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Critical solutions of nonlinear equations: Stability issues
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Abstract It is known that when the set of Lagrange multipliers asgediavith a stationary
point of a constrained optimization problem is not a sir@tethis set may contain so-called
critical multipliers. This special subset of Lagrange npliérs defines, to a great extent, sta-
bility pattern of the solution in question subject to par#iceperturbations. Criticality of
a Lagrange multiplier can be equivalently characterizedheyabsence of the local Lips-
chitzian error bound in terms of the natural residual of thgnoality system. In this work,
taking the view of criticality as that associated to the ebmund, we extend the concept to
general nonlinear equations (not necessarily with priduwalt optimality structure). Among
other things, we show that while singular noncritical siolus of nonlinear equations can
be expected to be stable only subject to some poor “asyroaligtithin” classes of pertur-
bations, critical solutions can be stable under rich cesé@erturbations. This fact is quite
remarkable, considering that in the case of nonisolatadtisak, critical solutions usually
form a thin subset within all the solutions. We also note thatresults for general equations
lead to some new insights into the properties of criticalraage multipliers (i.e., solutions
of equations with primal-dual structure).
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1 Introduction

Consider a generic nonlinear equation without any spetiattsire:
@(u) =0, )

where® : RP — RYis some given mapping.
As is well known, if @ is differentiable at a solution € RP of equation (1), then

To-1(0)(U) C ker@' (1), )

whereTy (u) stands for the contingent cone to the Seét a pointu € U, i.e. the tangent
cone as defined in [33, Definition 6.1]. The following notidrcdtical/noncritical solutions
of general nonlinear equations, formulated here for theftiiree, is the key to this work; it
employs Clarke-regularity of a set, for which we refer to,[B&finition 6.4] (see also the
original definition in [8, Definition 2.4.6]).

Definition 1 Assuming thakp is differentiable at a solution of equation (1), this solution
is referred to asoncritical if the setCD*l(O) is Clarke-regular at, and

Tp-1(0)(U) = ker@'(u). ®3)
Otherwise, solutiom is referred to asritical.

We shall show that noncriticality of a solutianis closely related to the local Lips-

chitzian error bound:
dist(u, @~*(0)) = O(||@(u)])) (4)

holds asu € RP tends tou. We shall also establish that singular noncritical sohgioan be
expected to be stable only subject to some poor “asymptigtidan” classes of perturba-
tions. By contrast, critical solutions can be stable uni#r classes of perturbations.

To explain the origins of the notion of critical/noncritlclutions for the general equa-
tion (1), consider the equality-constrained optimizagoablem

minimize f(x) (5)
subject toh(x) = 0,

wheref : R" — R andh: R" — R! are smooth. The Lagrangidn: R" x R' — R of this
problem is given by

L(x, A) = f(x)+ (A, h(x)).
Then stationary points and associated Lagrange multiptiéthe problem (5) are charac-
terized by the Lagrange optimality system

oL

X
with respect tox € R" andA € R'. Let .#(x) stand for the set of Lagrange multipliers
associated to a stationary poinof the problem (5), i.e.,

///(@:{A eR! %(m):o}.

(x,A)=0, h(x)=0, (6)
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When the multiplier set# (x) is nonempty but is not a singleton, it is an affine manifold of a
positive dimension. It has been observed that in the lattees, there is often a special subset
of Lagrange multipliers, called critical, see Definition ldw (this notion was first intro-
duced in [19]). It turned out that this kind of multipliersseimportant for a good number of
reasons, including convergence properties of Newton-tgpthods, error bounds, and sta-
bility of problems under perturbations. We refer to [23,22,25, 20, 29, 27] and discussions
therein; see also the book [26].

Definition 2 A Lagrange muItipIier)T € R associated to a stationary pobfthe opti-
mization problem (5) is calledritical if there

. , PL,_—

existsé € kerh'(x) \ {0} such thatﬁ (x,A)& eim(h(x))", (7

andnoncritical otherwise.

In other words is critical if the corresponding reduced Hessian of the hagian

(i.e., the symmetric matri¥d(A) = H(X, A) of the quadratic formé — @%(YJ\)E, &):
kerh’(x) — R) is singular. As we shall show (see Proposition 2 below), i§ a noncritical
Lagrange multiplier, them = (x; A) is a noncritical solution of the equation representing
the Lagrange optimality system (6). Moreoverxifs an isolated stationary point of the
optimization problem (5), them= (X, A) is a critical solution of the Lagrange system if and
only if A is a critical Lagrange multiplier.

