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As is well known (see [1]), for the Cauchy problem
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(t, x) =

λ2

2m
ΔΨ(t, x) + V (x)Ψ(t, x), Ψ(0, x) = f(x), (t, x) ∈ [0, T ]× R

n,

where λ > 0, the solution is defined by the Feynman–Kac formula

Ψ(t, x) = Ef

(
x+

√
λ

m
Bt

)
exp

(ˆ t

0

V

λ

(
x+

√
λ

m
Bs

)
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)
.

In [2], it was proved that, in the case of the Schrödinger equation

ih
∂Ψ

∂t
(t, x) =

−h2

2m
ΔΨ(t, x) + V (x)Ψ(t, x), Ψ(0, x) = f(x), (t, x) ∈ [0, T ]× R

n,

the solution of a similar Cauchy problem is defined by the equality

Ψ(t, x) = Ef̃(x+
√
ihBt) exp

(
1

ih

ˆ t

0
Ṽ (x+

√
ihBs) ds

)
,

where E is the expectation; the functions f̃( · ) and Ṽ ( · ) are analytic continuations in the argument of
the functions f( · ) and V ( · ) to a suitable domain (see [2]).

In this paper, it is shown that the solution of the stochastic Schrödinger–Belavkin equation can
be written in a similar way if the randomized Feynman–Kac formula for the Euclidean analog of this
equation is known.

The randomized Feynman–Kac formula will be used in the following theorem.

Theorem 1. Let C0(t1, t2) be the space of continuous functions vanishing at a point t1 with
standard Wiener measure wt1,t2 . Then the function Ψω( · )( · ) defined by the equality

Ψω(t)(q) =

ˆ
C0(0,t)

exp

(
b

ˆ t

0
V (τ, q + ξ(τ)) dτ + c

ˆ t

0
R(q + ξ(τ)) dBω(τ)

)
ϕ0(q + ξ(t))w0,t (dξ),

is a solution of the Cauchy problem

dΨω(t)( · ) = a(Ψω(t))
′′( · ) + bV (t, · )Ψω(t)( · ) + cR( · )Ψω(t)( · ) dBω(t), Ψω(0)( · ) = ϕ0(q),

where a, b, and c are positive number parameters, R(q) > 0 for all q ∈ Q, the functions R( · ), ϕ0

are real and continuous, and V (t, · ) is integrable and bounded on Q (Q is the configuration space
on which Ψω( · )( · ) is defined).
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Scheme of proof. Just as in the deterministic case, using the Itô formula, we obtain the following
equality:

d

(
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)
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dBω

+
d
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(ˆ
C0(0,t)
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(
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d2
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(ˆ
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. . .

)
.

Further, we integrate both sides over C0(t, t+ s) and pass to the limit as s → 0 (for details, see [3]).

In what follows, of importance will be the case where the Cauchy problem in Theorem 1 is of the form

dΨω(t)(q) = α
d2Ψω(t)(q)

dq2
dt+

(
αV (q)− λ

4
q2

)
Ψω(t)(q) dt+

√
λ

2
qΨω(t)(q) dBω(t),

Ψω(0, · ) = ϕ0( · ),
(1)

where ϕ0( · ) ∈ Cb(R
1) and α ∈ C \ {0}, Reα ≥ 0. In this case, its solution is defined by the following

Feynman–Kac formula:

Ψω(t)(q) =

ˆ
exp

{ˆ t

0
αV (q + ξ(τ))dτ −

ˆ t

0

λ

2
(q + ξ(τ))2dτ

}

× exp

{√
λ

2

ˆ t

0
(q + ξ(τ)) dBω(t)

}
ϕ0(q + ξ(t))wα

0t (dξ). (2)

In the Feynman–Kac formula itself, the parameter α is real and positive. For such values of the
parameter, we obtain precisely the Euclidean analog of the stochastic Schrödinger equation.

In [2], the Feynman–Kac formula for the (nonstochastic) Schrödinger equation was obtained from
the Feynman–Kac formula for the heat equation.

In [2] and [4], representations of the solution of the Schrödinger equation as a path integral were
obtained by analytic continuation in a parameter; see also [5] and [6]. For such a variant of analytic
continuation, a countably additive measure does not appear, which was noted in [4]. Instead, there arises
a generalized measure, called the Feynman measure, defined on a suitable function space. It should
be noted that, in important (for applications) cases, no analytic continuation of a countably additive
measure defined on an infinite-dimensional space can be a countably additive measure. In addition,
note that the Feynman measure can be obtained by an essentially different method by using Chernoff’s
theorem or other closely related propositions (see [7] and [8]).

In what follows, we also another approach, going back to Doss’es paper [2]; it is based on the analytic
continuation of an integrable function. Here the measure with respect to which integration is performed
is replaced by its image, which again turns out to be a countably additive measure.
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Namely, let

ϕ(t, q) =

ˆ
C0([0,t],Q)

exp

(ˆ t

0
V (q + ξ(τ)) dτ

)
ϕ0(q + ξ(t)w(dξ));

then, after a change of variable, we obtain the following chain of equalities:

ϕ

(
t,

q√
−i

)
=
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exp
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0
V

(
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+ ξ(τ)
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q√
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+ ξ(t)

)
w(dξ)

=

ˆ
C0([0,t],Q)

exp

(ˆ t

0
V

(
q√
−i

+

√
−iξ(τ)√
−i

)
dτ

)
ϕ0

(
q√
−i

+

√
−iξ(t)√
−i

)
w(dξ)

=

ˆ
C0([0,t],Q)

exp

(ˆ t

0
V

(
1√
−i

(q + ξ1(τ)) dτ

)
ϕ0

(
1√
−i

(q + ξ1(τ)

)
wf−1 (dξ1),

where f(ξ) = ξ1 =
√
−iξ. Thus,

ϕ(t, q1) =

ˆ
C0([0,t],Q)

exp

(ˆ t

0
V

(
q1 +

ξ1(τ)√
−i

)
) dτ

)
ϕ0

(
q1 +

ξ1(τ)√
−i

)
)wf−1 (dξ1), (3)

where q1 = q/
√
−i.

