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Abstract
The nonlinear dynamics of extremely short electromagnetic pulses in a nanodispersed birefringent
medium is investigated. The matrix of the medium and chaotically mixed nanogranules form an
amorphous photon crystal containing asymmetric molecules of identical chemical composition. The
concentrations of molecules in the nanogranules and in the matrix are different. This nanodispersed
(discrete) structure of the medium leads to spatial dispersion. The wave equation for the ordinary
component of pulses propagating in such a medium is derived under the conditions of the sudden
perturbation approximation. This equation generalizes the sine-Gordon and Rabelo–Fokas equations
and appears to be integrable in the frameworks of the inverse scattering transformation method if an
additional restriction on the parameters characterizing the spatial dispersion and anisotropy of the
medium is imposed. This restriction implies that the medium is prepared in the quasiequilibrium state
before the pulse effect, when the molecules in the matrix or the ones in the nanogranules are in the
excited state. The soliton and breather solutions of the integrable wave equation are investigated.
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1. Introduction

Theoretical nonlinear optics is one of the sources of equations
of mathematical physics, which are of interest from the point
of view of their integrability by the inverse scattering trans-
formation method (ISTM) [1–4]. Integrable nonlinear wave
equations possess solutions of the solitonic type. Such types
of solutions are the most important in nonlinear optics [5] and
in other physical applications of the equations [4]. The
investigation of different generalizations of soliton solutions
of integrable and nonintegrable nonlinear equations has
attracted a lot of attention in recent years [6–15].

One of the tendencies of the development of laser physics
and nonlinear optics is the generation of electromagnetic

pulses with shorter duration. The term ‘few-cycle pulses’
(FCPs) has been widely approved of. Pulses of this type
contain a small number (up to one) of periods of electro-
magnetic oscillations. It is impossible to apply to them
the concept of an envelope for the electromagnetic field,
which is exploited commonly for quasi-monochromatic pul-
ses (QMPs). Therefore, mathematical approximations and
approaches which are valid for QMPs are not correct in the
FCP case. First of all, it concerns the approximation of slowly
varying amplitudes and phases. Since the concept of the
envelope is not applicable to FCPs, it is necessary to use here
the equations for a full electric field.

Different theoretical approaches have been developed for
the nonlinear optics of FCPs. Among the basic approxima-
tions used to investigate the dynamics of FCPs in nonlinear
media, we distinguish the approximation of unidirectional
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propagation [16] and those of sudden perturbations and
optical transparency [17–23]. Various nonlinear regimes of
propagation of FCPs both in isotropic and in anisotropic
media have been revealed with the help of these approx-
imations. The progress of the nonlinear optics of FCPs is
summarized in [24–28].

A separate problem is the derivation of the material
equations of the response of the medium on an influence of
the FCP. It is necessary for this to choose a theoretical model
of the medium that is valid in other cases [21]. One of the
elementary models is that of a medium consisting of quantum
two-level atoms or molecules. Although this model is rough,
it describes well certain physically significant cases [17]. This
model will be used here.

Anisotropy in the two-level model can be introduced by
means of permanent dipole moments (PDMs) of the mole-
cules. Below, we will refer to molecules having PDMs as
asymmetric ones. Quantum dots, wells and rods and natural
asymmetric quantum objects can be treated as such molecules
[29–31].

A PDM appears if the diagonal matrix elements of the
dipole moment operator in the basis of the eigenfunctions of
the Hamiltonian of a molecule differ from zero. In that case,
the electric field of the pulse fulfills two functions simulta-
neously: it causes transitions between stationary quantum
states and dynamically shifts the frequencies of these transi-
tions due to the Stark effect. It is necessary to note that the
investigation of the nonlinear dynamics of FCPs in the case of
anisotropic models of the medium has led to various systems
of wave and material equations integrable by the ISTM
[32–44]. These equations generalize the well-known integr-
able models of nonlinear optics such as the self-induced
transparency equations [45], the sine-Gordon (SG) equation
[46] and the reduced Maxwell–Bloch equations [16].

The optical axis can be formed in a medium containing
asymmetric molecules by the direction of their PDMs. In this
case, ‘scalar’ and ‘vector’ models of FCP propagation exist.
The ‘scalar’ one is characterized by a single component of the
polarization of the electric field E of the FCP. Accordingly,
this component causes quantum transitions and shifts of their
frequencies. ‘Vector’ models are characterized by ordinary Eo

and extraordinary Ee components of the electric field. In the
case of FCPs propagating perpendicularly to the optical axis,
the ordinary component excites quantum transitions only,
while the extraordinary one causes a dynamic shift of their
frequencies [39–43]. A general case of the vector model was
considered in [44].