For the purposes of this work, it is useful to point out thédeing characterization of
critical and noncritical Lagrange multipliers [26, Projiims 1.43]. A related result can be
found in [16, Lemma 2].

Theorem 1 Let f: R" — R and h: R" — R! be twice differentiable at € R". LetX be a

stationary point of problen(s), and letA € R' be an associated Lagrange multiplier.
Then the following three properties are equivalent:

(& The muItipIier)T is noncritical.
(b) The error bound

X —X|| +dist(A, .# (X)) = O (H (%(x, A), h(X)) H)

holds as(x, A) € R" x R' tends to(X; A).
(c) Forevery w=(a, b) € R"xR!, any solution(x(w), A (w)) of the canonically perturbed
Lagrange system

which is close enough tex, )T), satisfies the estimate
[[x(w) —X]| +dist(A (w), . (X)) = O(||w][)

asw— 0.
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In particular, criticality of a Lagrange multiplier can bguevalently characterized by the
lack of the Lipschitzian error bound (the bound on the distant¢kea@rimal-dual solution set
in terms of the residual of the Lagrange optimality systerh)s issue had been emphasized
in the discussion associated to [27] (see [28]), and it wagectured that the notion of
critical solutions might be relevant beyond optimality tgyss with primal-dual structure as
in (6). The present work is devoted precisely to this subjet taking the view of existence
or not of a Lipschitzian error bound for the general equatignthat we arrived to the notion
of criticality stated in Definition 1; for the precise relatis, see Section 2 and Theorem 2
in particular. We also show that this notion is central tdsity patterns of solutions of
nonlinear equations subject to perturbations; see Se8tiGwing back to optimization and
critical Lagrange multipliers, some new insights are giireSection 4.

We finish this section with some words about our notation.oighout,|| - || stands
for the Euclidian normB(x, ) is an open ball centered at of radiusd; dist(u,U) =
inf{|lu— 4| | G € U}. Along with the contingent con&y (u), we shall make use of the
regular tangent cong, (u) toU atu, as defined in [33, Definition 6.25]. The polar (negative
dual) cone to a conK is denoted byK®. ThenNy (u) stands for the regular normal cone to
U atu, as defined in [33, Definition 6.3], i.e., it (§u (u))° (see [33, Theorem 6.28 (a)]). For
a smooth manifold, its dimension is din®= dimTs(u) for all u € S(in this case]Ts(u) is
a linear subspace). For a matAxkerAis its null space and iAis its range space. Bywe
denote the identity matrix of any dimension (always cleanfithe context). The orthogonal
projector onto a linear subspakekis denoted bypyy.

Recall finally that a sdt) is called star-like with respect toe U if td+ (1-t)ue U
for all 0 € U and allt € [0, 1]. For such a sety is referred to as an excluded direction if
ut+tveg U forallt > 0.

2 Noncritical solutions and the error bound

Given a solutioru of the equation (1), we shall be saying th@&ts strictly differentiableat
u with respect to the null s@‘l(o) if it is differentiable atu, and

| (u) — @'(u)(u— )| = o([Ju—al) ®)

asu € RP anduc ®~1(0) tend tou. Note that this property is weaker than the usual strict
differentiability (for example, ifuis an isolated solution of (1), then strict differentiatyili
of @ atuwith respect to the null set is equivalent to differentiapiof @ atu).

The key features of noncritical solutions are exposed bydih@ving Theorem 2. After
the proof, we shall illustrate this theorem by some examp@ad discuss some subtleties
of its assertions and assumptions. In particular, we shalvsthat Clarke-regularity and
the equality (3) in the definition of noncriticality are inmEndent (neither property implies
the other); that the equivalent properties in Theorem 2 cdoh éven wherd—1(0) is not a
smooth manifold neaw; and that in general strict differentiability @ at u with respect to
the null set®~1(0) cannot be replaced by differentiability atSee also Remark 3 below for
another justification of the smoothness assumptions infEne@, coming from the context
of the optimization problem (5) and Theorem 1.

Theorem 2 Let @ : RP — RY be continuous near a solutiame RP of equation(1), and
strictly differentiable atr with respect to the null seb—1(0).
Then the following three properties are equivalent:

(a) Solutionu is noncritical.
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(b) The error bound4) holds as u= RP tends tou.
(c) Any solution ¢w) of the perturbed equation

P(u) =w, ©)
close enough ta, satisfies the upper Lipschitzian property
dist(u(w), ®~*(0)) = O(|[wl|)
as we RY tends to0.

