exceeding
ρ0 ∼ 0.17 fm−3 that are close to isospin-symmetric
systems (N/Z is not more than 1.5). In neutron-
star theory, one has to deal with matter whose
density is several times as high as ρ0 and where
the number of neutrons, N , is many times greater
than the number of protons, Z. Incompressibility is
one of the most important features of neutron-star
matter. So far, however, it could not be determined
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reliably even for symmetric systems, to say nothing of
highly neutron-rich systems. The symmetry energy
of nuclear matter is likely to be even more important
feature, whose value is rather well known at densities
of ρ ∼ ρ0. The behavior of the symmetry energy at
higher densities is currently of considerable interest
not only in connection with neutron-star problems
but also in connection with the physics of relativistic
heavy-ion collisions, but it remains unknown even at
a qualitative level [9].

Further uncertainties are associated with the in-
clusion of hyperons. Data on hypernuclei is the main
source of information about hyperon interactions. To
date, the Λ-hyperon binding energy of 28 to 30 MeV
in nuclear matter has been determined to a rather high
degree of precision. Data concerning Σ and Ξ hyper-
ons are also available [10], but they are substantially
less precise. In particular, the data obtained exper-
imentally in [11] are indicative of Σ–nucleus repul-
sion. This questioned the appearance of Σ hyperons
in neutron stars, which was thought to be obvious,
for example, in [12]. The absence of Σ hyperons
facilitates the appearance of Ξ hyperons, which are
heavier, at not very high densities. However, all these
data also refer to ρ ∼ ρ0, and their extrapolation to the
region of higher densities is nontrivial.

The authors of [13] took a fresh look at the role
of the symmetry energy of nuclear matter. They
used a large number of parametrizations of a Skyrme
type equation of state for nonstrange nuclear matter,
paying particular attention to the density dependence
predicted by these parametrizations for the symmetry
energy. Some parametrizations predict a monotonic
growth of the symmetry energy with density; in oth-
ers, the symmetry energy reaches a maximum at
some value of ρ > ρ0, whereupon it begins decreas-
ing. It was shown that, in the first case, the frac-
tions of protons and neutrons in neutron-star matter
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gradually approach each other, in agreement with a
large number of earlier studies, but, in the second
case, protons may disappear at high densities, with
the result that matter becomes purely neutron matter.

In the same article, it was indicated that a non-
monotonic behavior of the symmetry energy (pres-
ence of a maximum) may be an obstacle to the ap-
pearance of hyperons, but the hyperon–nucleon in-
teraction was not taken there into account—only the
Λ-hyperon mass was included.

It should be noted that a nonmonotonic behavior
of the symmetry energy was confirmed to some extent
in analyzing heavy-ion collisions [9], but definitive
conclusions have not yet been drawn on the subject.

In the present study, we examine conditions for the
appearance of Λ-hyperons in neutron-star matter and
their interplay with the equation of state for nuclear
matter. In contrast to what was done in [13], we
take fully into account available information about the
Λ–nucleus interaction and analyze its properties that
have an effect on the conditions for the appearance of
hyperons.

2. SKYRME INTERACTION
AND ITS PARAMETRIZATION

In order to calculate the equation of state for
neutron-star matter—both in the case where this
matter incorporates nucleons and leptons exclu-
sively and in the case where it additionally in-
cludes hyperons—one uses most frequently relativis-
tic mean-field theory, which is a rather simple and
powerful method that makes it possible to describe
multicomponent baryon systems in terms of a com-
paratively small number of free parameters. In the
present study, we apply a nonrelativistic approach
based on Skyrme potentials and used repeatedly in
studying neutron stars (see, for example, [13–15]).

The method that relies of Skyrme potentials has a
number of drawbacks in relation to relativistic theo-
ries. First, the nonrelativistic approach leads to a vio-
lation of casuality (superluminosity) at high densities.
Second, it requires introducing, for a multicomponent
system, a significant number of parameters, of which
many are difficult to determine phenomenologically at
the present time.