A change in the populations of the quantum levels of
asymmetric molecules under an effect of powerful FCPs on
the medium modifies its state. This makes the process sig-
nificantly nonlinear. A short duration of the pulse leads
inevitably to the temporal nonlocality (dispersion) of the
polarization response of the medium. Also, if the character-
istic spatial scale of the FCP is of the same order of magnitude
as the scale of structural heterogeneity of the medium, then
the spatial dispersion becomes essential. This dispersion takes
place, for example, in a medium consisting of evenly mixed
microgranules containing active molecules [43, 47]. Such a

two-component medium is called microdispersed. It is
important to note that a microdispersed structure of the
medium is able to influence qualitatively the character of
optical dispersion. For example, the optical dispersion of
separate microgranules can be normal. At the same time, the
dispersion of a system of microgranules can have an abnormal
character [47]. It essentially affects the transverse self-
focusing or defocusing of the pulse [47].

Let Lg be the characteristic size of a microgranule and lg
be the average distance between microgranules. Assume
Lg=lg. Taking the duration of the pulse to be t ~ -10 sp

15 ,
we find its characteristic spatial scale to be l t~ ~c p

~-10 cm 100 nm5 , where c is the speed of light in vacuum.
It is seen from this estimation that spatial dispersion becomes
essential at ~l 100 nmg . Thus, the size of the granules is

~L 10 nmg . For this reason, below we use ‘nanogranules’
(and, accordingly, ‘nanodispersed medium’) instead of
‘microgranules’.

In our case, it is possible to speak about the amorphous
photon crystal. We will assume that such a medium is placed
into a constant electric field, due to which the PDMs of
asymmetric molecules are built parallel to each other. Thus
identical asymmetric molecules are found in the nanogranules
and in the main matrix. However, their concentrations are
different. For this reason, the values of the constant electric
field in the nanogranules and in the matrix are also different.
In turn, this causes different Stark shifts of the frequencies.
Therefore, the frequencies of the quantum transitions of
molecules in the nanogranules and in the matrix differ [48]. It
is also possible to prepare a nanodispersed medium in such a
way that its main matrix and nanogranules contain different
isotopes of the same chemical element. In this case, the iso-
topic shift of quantum levels can be essential. This shift
arises, for example, due to the difference of the masses of the
nuclei of isotopes or because of the distinctiveness of the
nucleus shell structure [49].

The difference noted above of the frequencies of the
same quantum transitions can be used to prepare a medium in
different states before the impact of the FCP. For example,
one can shift molecules in the main matrix or in nanogranules
to the excited state, by adjusting a quasi-monochromatic laser
signal resonant with the corresponding quantum transitions.
Thus, the medium can be prepared in a quasiequilibrium
initial state before the FCP effect.

In the present report, we investigate the solitonic modes
of propagation of vector FCPs in a quasiequilibrium nano-
dispersed medium consisting of asymmetric molecules. In
section 2, a self-consistent system of the material and wave
equations is derived for the offered physical model of a two-
component medium consisting of the two sorts of two-level
asymmetric molecules. In section 3, the procedure of exclu-
sion of material variables is carried out using the accepted
physical approximations. This allows us to obtain the non-
linear wave equation for the ordinary component of the pulse.
The ordinary and extraordinary components of the pulse are
connected here by a simple algebraic relation. In section 4, the
case of the nonlinear wave equation obtained, which is
integrable by the ISTM, is considered. Some solutions of the
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solitonic type are also constructed and studied in this section.
In section 5, the main conclusions are given and some
research prospects are discussed.

2. Self-consistent system of material and wave
equations

Let us consider a medium with nanogranules which contain
separately two sorts of two-level molecules. Following [43], we
will refer to the two-level molecules of the matrix as 1-molecules
and to the two-level ones of the granules as 2-molecules. The
frequencies of their quantum transitions are equal to ω1 and ω2,
respectively. Hereafter, quantities related to 1-molecules and
2-molecules are supplied with subscripts 1 and 2 or with
superscripts in parentheses (1) and (2), respectively.

We apply the semiclassical approach to describe the
interaction of powerful electromagnetic pulses with the
matter.

Let FCPs propagate along the z-axis of the Cartesian
system of coordinates, which is perpendicular to the optical
axis (y-axis) formed by the PDMs of molecules of both types.
The ordinary Eo and extraordinary Ee components of the
electric field of the pulse are polarized in the case considered
of a birefringent medium along the x-axis and y-axis,
respectively. Then, the wave equation is written in vector
form as

( ) ( )p¶
¶

-
¶
¶

=
¶
¶

+
z c t c t

E E
P P

1 4
, 11 g

2

2 2

2

2 2

2

2

where P1 and Pg are the polarization responses of the matrix
and the system of granules, respectively.

It is assumed that the sizes of molecules and granules are
much smaller than the distance between them. In discrete
representation, we then write

( ) ( ) ( )å d= -tP d r r r, . 2
j

j j1,g 1,g

Here ( )td r ,j1 and ( )td r ,jg are the nonstationary dipole
moments of the molecules and granules, respectively;

( )d -r rj is Dirac’s delta function; and the summation is
carried out over each molecule and each nanogranule.

We emphasize that the values of the nonstationary dipole
moments depend on the electric field of the pulse. In part-
icular, these values vary for free atoms and those located in
the field of the light pulse. Therefore, the dipole moments in
(2) depend on both the time t and position rj of the atom
(nanogranule).

Obviously, the distances between 1-molecules are much
smaller than those between granules containing 2-molecules.
We assume also that the average distance l1 between
1-molecules is much smaller than the characteristic spatial
scale λ of the pulse, i.e.