We emphasize that item (c) above does not claim the existefremutions of perturbed
problems (the same concerns the corresponding part of &meby. The upper-Lipschitzian
property only means that if a solution close enough to thécha®e exists, it satisfies the
stated estimate.

For the proof we shall need the following.

Lemmal For any U C RP, any ue U and ve RP satisfyingdist(v, Ty (u)) > 0, and any
0 € (O, dist(v, Ty (u))), it holds thatdist(u+tv,U) > &t for all t > 0 small enough.

Proof We argue by contradiction: suppose that there exists a sequ#f reals{tc} such
that{tx} — 0+ and
dist(u+tyv, Ty (u)) < Oty

for all k. Then for everk there existai€ € U such that|u+tyv — 0K|| < dt, and hence,
Iv— (8 —u) /t]| < &. (10)

This implies, in particular, that the sequenp@® — u)/ty} is bounded, and thus, has an
accumulation point, which belongs tdy (u) by the definition of the latter. Then (10) yields

dist(v, Ty (u)) < 9,

contradicting the choice aj. a

Proof (of Theorem 2) The equivalence between properties (b) ani (@bvious, and it
is valid without any differentiability assumptions: forakau € RP, just setw = @(u) by
definition. We next prove the equivalence between itemsrd)h).
Suppose that (a) holds, but (b) does not, i.e., there existgaencéu‘} c RP\ &~1(0)
such that{uk} — G, and
dist(u¥, ®1(0))
(U]

ask — o. By the continuity of® nearu, the set®—1(0) is closed neau. Hence, for each
k sufficiently large there exists a projectionufonto ®@1(0). Let & be any projection of
uk onto ®@~1(0), and defineX = (uk — aK) /|Juk — a¥|| (recall thatuX ¢ ®~1(0)). Then{0K}
converges tas, and without loss of generality we can assume {iv&} converges to some
v e RP, |lv| = 1. From strict differentiability of® at u with respect to the null seb~1(0),
we then obtain that

— (11)

1(u) — @' (@) (U~ &)|| = o||u¥ — &|)
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ask — o, Therefore,
(0]
dist(uk, ®-1(0))
ask — o, According to (11), the left-hand side in the latter relattends to 0, while the

right-hand side tends t@’(u)v. We conclude that € ker@’(u).
On the other hand, by [33, Example 6.16], forkait holds that

T o [Juk — ¥
=@ (IDVKHJFW7

Uk — 0K € Ng 1) (0F).

Therefore X e Na)fl(o)(ak). Then, by Clarke-regularity o®—1(0) at u (which is part of
item (a); recall Definition 1), we obtain that

V€ No-10) (1) = (To-1(0) (1) = (kerd' ()",

where the last equality is by (3). Combining this with thelirsionv € ker@®’(u), we get a
contradiction, because# 0.

Suppose now that (b) holds. Using again the fact that(0) is closed neau, by [33,
Corollary 6.29 (b)] we conclude that the needed Clarkeleagy of @~1(0) atuis equiva-
lent to the equalitfiy,-1q) (U) = fm—l(o) (U). The inclusionfwfl(o)(ﬁ) C Tp-1g)(U) is always
valid [33, Theorem 6.26]. Thus we need to prove the converdesion.

Let there existy € Ta)fl(o)(l]) \'ﬁpfl(o)(ﬁj. Employing again [33, Theorem 6.26], this
implies the existence of a sequerfa&} c ®~1(0) such that{uk} — T, and for any choices
of K e Tqu(o)(uk) the sequencéV¥} does not converge ta Then passing onto a subse-
guence if necessary, we can assume that there gxist3 such that for alk

dist(V, Te-1() (U)) > y.
Then by Lemma 1 we conclude that for kll

|4
2t
for all t > 0 small enough. This implies that we can choose a sequena@alsf{t,} such

that{t,} — 0+, and for allk

distuk +tv, @~1(0)) >

dist{uk + tev, @1(0)) > gtk. (12)

On the other hand, by strict differentiability df atuwith respect to the null seb—(0),
we have that
| (U< +tev) — @' ()] = o(ty)

ask — oo, wherev € ker@’(u) due to (2). Therefore,
|D(U +tev) | = o(tk)

ask — c0. Combining this estimate with (12), we get a contradictiathw4).

