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Features of viscous vortex
domains (VVD) method

* It's purely Lagrangian method for solving 2D Navier-Stokes equations

* It doesn't have any empirical parameters, all formulas are well
based.

* The method can be applied for the flows with arbitrary moving
boundaries. In particular it's useful for investigating flow-structure
interaction.

* Body motion equations can be included in general system with fluid
dynamics equations, therefore there are no limitations on body
inertial property (in particular they can be negligibly small)

* The method allows to resolve boundary layer correctly with high
resolution

* It allows to calculate friction forces on bodies surfaces.

G. Ya. Dynnikova “The Lagrangian approach to solving the time-dependent Navier-
Stokes equations” Doklady Physics. 2004, V. 49, No. 11, p. 648-652

P.R. Andronov, S.V. Guvernyuk, G.Ya. Dynnikova, “Vortex methods for calculating
unsteady hydrodynamic loads” Moscow : MSU, 2006. 184p. (in Russian)

VVD is an abbreviation for Viscous Vortex Domains. This
method has been proposed by GD in this work. More detailed
it's described in this book.

Among the well-known numerical schemes for the fluid
flow simulation, the closest to VVD method is Diffusion Velocity
method of Ogami and Akamatsu.
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Basis of the VVD method
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V - convective velocity

V, - diffusion velocity

Y. Ogami, T. Akamatsu “Viscous flow simulation using the discrete vortex model. The
Diffusion Velocity Method” Computers and Fluids. 1991, V. 19, No. 3/4, p. 433-441

Similar to the Diffusion Velocity method of Ogami and
Akamatsu, the VVD method is based on the fact that circulation
in a viscous fluid is conserved on contours moving with velocity
u=V+Vd (u is equal to the sum of fluid velocity V and so called
diffusion velocity Vd)

This follows from the Navier-Stokes equation



Difference between the VVD and
Diffusion Velocity methods (DVM)
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Fails near surface Valid near surface

In VVD method we don't do any assumptions about
the vorticity distribution and shape of vortex elements.

The formula for calculating the diffusion velocity is
based on this expression, which is valid for any smooth
function. These discrete formulas are more accurate
than the formulas of Ogami, especially near the surfaces.

In Diffusion Velocity method the vorticity s
expressed as superposition of Gaussian-shaped vortices
with fixed core radius o. Their method has a difficulty,
connected with choosing of value of o, because vortices
should overlap everywhere in the flow for accurate
computing. The calculation of the vorticity distribution
and diffusive velocity near the surface isn't accurate.



Basis of the VVD method

Vortex domains

u=V+V, Vu#0= domains can expand and contract

In VVD method we consider flow region to be
covered with an invisible grid, which moves according to
the previous slide, and therefore circulation of every cell
remains constant. We call such cells as vortex domains.

Actually we don't have to remember the shape of
contour. For each domain it's enough to control
coordinates of the only point.



Basis of the VVD method
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Control points of domains

oy 0

We move control points with speedu=V +V,
and remember their circulations y, = const Vi

thus we can calculate all flow characteristics.

We move these points with velocity u and
remember domains circulation gamma sub i, which is
constant. Thus we can calculate all flow characteristics.

Generation of new domains takes place on the
streamlined surfaces at every time step at each node of
the contour. Points of the flow separation are obtained
automatically.



Force and moment expressions
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m, —mass of displaced liquid
R. —center of mass
r, — axis

P.R. Andronov, S.V. Guvernyuk, G.Ya. Dynnikova, “Vortex methods for calculating
unsteady hydrodynamic loads” Moscow : MSU, 2006. 184p. (in Russian)

The expressions for hydrodynamic force, force
moment and pressure have been derived in this work.
They all depend on circulations of newly generated
domains. It's remarkable, that they depend on
circulations linearly.

Here're written formulas for solid body, But we also
have ones for deformable and semipermeable surfaces.
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If velocity of the surface is unknown the
system should be supplemented by the
body dynamic equations and by the
expressions of hydrodynamic forces.