( )e
l

=
l

1. 31
1

This condition is fulfilled well in the case of ~ -l 10 cm1
7 . At

the same time, it is seen from the estimates given above that

the characteristic distance lg between granules containing
2-molecules satisfies the condition lg?l1. Therefore, we put

⎛
⎝⎜

⎞
⎠⎟ ( )e

l
=

l
1. 4g

g
2

Note that condition (3) imposes a stricter constraint on
parameter l1 than condition (4) on parameter lg. Indeed,
inequality (4) is satisfied if we assume lg<λ rather than
lg=λ (see the numerical estimates given in the
introduction).

Condition (3) allows us to apply to equation (2) the
approximation of a continuous medium in the case of
1-molecules. Then

( ) ( ) ( ) ( ) ( )å åd d= - » - Dt t NP d r r r d r r r, , .
j

j j
l

l l l1 1 1
1

Here, we pass from the summation over the separate mole-
cules to that over the clusters. It is assumed also that the
nonstationary dipole moments of all 1-molecules in the
separate clusters are equal; the lth cluster contains ( )DNl

1

molecules.
Let ( )DVl

1 be the volume of the lth cluster. Then, we have

( ) ( )

( ) ( )

( ) ( ) ( )
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3

1 1

where n1 is the average concentration of 1-molecules, which
is supposed to be constant in the continuous limit. Thus,

( )= nP d . 51 1 1

Taking into account (4), we consider approximately an
influence of the discrete character of the medium in the case
of 2-molecules in granules by applying the approximation of
a quasicontinuous medium. To this aim, we write relation (2)
approximately as

( ) ( ) ( )åå d» - + -
=N

tP d l r r r
1

, , 6
n m

N

j
mj m jg

1
g

n

where rm is the radius vector of the mth granule, one of the
next neighbors of the jth granule; = -l r rmj m j is the vector
connecting the jth granule with the mth next neighbor; Nn is
the average number of such next neighbors; and index j runs
over all granules.

Introducing vector = -q r rj j, we rewrite equation (6)
in the following form:

( ) ( ) ( )åå d= - +
=N

tP d r q l q
1

, . 7
n m

N

j
m mj jg

1
g

n

Considering inequality (4), we expand ( )- + td r q l ,m mjg in
the Taylor series with respect to lmj and keep the first three
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terms only. Then

( ) ( )

( ) ( ) ( ) ( )
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- + = -
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Substitution of expression (8) into equation (7) gives

( )( ) ( ) ( )= + +P P P P . 9g g
1

g
2

g
3

Here
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Since the next neighbors are distributed isotropically
around the allocated jth nanogranule with good accuracy, we
have in quasicontinuous long-wave approximation (4)

( ) ( ) ( )å - » - =
=N

t t td r q d r q d r
1

, , , .
n m

N

m j j
1

g g g

n

Then, as in deriving expression (5), we find

( ) ( ) ( ) ( )( ) å d= - =t n tP d r r r d r, , , 10
j

j jg
1

g g g

where ng is the concentration of nanogranules.
In a similar manner, we then write

(⟨ ⟩ ) ( ) ( )( ) å d=  - tP l d r q q, ,mj
j

j jg
2

g

where á ñlmj is the average value of vector lmj. Since the
medium of the nanogranules is isotropic, we have á ñ =l 0mj .
Thus

( )( ) =P 0. 11g
2

In the approximations accepted, we also have

⟨( ) ⟩ ( ) ( )( ) å d=  - tP l d r q q
1

2
, .mj

j
j jg

3 2
g

In the case of an isotropic distribution of the next neighbors,
we find

( )á  ñ = á ñDl l
1

3
,mj mj

2 2

where Δ is the Laplace operator. It is obvious that ⟨ ⟩ = llmj
2

g
2.

Then

( ) ( )( ) = Dn l tP d r
1

6
, . 12g

3
g g

2
g

In the frameworks of the long-wave approximation used
here, we have dg(r, t)=Nd2(r, t), where N is the average
quantity of molecules in a granule, and d2(r, t) is the non-
stationary dipole moment of 2-molecules. Besides, according
to equation (1), electromagnetic pulses are one-dimensional,
i.e. all dynamic variables depend only on the coordinate z and
time t. Summarizing this and taking into account
equations (9)–(12), we obtain

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )= +

¶
¶

n N
l

z
P d1

6
. 13g g

g
2 2

2 2

The density operator r̂1,2 and the operator of the dipole
moment m̂ of the molecules have the following form in the

basis of the eigenfunctions of the Hamiltonian Ĥ0
1,2

of free
molecules:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( ) ( )r

r r

r r
= =m

m m
m m, . 141,2 bb

1,2
ba

1,2

ab
1,2

aa
1,2

bb ba

ab aa
^ ^

Here, diagonal elements maa and mbb form the PDMs of
molecules, and nondiagonal elements = *m mab ba describe the
transitions between the quantum levels; indices a and b cor-
respond to the lower and upper quantum levels, respectively.