It remains to establish (3). This relation follows from (#)a standard way (and the
only assumption needed is differentiability @f at u). Specifically, recalling again that (2)
is automatic, for every € ker@®’(u) we have by (4) that

dist@+ tv, @~1(0)) = O(||S(T+tv) ) = O(t]| @/ (@) + oft) = o)

ast — 0, implying thatv € Tg,-1() (U). O
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We next illustrate Theorem 2 by some examples, and in péatidiscuss some sub-
tleties of its assertions and assumptions.

To begin with, it was demonstrated in [6] that, assumingiomoius differentiability of
® nearu, the error bound (4) implies thab—1(0) is a smooth manifold near. Hence,
in this case, it is automatically Clarke-regulangB83, Example 6.8]. We next exhibit that
under the smoothness assumptions of Theorem 2, the equigatmperties (a)—(c) may hold
even whend~1(0) is nota smooth manifold near. ~

Example 1Consider the functiog : [—1, 1] — R whose graph is shown in [10, left graph of
Figure 1.7]. This function is continuous, it holds tiggi0) = 0, ¢ (+1/k) = 1/(k?), and itis
affine on the intervalé—1/k, —1/(k+1)) and(1/(k+1), 1/k), k=1, 2, .... This function

is strictly differentiable at 0, witp’(0) = 0, but every neighborhood of 0 contains points
where ¢ is not differentiable. Defingb : R? — R in such a way thatb(u) = u; — ¢ (ug)
whenu; € [0, 1]. Then @ is continuous nean = 0 and strictly differentiable at, with
@'(0) = (0, 1). Furthermore, the null s&b—1(0) nearu coincides with the graph af, and

its intersection with any neighborhood wfs not a smooth manifold. At the same time, this
set is evidently Clarke-regular af and (3) holds becausk, 1o (U) = ker®’(u) = {v €

R? | v, = 0}. In other wordsuis a noncritical solution of (1), and hence, by Theorem 2,
error bound (4) and the upper Lipschitzian property botld lfiof this solution. a

Evidently, regardless of any smoothness assumptionské&tagularity does not im-
ply (3). Indeed, if®@1(0) is a singleton{u}, it is certainly Clarke-regular at. But if
ker@’(0) # {0}, then (3) is violated. (Take, e.gb : R — R, ®(u) = u?). The converse im-
plication (of Clarke-regularity by (3)) is also not valids demonstrated by the next example.
Therefore, Clarke regularity and (3) are indeed indepeniggnedients of the definition of
noncriticality.

Example 2Take any closed séi C RP such that it is not Clarke-regular at some U,

and it holds thafly (U) = RP (e.g., two closed balls iRP with the only common pointi).”
According to the remarkable theorem due to Whitney (see, B.grheorem 2.3.1]), there
exists an infinitely differentiable functio® : RP — R such thaty = ®~1(0). From (2)

it then follows that®’(u) = 0. Hence, (3) holds, which demonstrates that the latter does
not imply Clarke-regularity under any smoothness assumgti Therefore, according to
Theorem 2, error bound (4) (and the upper Lipschitzian ptgpeannot hold for any choice

of an appropriate mapping. O

The next two examples demonstrate that strict differeitiiatvith respect to the null
set in Theorem 2 cannot be replaced by only differentiahditthe solution in question.

Example 3Define the functior® : R2 5 R,
Pp(u) if up>ug,
D(u) =} U (u)if0 < up < U2,
U if up <O,
where¢ : R? - R, ¢ (u) = up — uf This @ is everywhere continuous, and
@ 1(0)={ueR?| ¢(u)y=0o0ru; =0} (13)

consists of the parabola and the straight line which areetatn@ each other at= 0. The
set®~1(0) is evidently Clarke-regular at every point.
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We first show thatp is differentiable at, with @'(u) = (0, 1). If this were not the case,
there would exisy > 0 and a sequenda‘} ¢ R?\ {0} such that{u¥} — G, and for allk it
holds that

®(U) —((0,1),u)  d(uF)—ub
v S - S -

Since infinitely many elements of the sequetjoé} satisfy at least one of the inequalities
uk > (uK)2, 0 < Uk < (UX)?, or u§ < 0, passing onto a subsequence if necessary, we can
assume without loss of generality that one of these inetigmiholds for allk. If the first
inequality holds, then

D(U) — U = U — (uf)? — u = —(uU)?,
which contradicts (14). If the second inequality holdsythe
| (u) — | = U (U) — U] = |u§| +o(|u]) < (uf)?+o((uf)?),

which again contradicts (14). Finally, if the third inegiaholds, then

which again contradicts (14).