However, the versatility of the Skyrme parametriza-
tion of interaction in nucleon matter is the most
important for our purposes. It is well known that, in
calculations, Λ hyperons mostly arise at moderately
small densities of 2ρ0 to 3ρ0, in which case relativistic
effects are hardly operative. Since only conditions for
the appearance of Λ hyperons are under study here,
we do not consider the region of high densities. We
do not address here the cases of other (Σ and Ξ) hy-
perons either; therefore, it is legitimate to rely on well

established properties of the Λ–nucleus interaction,
whose parametrization has a solid phenomenological
basis.

It is important to note that different Skyrme
parametrizations may lead to either a monotonic or a
nonmonotonic density dependence of the symmetry
energy. We emphasize that the most widespread
version of relativistic mean-field theory (that is, σωρ
model) predicts unambiguously a monotonic behavior
of the symmetry energy.

A general form of the Skyrme effective nucleon–
nucleon interaction is well known [16]. Here, we use
the SkI3 [17] and SLy230a [14] parameter sets, which
we believe to be quite realistic; for extreme cases, we
consider the SV parametrization [18], which involves
no density dependence, and the T5 interaction [19],
which is purely local. We give particular attention
to the SkX parametrization [20], which, in contrast
to the other ones, predicts a nonmonotonic density
dependence of the symmetry energy of nuclear matter.
Some features of nuclear matter that were calculated
by employing the aforementioned parametrizations
are given in Table 1.

An explicit expression for the equation of state
for nuclear matter within an approach that relies on
Skyrme forces can be found, for example, in [14].
Figure 1 shows the equation of state calculated for
nuclear matter with the parameter values from the
SLy230a set at various values of the proton popula-
tion Yp = Z/(N + Z). The minima on these curves
correspond to the saturation state.

It is convenient to choose the parameters of the
Skyrme hyperon–nucleon interaction in the form [22]

a0 = tΛ0 (1 + x0/2) , a1 =
1

4

(
tΛ1 + tΛ2

)
, (1)

a2 =
1

8
(3tΛ1 − tΛ2 ), a3 =

1

4
tΛ3 (1 + x3/2) ,

where tΛ0 , x0, tΛ1 , tΛ2 , tΛ3 , x3, and α are standard
parameters of the Skyrme potential. The Λ-hyperon
binding energy in nucleon matter, DΛ, is the asymp-
totic value of the hyperon binding energy in a finite
nucleus, BΛ, for its mass number tending to infinity,
A → ∞, and, at zero hyperon density, appears to be
the sign-reversed Λ-hyperon chemical potential; that
is,

DΛ = −a0ρN − a1τN − 3

2
a3ρ

1+α
N , (2)

where ρN and τN are, respectively, the nucleon
density and the nucleon kinetic energy in the nu-
cleus [16]. Table 2 gives the values of the parameters
in the ΛN interactions used in the present study
and the values of DΛ(ρ0), where ρ0 is the saturation
density. The YMR [23], SLL4′ [24], and LYI [25]
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Table 1. Properties of symmetric nuclear matter for the parametrizations used here the nucleon–nucleon interaction (the
quoted results were calculated at ρ = ρ0, where ρ0 is the saturation density; E/A is the energy per nucleon, as is the
symmetry energy, K is the incompressibility parameter, and m∗/m is the effective nucleon mass)

ρ0, fm−3 E/A(ρ0), MeV as(ρ0), MeV K(ρ0), MeV m∗/m

SV [18] 0.1551 –16.048 32.824 305.675 0.383

SkI3 [17] 0.1577 –15.980 34.833 258.179 0.577

SLy230a [14] 0.1600 –15.988 31.986 229.874 0.697

SkO [21] 0.1604 –15.835 31.970 223.326 0.896

T5 [19] 0.1640 –15.997 37.004 201.681 1.000

SkX [20] 0.1554 –16.051 31.098 271.045 0.993

parametrizations lead to the best agreement with
experimental data on Λ hypernuclei and are therefore
quite realistic. We have also used the following
parameter sets obtained earlier for the Skyrme po-
tential: SKSH1 [26], which does not involve the
density dependence of the interaction; YBZ2 [27],
which features the strongest density dependence; and
YBZ6 [27], which corresponds to an especially strong
nonlocality. These parametrizations also permit
describing experimental data quite satisfactorily.