Below, it is supposed for simplicity that the nondiagonal
elements of the dipole moment operator are real:
mab=mba=m. Also, distinctions of the operator of the
dipole moment for both sorts of molecules are neglected.

Using the relations in (14), we obtain

( )r= =
+

+ +W Ud m
m m

D mSp
2

2 ,1,2
1,2 aa bb

1,2 1,2^ ^

where = -D m mbb aa is the PDM of the transition,

=
r r-

W1,2 2
bb
1,2

aa
1,2

is the inversion of the populations of the

quantum levels, and =
r r+

U1,2 2
ab
1,2

ba
1,2

.
Taking into account that mbb and maa are parallel to the

y-axis, while m is parallel to the x-axis [39–43], we write the
operator of interaction of the FCP field with molecules in the
electro-dipole approximation as

⎛
⎝⎜

⎞
⎠⎟= - = -V

m E mE
mE m E

mE ,bb e o

o aa e

^ ^

where mbb, maa and m are the projections of mbb, maa and m
on the corresponding axes.

Using the von Neumann equation for the density operator
gives us the following system of material equations [43]:

( )

( ) ( )

w

w
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where D is the projection of D on the y-axis, and ÿ is Planckʼs
constant.

As seen from equation (15), the ordinary component of
the FCP causes quantum transitions in the accepted geometry
of propagation, whereas the extraordinary one shifts dyna-
mically the frequencies of these transitions.

Assume that the asymmetry of molecules is weak:

( )e
w

=
W

1. 162
e

1,2

The substitution of expressions (5) and (13) into equation (1)
and scalar multiplications of the resulting equation on 2m/ÿ
at first and then on D/ÿ give us two wave equations on
components Ωo and Ωe, respectively. Taking into account
inequality (16), we retain on the right-hand side of the wave
equation on component Ωe the local polarization response of
both sorts of molecules only. Thus, we obtain the following
system:
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The subsequent consideration is based on the approx-
imate analysis of the self-consistent system of equations (15),
(17) and (18).

3. Nonlinear wave equation

To except the material variables, we apply the approximation
of sudden perturbations [17–19] to equation (15). Let the
condition

( ) ( )e w t= 1 193 1,2 p
2

be valid. The tunnel quantum transitions of nuclei in mole-
cules, and electron transitions in quantum dots, wells, etc, can
satisfy this condition, for example. Taking w ~ -10 s1,2

14 1

and t ~ -10 sp
15 , we find ε2∼0.1.

In the zeroth-order approximation with respect to the
small parameter (19), we obtain from equation (15)

( )( ) ( )q q= =W W V Wcos , sin , 201,2 1,2
0

1,2 1,2
0

where

( )òq = W
-¥

¢td , 21
t

o

and ( )W1,2
0 is the inversion of the population of the quantum

levels before an influence of the FCP. In the case of an
equilibrium medium, we have ( )- < W1 2 01,2

0 . If the

medium is nonequilibrium, then ( )< W0 1 21,2
0 .

Substituting the second expression in (20) into the first
equation of the system in (15), we find in the following order

with respect to the small parameter (19)

( ) ( )( ) w q
¶
¶

= - W
U

t
W sin . 221,2

1,2
0

1,2 e

Substituting equations (20) and (22) into equations (17)
and (18), we obtain the following system of wave equations:

⎧⎨⎩
⎫⎬⎭

[ ( )

( )]
( )

( )

( )
( )

p
w

w q
w

q

¶ W
¶

-
¶ W
¶

= -
¶
¶

- W

+ - W +
¶
¶

z c t

m

c t
n W

Nn W l
Nn W

z

1 16

sin
6

sin ,

23

2
o

2 2

2
o

2

2

2 1 1
0

1 e

g 2
0

2 e g
2 2 g 2

0 2

2

[( ) ]

( )

( ) ( )p
q

¶ W
¶

-
¶ W
¶

=
¶
¶

+
z c t

D

c t
n W Nn W

1 4
cos .

24

2
e

2 2

2
e

2

2

2

2

2 1 1
0

g 2
0

If the right-hand side of the nonuniform one-dimensional
wave equation is less than both terms in its left-hand side,
then the velocity of wave perturbation is close to that of light.
In this case, it is possible to apply the unidirectional propa-
gation approximation [16, 18]. It is easy to see from
equation (23) that this condition is valid if / t h wWo p o 1

2,
where ( )/h p w= m n16o

2
1 1 . It follows from (21) that

/ /q tW ~ ¶ ¶ ~t 1o p. Then, h e 1o 2
2 . Similarly, we find

from equation (24) that ( )/ h D m2 1o
2 . It is important to

note that the last two inequalities can be satisfied without the
fulfillment of the condition of a low-density medium ηo=1
[16]. Indeed, these two inequalities are valid in the case of
h ~ 1o if condition (19) of sudden perturbation and one of
weak asymmetry of the molecules,