We conclude thae is differentiable atiand @’ (u) = (0,1). In particular,Tg,-1q) (U) =
kerd’(U) = {v e R? | v, = 0} (the latter is evident, but also follows from [17, Theoren. F]
Thus, (3) holds.

We next show that in spite of all the nice properties showrvabthe error bound (4)
does not hold as — U. Observe first that the functiop is everywhere continuously differ-
entiable, and hence, Lipschitz-continuous nearth some constant > 0. Denoting byu”
any projection ofi onto¢ ~%(0), and observing that = Gasu — U, we obtain that

|6 ()] =9 (u) — ¢(0)] < £lju— 0| = £dist(u, §*(0)) (15

for all u € R? close enough ta.™
For eactk takeu® = (1/k, 1/(2k?)). Sinceu® = (1/k, 1/k?) € ¢ ~1(0), we have that

1

distuf, ¢ 3(0)) < u 0] = U — 05| = .

Therefore, by (13) and (15), it holds that

dist(u*, ®1(0)) = min{dist(u¥, $ ~*(0)), |u§|} = min {dist(uk, ¢1(0)), 2_i2 }

1

= distuf, 9 70)) > F18(W)] = 5z

On the other hand, since<Qu < (uX)?, we have that
D) — b (1) — o) — o X
(U) = (u) =o(u) =0( 17 ),

and hence, (4) cannot hold.
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According to Theorem 2, in the current example the only fadegieason for the lack
of the error bound can be tha& is not strictly differentiable at,”and even not strictly
differentiable with respect t@~1(0). Indeed, for the sequences defined above,

(D) - (@ - | = |u5—02|+o<k_12> B z—iz+o(k_lz)

while ||u¢ — K| = 1/(2k?), contradicting (8). 0

As mentioned at the very end of the proof of Theorem 2, therdroond (4) implies
(3) assuming only thaw is differentiable ati. However, without strict differentiability with
respect to the null set, the error bound (4) does not nedlysisaply Clarke-regularity. We
show this next.

Example 4As in Example 1, defin@ : R? — R as®(u) = up — ¢ (uy), where nowp : R —
R is given by

_ [t2sin(1/t) if t #0,
"’(t)—{o ift =0,

This @ is everywhere continuous, agei(0) is the graph ofp, which is not Clarke-regular
atu=0.

It can be easily seen tha is differentiable au, with @'(u) = (0, 1), and as in Ex-
amples 1 and 3, it holds tha, 1o (U) = ker®'(u) = {v e R? | v = 0}. In particular, (3)
holds.

Furthermore, no matter what is takengasfor everyu € R? it holds that(ug, ¢ (u1)) €
®~1(0). Hence,

dist(u, ®*(0)) < [uz — ¢ (u)| = | @(U),
giving the error bound (4).
According to Theorem 2, the only possible reason for the Efcklarke-regularity is

again the lack of strict differentiability of with respect to the null set. Indeed, for edch
takeu® = (1/(7ik), 0) € @~1(0) anduk = (2/(m(1+ 2k)), 0). Then
4
K\ e K ok — 10K — b (UK — K\ — (k)2 —
|®O(U°) — @' (U)(u" —0%)| = |Gy — ¢ (u1)| = [P (u7)| = (Uy) (1 + 26))2’

while
) = - 0 = 0 =0 (g ).
contradicting (8). O
In both Examples 3 and 4, the regularity condition
rank®’(0) = q (16)

holds. Therefore, these examples demonstrate that in Senebé of strict differentiability
with respect to the null set, the regularity condition (16g8 not guarantee neither the error
bound, nor Clarke-regularity. However, from [17, Theorefritkmmediately follows that
(16) guarantees (3). At the same time, under strict diffgability with respect to the null
set, (16) implies the error bound, which (by Theorem 2) iepIClarke-regularity, and thus
noncriticality of the solution in question.
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Theorem 3 Under the assumptions of Theorem 2, if the condii8) is satisfied, then the
error bound(4) holds as us RP tends tou, and in particular,u is a noncritical solution of
equation(l).