3. CONDITIONS PER THE APPEARANCE
OF HYPERONS

Within the approach used in the present study,
we can calculate the population and density depen-
dences of various features of the system being con-
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Fig. 1. Energy per nucleon, E/A, of nuclear matter as a
function of the density ρ/ρ0 for the SLy230a parametriza-
tion at the proton populations of (solid curve) Yp = 0.5,
(dashed curve) Yp = 0.4, (dash-dotted curve) Yp = 0.25,
and (dotted curve) Yp = 0.

sidered. In neutron-star matter, the equilibrium con-
ditions should hold for the chemical potentials, and
this makes it possible to obtain the population Yp

as a function of the density ρ from the chemical-
equilibrium equations. For matter consisting of nu-
cleons, electrons, and muons, these equations have
the form

{
μn = μp + μe,

μe = μμ,
(3)

where μi is the chemical potential for particles of sort
i. For the sake of convenience, we define μi in such a
way that the chemical potentials for leptons include
their rest energy, while the baryon chemical poten-
tials do not include its counterpart. Figure 2 shows
examples of the calculation of the chemical potentials
versus the density for the SLy230a parametrization.

Let us introduce Dcr
Λ as the hyperon critical energy

in nucleon matter:

Dcr
Λ = mΛ −mn − μn (ρ) . (4)

This quantity depends only on the properties of the
nucleon–nucleon interaction. In matter consisting of
nucleons and leptons, hyperons appear at the density
for which the following relation holds:

Dcr
Λ = DΛ = −μΛ. (5)

Figure 3 shows the density dependences of (a)
Dcr

Λ (ρ) and (b) the symmetry energy as(ρ) for various
parametrizations of the nucleon–nucleon interaction.
These two quantities exhibit a distinct correlation: if
the symmetry energy grows fast with density, then
Dcr

Λ decreases fast, and vice versa. In the first case,
hyperons may arise earlier. The SkX parametriza-
tion deserves particular attention; for it, the behav-
ior not only of Dcr

Λ but also of the symmetry energy
differs substantially from their behavior for the other
parametrizations.
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Table 2. Parameters a0, a1, a3, and α of the ΛN interactions used and the Λ-hyperon energy DΛ in nucleon matter at
the saturation density ρ0

a0, MeV fm3 a1, MeV fm5 a3, MeV fm3+3α α DΛ(ρ0), MeV

SKSH1 [26] −176.5 2.075 0 – 27.5

YBZ2 [27] −375.2 26.25 750 1 26.8

YBZ6 [27] −352.3 45.00 500 1 29.4

YMR [23] −1056 26.25 703 1/8 30.2

LYI [25] −465.2 16.25 326 1/3 29.1

SLL4′ [24] −326.0 20.50 470 1 30.6

4. POINT OF THE APPEARANCE
OF HYPERONS

Figure 4 shows the density dependences of DΛ and
Dcr

Λ for all of the interactions in nucleon matter that
are considered in the present study. Hyperons appear
at the density corresponding to the point of intersec-
tion of these dependences. The order of the graphs is
such that, upon going over from Fig. 4a to Fig. 4f, the
curve representing Dcr

Λ moves rightward to the region
of higher density values. In the case of employing
the first two parametrizations of the nucleon–nucleon
interaction, SV and SkI3, hyperons appear even at
moderately low densities for all of the ΛN interactions
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Fig. 2. Chemical potential μi for various components of
matter as a function of the density ρ/ρ0 for the SLy230a
parametrization in the case of the npeμ composition
of matter: (solid curve) chemical potential for muons,
μμ; (dashed curve) chemical potential for electrons, μe;
(dash-dotted curve) chemical potential for neutrons, μn;
(dotted curve) chemical potential for protons, μp.