⎜ ⎟⎛
⎝

⎞
⎠ ( )e =

D

m2
1, 254

2

are fulfilled.
We set Ωo=Ωo(τ, ζ), Ωe=Ωe(τ, ζ), where

{ }/t z e e h e h e= - = =t z c z, , max ,o 2 o 4 , in accordance
with the unidirectional propagation approximation. Then,
neglecting the term of the order ε2, we have
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Since the right-hand side of equation (23) is proportional to ε,
it is necessary to put

t
¶
¶

=
¶
¶z c

12

2 2

2

2

there. As a result, integrating with respect to τ the wave
equations obtained in this case from equations (23) and (24),
we find
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= +

- + W

+
¶
¶

z
a n W Nn W

n W Nn W

W b

sin

sin , 26

o
1 1 1

0
2 g 2

0

1 1
0

g 2
0

e

2
0

s
2

2

2

( ) ( )( ) ( ) q
¶W
¶

= + W
z

g n W Nn W sin , 27e
1 1

0
g 2

0
o
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where

p p
w

p
= = =

  
a

m

c
b

m

c
Nn g

D

c

8
,

8
,

2
,

2 2

g 2

2

( )t =
l

c6
. 28s

g

It is taken into account under the derivation of equation (27)
that ∂θ/∂τ=Ωo (see relation (21)). Obviously, the char-
acteristic time τs of spatial dispersion is of the same order of
magnitude as the time of propagation of light between the
next nanogranules.

We have from equations (26) and (27)

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( )

( )h w w t q

w

¶
¶

W +

+ W - W =

z

nN

n
W

a

g

a

g

1 cos

2 0,

29
0
2

o
g

1
1 2 s

2
2

0

e
2

ef e

where
( ) ( )

( ) ( )w
w w

=
+

+

n W Nn W

n W Nn W
.ef

1 1 1
0

2 g 2
0

1 1
0

g 2
0

Under the derivation of the conservation law (29), we put

t t
¶
¶

»
¶

¶ ¶c z

12

2

2

in the last term of the right-hand side of equation (26).
Supposing ~N n L1 g

3 and ~ -n lg g
3, we obtain

⎛
⎝⎜

⎞
⎠⎟( )h w w t h w t~

nN

n

L

l
.o

g

1
1 2 s

2
o 1 s

2 g

g

3

Taking the values of ηo, lg, Lg and ω1 given above, we have
t ~ -10 ss

16 and ( )/h w w t ~ -nN n 10o g 1 1 2 s
2 8. Therefore, the

second term in the parentheses of equation (29) can be
neglected. Also, due to inequality (16), we neglect the second
term in the square brackets of equation (29). Then, we find
after integration

⎜ ⎟⎛
⎝

⎞
⎠ ( )

w w
W = W =

Wg

a

D

m2 2 2
. 30e

ef
o
2

2
o
2

ef

It is seen from this relation that

e e e~4 2 3

in the order of magnitude.
Substituting (30) into equation (26) and taking into

account relation (21), we obtain the nonlinear wave equation

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )q

t
a

t q
t

q bt
t

q
¶
¶ ¶

= - -
¶
¶

+
¶
¶z

1
2

sin sin , 31c
2 2 2

s
2

2

2

where

( )( ) ( ) ( )a w w b= - + =a n W Nn W W b, ,1 1 1
0

2 g 2
0

2
0

( )t
w

=
D

m

1

2
. 32c

ef

Parameter τc has the dimension of time and characterizes the
asymmetry of molecules. Note that the definitions of the

characteristic times τs and τc are similar to those introduced in
[43]. In the case of τc=τs=0 (absence of asymmetry of
molecules and spatial dispersion), equation (31) is reduced to
the famous SG equation [46].

If τc=0, then equation (31) coincides with the Rabelo–
Fokas equation [50–53] integrable by the ISTM. Another
generalization of the Rabelo–Fokas equation was investigated
in [43]. In the designations used here, it is written in the
following form:

⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )

( )

( )

q
t

w t
q
t

w q bt
t

q

¶
¶ ¶

= -
¶
¶

+ +
¶
¶

z
a n W

Nn W

1

sin sin . 33

c

2

1 1 1
0 2

2

2 g 2
0

s
2

2

2

Supposing in this equation that the asymmetry is weak:

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠t

q
t

t
q
t

t q
t

¶
¶

-
¶
¶

» -
¶
¶

1, 1 1
2

,c c
c2

2
2

2 2 2

we do not reduce it to equation (31). The reason is that
1-molecules were assumed in [43] to be asymmetric only.
Here, both sorts of molecules possess the property of asym-
metry. Conditions (3), (16) and (25) signify that the asym-
metry and spatial dispersion are rather low. This allows us to
neglect the asymmetry of molecules in the nanogranules.

4. Integrable case and soliton solutions

As was shown in [43], if an additional condition on the
parameters of equation (33) is imposed, then this equation is
integrable by the ISTM and is connected by means of the
change of dependent and independent variables with the
modified SG (MSG) equation [54–57]:

⎜ ⎟⎛
⎝

⎞
⎠˜ ˜ ˜

( )x
k

x
x

¶
¶ ¶

= - -
¶
¶x t x

1 sin . 34
2

2
2

Here ( ˜ ˜)x x k= x t, , is a constant. A quite similar situation
occurs in the case of equation (31).