In what follows, we shall describe a generalization of the Doss method to the stochastic case.
Using this generalization, we shall derive a Feynman–Kac formula for the Schrödinger–Belavkin
equation from the Feynman–Kac formula for the stochastic heat equation. This method for deriving
the Feynman–Kac formula for the Schrödinger–Belavkin equation differs from that used in [9].

It consists in that all functions appearing in the Feynman–Kac formula corresponding to the heat
equation are analytically continued to a suitable domain and then extended by continuity to its closure,
after which the change-of-variable formula is applied to the resulting integral. The fact that the resulting
integral with respect to a countably additive measure yields a representation of the solution of the
Schrödinger–Belavkin equation follows from Theorem 1 and the uniqueness of analytic continuation.

In the proof of the main theorem given below, we use the following lemma.

Lemma. Let ψ : [0,∞) → L2(R
1) be a solution of the equation

ψ(t)− ψ(0) =

ˆ t

0
((ψ(τ))′′ − iV ψ(τ)) dτ

and, for each t ≥ 0, let the function x �→ ψ(t)(x) admit the analytic continuation to the domain{
z ∈ C : z = ρe−iα, α ∈

[
0,

π

4

)
, ρ > 0

}

and the extension by continuity to its closure. Let ϕ : [0,∞) → LC

2 (R
1) (here LC

2 (R
1) is the

complexification of the space L2(R
1)) be the function defined as follows:

ϕ(t)(x) = ψ(t)(
√
−ix),

√
−i = e−iπ/4,

where the differentiation is performed with respect to the space variable. Then the function ϕ is a
solution of the equation

iϕ(t)− iϕ(0) =

ˆ t

0
(−(ϕ(τ))′′ + V ϕ(τ)) dτ.

Proof. This fact is verified as follows:

iϕ(t)(x) − iϕ(0)(x) = iψ(t)(
√
−ix)− iψ(0)(

√
−ix) =

ˆ t

0
(i(ψ(τ))′′(

√
−ix) + V ψ(τ)(

√
−ix)) dτ

=

ˆ t

0
(−(ϕ(τ))′′(x) + V ϕ(τ)(x)) dτ ;
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here we have used the equalities

ϕ′(t) = ψ′(t), (ϕ(t))′(x) = exp

(
−π

4

)
(φ(t))′(x), (ϕ(t))′′(x) = −i(ψ(t))′′(x),

i(ψ(t))′′(x)− i · iV ψ(t)(x) = −(ϕ(t))′′(x) + V ϕ(t)(x).

By definition, the solution of the stochastic heat equation (1) is the solution of the following stochastic
integral equation:

Ψω(t)(q) −Ψω(0)(q) =

ˆ t

0
αΔ(Ψω(τ))(q) dτ +

ˆ t

0
αV (q)Ψω(τ))(q) dτ

+

ˆ t

0
−λ

4
q2(Ψω(τ))(q) dτ +

ˆ t

0

√
λ

2
qΨω(τ))(q) dBω(τ). (4)

If the function (t, q, ω) �→ Ψω(τ))(q) is a solution of this equation, then the function ημ defined by the
equality

ημ(t)(q, ω) = Ψω(t)(
√
−μq)

is a solution of the following equation:

μ(ημ(t)(q, ω)− ημ(0)(q, ω))

=

ˆ t

0
−1

2
αΔ(ημ(τ))(q, ω) dτ +

ˆ t

0
αμV (

√
−μq)ημ(τ)(q, ω) dτ

−
ˆ t

0
−λ

4
(
√
−μq)2(ημ(τ))(q, ω) dτ −

ˆ t

0

√
λ

2

√
−μ

√
−μqημ(τ)(q, ω) dBω(τ). (5)

This is verified by differentiation. Thus, the following theorem holds.

Theorem 2. Let Ψ be a solution of the following Cauchy problem:

dΨω(t)(q) = i
d2Ψω(t)(q)

dq2
dt+

(
iV (q)− λ

4
q2

)
Ψω(t)(q) dt+

√
λ

2
qΨω(t)(q) dBω(t),

Ψω(0, · ) = ϕ0( · ).
(6)

Then

Ψ(t, q1) =

ˆ
exp

{ˆ t

0
iV

(
q1 +

ξ1(τ)√
−i

)
dτ +

ˆ t

0
−i

λ

4

(
q1 +

ξ1(τ)√
−i

)2

dτ

}

× exp

{ˆ t

0
i

√
λ

2

(
q1 +

ξ1(τ)√
−i

)
dBω(τ)

}
ϕ0

(
q1 +

1√
−i

ξ1(t)

)
wf−1 (dξ1) (7)

(in the notation of (3)).

Proof. Let us extend the function μ �→ ημ to the domain{
z ∈ C : z = ρe−iα, α ∈

(
−π

2
, 0

]
,
3

2
> ρ >

1

2

}

and to its closure by continuity. Equation (6) is obtained from (5) by setting μ = i. For an arbitrary real μ,
the function ημ satisfies the Feynman–Kac formula. Further, equality (2) always holds in view of the
uniqueness of analytic continuation. By Theorem 1, the solution of Eq. (1) for a real α is the function (2).
It is easy to see that the function (7) is obtained from the function (2) by the change specified in the
lemma. Then it follows from the lemma that the function (7) is a solution of the Schrödinger–Belavkin
equation.
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