used. For the SLy230a and SkO parametrizations,
the point of the appearance of hyperons is shifted
rightward. Moreover, the curves for the YBZ2 poten-
tial, which features a a strong density dependence, do
not intersect—that is, hyperons do not arise. For the
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Fig. 3. (a) Hyperon critical energy Dcr
Λ in nuclear matter

and (b) symmetry energy as versus the density ρ/ρ0 for
the (solid curve) SV, (dashed curve) SkI3, (dash-dotted
curve) SLy230a, (dotted curve) SkO, (solid curve go-
ing through dots) T5, and (dashed curve going through
dots) SkX parametrizations of the nucleon–nucleon in-
teraction.
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Fig. 4. Dependences of DΛ and Dcr
Λ on the density ρ/ρ0 for all parametrizations used in the present study for the nucleon–

nucleon interaction: (a) SV, (b) SkI3, (c) SLy230a, (d) SkO, (e) T5, and (f) SkX. All panels give the (thick solid curve) critical
Λ-hyperon energy Dcr

Λ and the Λ-hyperon energy DΛ in nucleon matter for the (dashed curve) SKSH1, (dotted curve) YBZ2,
(dash-dotted curve) YBZ6, (solid curve going through dots) YMR, (dashed curve going through dots) LYI, and (dotted curve
going through thick dots) SLL4 parametrizations of the NN interaction.

Т5 potential, we found even two hyperon–nucleon in-
teractions for which hyperons do not appear. Finally,
it turned out that, for the SkX potential, only if the
hyperon–nucleon interaction is independent of the
density do hyperons appear in the region of nuclear-
matter densities that is considered here. Table 3 gives
the values of the baryon-matter density at the point
of the appearance of Λ hyperons for all combinations
of the interactions being considered. We note that,

Table 3. Dimensionless densities ρ/ρ0 at which Λ hyper-
ons appear (the uppermost row and the leftmost column
indicate the parametrizations used for, respectively, the
NN and ΛN interactions)

SV SkI3 SLy230a SkO T5 SkX

SKSH1 1.8 1.8 2.2 2.0 2.0 2.9

YBZ2 2.2 2.5 – – – –

YBZ6 2.0 2.1 3.6 3.2 – –

YMR 1.9 2.0 2.6 2.4 2.4 –

LYI 1.9 2.0 2.6 2.3 2.3 6.5

SLL4′ 2.0 2.1 3.0 2.7 2.9 –

in the absence of the density dependence either in the
nucleon–nucleon of in the hyperon–nucleon interac-
tion, hyperons appear always. In typical cases, the
point of the appearance of hyperons lies in the range
between 1.8ρ0 and 3.2ρ0, which complies with appli-
cability region of our approach; in order to illustrate an
overall picture, however, we show a broader density
interval in the figures on display.

5. CONCLUSIONS

We have analyzed conditions for the appearance of
Λ hyperons in neutron-star matter, paying particular
attention to the role of various properties of both
nucleon–nucleon and hyperon–nucleon interaction.
The appearance of hyperons is hindered in the case of
a strong density dependence of the hyperon–nucleon
interaction or its strong nonlocality. On the contrary,
a weak density dependence of the nucleon–nucleon
and/or the hyperon–nucleon interaction facilitates
the appearance of hyperons at comparatively low den-
sities. A nonmonotonic character of the symmetry
energy of nuclear matter as a function of the density
does not favor the appearance of hyperons, but they
may arise for some hyperon–nucleon interactions. At
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the same time, we have not found any correlation
between the point of the appearance of hyperons and
the incompressibility of nuclear matter.

The question of whether hyperons are present in
neutron-star matter is of great importance in view of
the fact that massive neutron stars do indeed exist.
Our present study have shown which properties of
the interaction should be established more reliably in
order to answer this question.
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