Let the condition

( )at bt= 35c
2

s
2

be valid. Then, equation (31) is written as

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )q

t
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t q
t
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t

q
¶
¶ ¶
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¶
¶

+
¶
¶z

1
2

sin sin . 36c
c

2 2 2
2

2

2

Equation (36) is integrable by the ISTM and is repre-
sented as a zero-curvature condition

ˆ ˆ
[ ˆ ˆ ]

t
¶
¶

-
¶
¶

+ =
L
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A
L A, 0,

where

⎛
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⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

at q

at q
at q= -

-
+l

l

q

q-
A L

1

2

i 2 sin

i 2 sin
cos

c

c

c

e

e

2

i

i
^ ^

(λ is the spectral parameter).
Using relations (28) and (32) and the expressions for

parameters α and β, we write the integrability condition (35)
as follows:

⎛
⎝⎜

⎞
⎠⎟ ( )( ) ( ) w

w
t
t

= - +W W
Nn

n
1 . 37

c
1

0
2

0 2 g

1 1

s
2

2

It is seen that the initial inversions ( )W1
0 and ( )W2

0 of the
populations of the quantum levels should have opposite signs
for equation (31) to be integrable. This means that the med-
ium is in a quasiequilibrium state before an influence of the
electromagnetic pulse.

Note that condition (37) differs from the integrability
condition of equation (33) in essence. Namely, equation (33)
is integrable in cases of an equilibrium or nonequilibrium
medium, i.e., when parameters ( )W1

0 and ( )W2
0 have identical

signs. Therefore the soliton solutions of equation (31) (or
equation (36)) constructed below are not a limiting case of the

soliton solutions of equation (33) at ( ) t q
t

¶
¶

1c
2 2

. Thus, the

soliton solutions considered here are not incorporated into to
the ones found in [43].

Let the parameters of equations (34) and (36) be con-
nected by the relation

k at= - 2 .c

Then, there exists a change of variables transforming inde-
pendent and dependent variables of the MSG equation (34)
into those of equation (36). This change of variables has the
following form:

( ) ˜

˜
( ) ( ˜ ˜)

( )

˜

òt
a

k

q t x

= + -

=
=

¢u x

z t

z x t

1

2
1 1 d ,

,

, , ,

38

x
2 2

where we use the notation

˜
( )x

=
¶
¶

u
x

, 39

and variable τ satisfies the equation

˜
( )t

at x
¶
¶

= -
t

cos . 40c
2

The last equation removes the functional arbitrariness in the
definition of τ.

From equations (38) and (21), we have

( )a

k
W =

+ -

u

u

2

1 1
. 41o

2 2

Given the multi-soliton solutions of the MSG
equation (34), we obtain the multi-soliton solutions of
equation (36) with the help of the change of variables in (38).

The multi-soliton solutions of the MSG equation were studied
in detail in [40] (see [43] also).

Without loss of generality, the one-soliton solution of the
MSG equation (34) is written as follows:

( ) ( )x
mk j

mk j m k
= -

-

- +
1 2arccos

tanh

1 2 tanh
, 42k

2 2

where

˜
˜ ( )j m
m

j= - +x
t

,0

μ and j(0) are real constants, and k ä {0, 1}.
It is seen that the topological charge ( ∣ ˜x= -¥S x

∣ )˜x -¥x /π of the one-soliton solution (42) of the MSG
equation is

⎧⎨⎩
( ) ( ) ∣ ∣

∣ ∣
m mk

mk
=

- <
>

S
1 sgn if 1,

0 if 1.

k

Consequently, the one-soliton solutions are divided into three
families having topological charges of 1, −1 and 0, respec-
tively. The first two families correspond to the kinks and
antikinks (2π-pulses) of the SG equation. Solitons of the third
family are called neutral kinks [40].

It follows from equations (42) and (39) that

( )m j
mk j

mk j m k
=

-
- +

u 2 sech
1 tanh

1 2 tanh
. 43

2 2

Then, we have

⎧
⎨⎪
⎩⎪

∣ ∣
∣ ∣ ∣ ∣

∣ ∣
( )

∣ ∣

m m k mk

mk
=

- <

k


umax
2 1 if ,

if .
44

2 2 1

2

1 1

2

It is seen that the amplitude of u is independent of parameter
μ if ∣ ∣ ∣ ∣m k> 1 2 . In this case, the profile of u consists of
two peaks with an amplitude of ∣ ∣k1 , which are separated by
an interval depending on parameter μ [40]. These peaks have
the same polarity if ∣ ∣mk< <1 2 1, and they have oppo-
site polarities in the case of neutral kinks (∣ ∣ ∣ ∣m k> 1 ).

Substituting expressions (42) and (43) into equation (38),
we find the one-soliton solution of equation (36). Note that
the square root in formulas (38) and (41) changes the branch
in the points where ∣ ∣u achieves its maximum value ∣ ∣k1 (see
equation (44)). Since variable u changes the sign in the case
of neutral kinks, corresponding solutions of equation (36) are
singular.

From the first relation in (38) and equations (40) and
(43), we obtain the following expression for variable τ:

˜ [ ] ˜ ( )t
a

k
a

mk j m k at= + - + -
x

t
2

ln 1 2 tanh . 45c
2 2 2

It is seen from this expression that the one-soliton solution of
equation (36) is steady.