As it has already been mentioned, formation of new
domains takes place on the streamlined surfaces at
every time step at each node of the contour. To find

circulations we use linear system, which includes:

boundary no-leaking conditions, and body motion

equations.

The no-slip condition is ensured by these 2 terms.

All new domains represent free vorticity.




Testing the method: flow around the flat plate

Shear stress (smooth line
corresponds to Blasius velocity
distribution)

Vortices pattern

Velocity profile (full line -
Blasius velocity distribution)

/ Re=Y"—20. " _0.m
_ 1% L

2 h - plate thickness

2xL

» —x/L=065

¢+— 05

/)E
? <

0 05 ufug 1

Testing of the method is shown here. This is classical
problem of longitudinal flow around the flat plate at low
Re number. This problem has an analytic solution.

Figure 1 represents shear stress over the plate
(smooth line represents shear stress for Blasius velocity
distribution, and sharp line corresponds to the numerical
results),

figure 2 shows position of domains control points.
Flow moves from the left to the right.

On this figure there're depicted Blasius velocity
distribution (solid line) and the numerical result
obtained by the VVD method (dots)

Thus we can see good coincidence between VVD
method results and theoretical data.



Coupled problem of a body
gutorotation or self-osgillation in a flow

P. R. Andronov, D. A. Grigorenko, S. V. Guvernyuk, G. Ya. Dynnikova // Fluid Dynamics
2007, Vol. 42, No.5, p. 719-731

The VVD method has been used for solving coupled
task of autorotation of plates and impellers around their
axes. It was obtained numerically and confirmed
experimentally, that, depending on initial conditions,
two different regimes with autorotation and self-
oscillations of the considered bodies exist. During the
autorotation regime a «vortex satellite» is formed ahead
of the plate moving downstream. This vortex generates
lower pressure that supports autorotation.
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Method application: coupled
problem of body locomotion

m>0 " : m=0

The flow-body interaction have been investigated
using this method. It's a coupled problem of body
locomotion due to proper shape deformation.

1) Jellyfish with finite mass
2) Masses jellyfish

3) Tadpole

4) Fish



Statement of the problem

D _
— = @ - golden ratio
L 2
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A, =arcsin(A4/ L)
A - amplitude

f - frequency

The only parameter of problem - dimensionless frequency

Problem of tadpole swimming was considered more
detailed. The task was to investigate the energy
efficiency of its motion. Here's depicted tadpole model,
and here it's shown on the background of real photo.

To simplify the task we consider only one degree of
freedom — the movement along straight line without
rotation.

Our tadpole has ellipsoid head with proportions of
the golden ratio, and straight unbendable tail. Density of
tadpole and liquid are equal. Tadpole swings its tail in
this law.
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Example of obtained results

L,=lem, L =225cm, v=102cm’[s (water), A=0.12cm, f=4Hz

I
W=w- IAp - xdx - power per unit
0

13



Example of obtained results
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L,=lem, L =225cm, v=102cm’[s (water), A=0.12cm, f=4Hz

I
W=w- IAp - xdx - power per unit
0

Here's shown an example of obtained results. For
illustrativeness they're plotted in dimensional variables
in case of 1cm tadpole, swimming in water.

Instant power is being computed using this formula.
From this chart we can see its value serially becomes
negative. It means that tail usually does negative work.
In nature recuperation usually doesn't take place, thus
cases with setting power zero were also considered.
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Optimal regimes does exist
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is achieved at 24/D, ~ 0.45

We've modeled a lot of regimes, and analyzed

dependency of tadpole's velocity and power
consumption on frequency and amplitude of tail
oscillations.

Here are shown isolines of velocity (green) and
isolines of power (red). It's visible that if tadpole wants
to move at a concrete speed, he should deviate his tail at
about half of his width.
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Conclusion

VVD method is effective for 2D nonstationary
viscous flow simulation and for solving coupled
problems of flow-structure interaction.

Thanks for your attention
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