Let variable Ωo of the one-soliton solution of
equation (36) decrease by ( ∣ ∣ )/ /tW ~ - -t z vexpo p on the
tails. Here, parameters τp and v are the characteristic duration
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of the one-soliton pulse and its velocity in the laboratory
system of coordinates (z,t), respectively. It follows from
equations (41), (43), and (45) and the expressions for κ and j
that

∣ ∣ ( )
( )t

ma a t t
= =

+ -
v

c

c

1
,

1
. 46

c
p

p
2 2

It follows from these relations that the one-soliton solution of
equation (36) is nonsingular and has a velocity v lower than c
if ( ) <W 01

0 (α>0). In the case of ( ) >W 01
0 (α<0), the

condition v<c is fulfilled for singular solitons only. Hence,
the velocity of a nonsingular steady-state soliton satisfies the
condition v<c for the case ( ) <W 01

0 (i.e. ( ) >W 02
0 ) only.

Note that the duration of a nonsingular one-soliton pulse
satisfies the condition t t> 2 cp .

Figure 1 shows the profiles of variable Ωo of the one-
soliton solution of equation (36). The profiles of variable u
connected with Ωo by relation (41) are depicted here by thin
lines. In this case, the designations of the axes are presented in
the parentheses. It is seen that the amplitude of ∣ ∣Wo tends to
infinity as ∣ ∣m tends to ∣ ∣k1 (figure 1(b)).

The two-soliton solution of the MSG equation (34) is
written as

[ ]
[ ]

( )

x
m j
m j
m e j m k j
m e j m k j

=-

-
-

-

+ -

- +

+ - - - -

- + + + +

2 arctan
sinh

cosh

2 arctan
sinh 2 cosh

cosh 2 sinh
, 47

where

m
m m

j
j j

e m m k=


=


=   
2

,
2

, 1 ,1 2 1 2
1 2

2

˜
˜ ( )j m

m
j p= - + +x

t
ki ,1,2 1,2

1,2
1,2
0

1,2

μ1,2 and
( )j1,2
0 are real constants, and k1,2ä{0, 1}.

The two-soliton solution of equation (36) is obtained by
the substitution of expression (47) into equations (38) and
(39). This solution describes the elastic collision of two one-
soliton pulses with durations and velocities defined by the
relations in (46), where μ=μ1 and μ=μ2.

A plot of variable Ωo of the two-soliton solution of
equation (36) in the case of solitons having the same polarity
is presented in figure 2. The character of the interaction of
such solitons is similar to that in the SG equation case.
However, if the solitons have opposite polarities, then their
interaction can lead to the appearance of a short-lived pulse
with an extraordinarily large amplitude (see figure 3). The
dynamics of this pulse resembles that of rogue
waves [58, 59].

The breather solution of the MSG equation (34) is
defined as

[( ∣ ∣ ) ]
[( ∣ ∣ ) ]

( )

x
m j
m j
m m k j m k j

m m k j m k j

=

+
- -

+ -

2 arctan
sin

cosh

2 arctan
1 sin 2 cos

1 cosh 2 sinh
,

48

R I

I R

R
2 2

I I I

I
2 2

R R R

where

( ) ( )˜ ˜˜
∣ ∣

( ) ˜
∣ ∣

( )j m j j m j= - + = + +
m m

x x, ,t t
R R R

0
I I I

0
2 2

Figure 1. Profiles of variables Ωo and u (thin line; the corresponding
designations of the axes are given in parentheses) of one-soliton
solutions with parameters a k= c0.5 2 , ∣ ∣t k= c2c ,

( )j = =k0, 00 and ∣ ∣m k= 0.35 (a) and ∣ ∣m k= 0.95 (b).

Figure 2. Profile of variable Ωo of two-soliton solution with
parameters a k= c0.5 2 , ∣ ∣t k= c2c , ∣ ∣m k= 0.251 ,

∣ ∣m k= -0.62 , ( ) ( )j j= = 01
0

1
0 , and = =k k 01 2 .
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( )m m j, ,R I R
0 and ( )jI

0 are real constants, and μ=μR+iμI.
Substitution of expression (48) into equations (38) and

(39) gives the breather solution of equation (36). Plots of
variable Ωo of this solution are presented in figure 4.

Let us determine the characteristic parameters of the
breather solution of equation (36) by supposing that variable

Ωo decreases by ( ∣ ∣ ) ( ( ))/ / /t w- - -t z v t z vexp cosg b b ph at
the tails. Parameters τb, ωb, vg and vph are the duration of the
breather, its frequency, the group velocity and the phase
velocity in the laboratory system of coordinates (z,t),
respectively. From the first relation in (38), equations (39),
(41), and (48) and the expressions for jR and jI, we have

∣ ∣
∣ ∣t

m a
w m a= =

1
, ,b

R
b I

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )a t

t
w t

= - -
+

-

v c c1
1

, 49cg
2 b

2

b
2

b
2

1

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )a t

t
w t

= - +
+

-

v c c1
1

. 50cph
2 b

2

b
2

b
2

1

In the case of τc=0, these formulas coincide with the ones
of the SG equation.

As m  0I , expression (48) reduces to

˜ ˜

( )( ˜ ˜ )
( )

x
m m

j
k m m m km
k m j km j

=
+

+
- + -
+ -

x t

x t

2 arctan
cosh

2 arctan
1 2

1 cosh 2 sinh
,

2 2

2 2

where we put μ=μR. Substituting this expression into
equations (38) and (39) gives us the solution of equation (36),
which describes the interaction of solitons with equal velo-
cities. A plot of variable Ω0 of this solution is presented in

Figure 3. Profiles of variable Ωo of two-soliton solution with
parameters ∣ ∣a k t k= =c c0.5 , 2c

2 , ∣ ∣m k= 0.691 ,
∣ ∣ ( ) ( )m k j j= = = = =k k0.7 , 0, 02 1

0
1
0

1 2 and ∣ ∣k= -z 10 (a),
z=0 (b) and ∣ ∣k=z 15 (c).

Figure 4. Profiles of variable Ωo of breather solution with parameters
a k= c0.5 2 , ∣ ∣t k= c2c , ( ) ( )j j= = 0R

0
I
0 and ∣ ∣/m k= 0.4R ,

∣ ∣/m k= 0.7I (a) and ∣ ∣/m k= 0.4R , ∣ ∣/m k= 0.04I (b).
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figure 5. It is remarkable that the polarities of variable Ωo of
the colliding solitons are opposite. The breather solution with
ωbτb<1 can be interpreted as a bound state of two one-
soliton pulses having equal durations and opposite polarities
(see figures 4(b) and 5).

In the case of ωbτb?1, variable Ωo of the breather turns
into an envelope soliton. In that case, τb and ωb are the
duration of the envelope soliton and its carrier frequency,
respectively. Using expression (28) and the equality λ=2π
c/ωb, we rewrite condition (3) into the form ( ) w t 1b s

2 .
From this inequality and equation (35), we find
( ) ( )/ /w t w w=b a n ncb

2
g 2 1 1 . Assuming that ω1∼ω2, we

have ( ) ( )/ / w t ~n n l l 1cb
2

g 1 1 g
3 . From equations (49)

and (50), we obtain the following expressions for the phase
and group velocities of the envelope soliton:

/ /a w a w
=

+
=

-
v

c

c
v

c

c1
,

1
.g

b
2 ph

b
2

According to the remark after equation (24), the values of
the group and phase velocities differ a little from c. Then
∣ ∣/ a wc 1b

2 and

( ) ( )/ /a w a w» - » +v c c v c c1 , 1 .g b
2

ph b
2

In an equilibrium medium of 1-molecules ( ( ) a< >W 0, 01
0 ),

we have vg<c. If the medium of 1-molecules is none-
quilibrium ( ( ) a> <W 0, 01

0 ), then vg>c. This super-
luminal regime does not contradict the special theory of
relativity and is due to the mechanism of pulse reshaping
during propagation in the nonequilibrium medium [60–62].

The multi-soliton solutions of equation (36) describe the
elastic collisions of the steady-state solitons and breathers
considered above. They are constructed by applying the
change of variables in (38) to the multi-soliton solutions of
the MSG equation (34).

5. Conclusion

In this work, the wave equation (31) is obtained under an
investigation of the propagation of extremely short electro-
magnetic pulses through a nonlinear nanodispersed medium
of asymmetric molecules. Under the imposition of condition

(35) (see also (37)) on the coefficients of this equation, it
becomes integrable by the ISTM. This allows us to find and
investigate the soliton and breather solutions. Curiously, the
integrability condition (35) of equation (31) corresponds from
the physical point of view to an initial quasiequilibrium
condition of the medium. Perhaps, such a medium can be a
working element of the laser. This circumstance distinguishes
radically the soliton solutions obtained here from the ones
found in [43] for another integrable generalization of the SG
equation. Owing to this, the soliton solutions of equation (31)
are not incorporated into the soliton solutions studied in [43].

In the case of an isotropic homogeneous medium
(τc=τs=0), the integrability condition (35) is satisfied
obviously, while equation (31) is reduced to the SG equation
describing, in particular, the self-induced transparency
phenomenon. It is well known that the soliton solution of this
equation is unstable if the molecules of the matrix are in the
excited initial state ( ( ) >W 01

0 ) [1]. As a result, a natural
question arises about the stability of the soliton and breather
solutions of equation (31) under such a condition. On the
other hand, the integrability condition (35) can be fulfilled if
the molecules of the granules are excited first ( ( ) >W 02

0 ),
while the molecules of the matrix are in the ground state
( ( ) <W 01

0 ). What is possible to say about the stability of
solitons then? Also, the integrability of the systems obtained
from the self-consistent system (15), (17) and (18) by
applying different approximations (e.g., the unidirectional
propagation approximation) has to be investigated. Answers
to these questions are beyond the scope of this study and need
separate consideration. Nevertheless, they can shed light on
the mechanisms of formation and propagation of solitons in
quasiequilibrium media.
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