Proof Fix any matrixA € R(P-9*P sych that
ker®'(u) NkerA = {0}
(such matrix exists due to (16)). Define the mapgigRP x RP — RP,

F(ur)=(®(u+r),Ar). @an

T@o-("0) 18)

is a nonsingular square matrix. Applying [17, Theorem C]ilihis the implicit function
theorem not assuming strict differentiability), we obttie existence of a neighborho@
of uand of a mapping(-) : O — RP such thar (u) = 0, r is continuous at, and

ThenF (u, 0) =0, and

F(u,r(u)=0 VYueO. (19)
According to (17), the last relation implies that
®(Uu+r(u))=0 VueO. (20)

Furthermore, since the matrix in (18) is nonsingular, tlexistsy > 0 such that

oF _
HW(U’O)V >ylv|| VYveRP.

Then from (19) we obtain that

— HF(U, 0) —F(u,r(u))+ g—l:(u_, 0)r(u)

= ylIrWll =@ (u) = &(u+r(u)) + " (@r ()] = viir(u +o(ir (u)])

o] = IFw.0) > | $-@orw

asu — u, where the second inequality is by (17), and the last equigliby (8) and (20).
This yields (4). ad

Of course, under any smoothness assumptions, solutiam be noncritical when (16)
does not hold. The simplest example is by takibhg= 0. We also note that a mapping
can be strictly differentiable with respect to the solut&st but not strictly differentiable
in the classical sense, even when the regularity conditi@ ljolds. To see this, augment
the mapping from Example 4 hy; as the second component (i.e, the system now has two
equations: one defined in Example 4, and the secong4s0). Then®’(0) is square and
nonsingular (thus (16) holds® is not strictly differentiable, but it is strictly differeiable
with respect to the null set becausés an isolated solution.

Relations between various properties involved in the disicn above are summarized
in Figure 1. Full lines with arrows correspond to the estdidd implications, while dotted
ones indicate implications which do not hold. The labels ‘{@r differentiability at the
solution) and “SDNS” (for strict differentiability at theokition with respect to the null
set) indicate the smoothness requirements under whichripkcation holds or does not
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........................ Do
Y D
. ( N T

> Clarke regularity < o5 © (m -
[ A : =] =
o : : D Q <
= : S R > 2 3
(8] - [
= Y SDNS > L% g
Z | "Null space equality" =€ 51 | >

A

D

Fig. 1 Relations between the properties involved.

hold. If this information is missing, the corresponding lioation does not hold under any
smoothness assumptions.

We complete this section giving some more examples of nceriand critical solu-
tions, which will be useful also further below to illustrateme stability results. In all these
examples the solutions are singular, by which we mean tleatetjularity condition (16) is
violated. In fact, this situation is the main case of intemeshe rest of this paper. Note that
degeneracy is automaticif= g anduis a nonisolated solution of equation (1).

Example 5Considerd : RP — RP, ®(u) = (42, ..., uf,). Then the unique solution of (1) is
u=0. As ker®’(u) = RP, it is clear thaus a critical solution. ]

We proceed with examples whepe= g (as in Example 5), but solution sets contain
manifolds of positive dimension.

Example 6 Consider®d : R? — R?, ®(u) = (¢ (u)d1(u), ¢ (u)¢2(u)), where the functions
¢, ¢1, d2 : R? — R are continuously differentiable functions. Thén(0) > ¢ ~1(0), and
if for someu€ ¢ ~1(0) it holds thatg’(0) # 0, then neaw, the setg —1(0) is a smooth
manifoldSof dimension 1. Furthermore, if for allc R?\ {G} close enough taitholds that
$1(u) # 0 or ¢o(u) # 0 (e.g., when the gradiends (U) and@;(u) are linearly independent),
then®~1(0) = Snearu. Since

@@
P = <¢§<®¢/<®>’
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it holds that if¢1(u) # 0 or ¢2(u) # 0, then dimker’(u) = 1 = dimS implying thatuis a
noncritical solution. On the other handif (u) = ¢,(u) = 0, then dimker’(u) =2> 1=
dimS, and hencey is a critical solution. O

Example 7 Consider® : R® — R3, ®(u) = (upUy, UzUz, Upuz). Then®~1(0) is the union
of three linear subspaces, all of dimension{t:c R® | uy =0, u; = 0}, {u€ R® | u; =
0, u3 = 0}, and{u € R® | u; = 0, u3 = 0}. Any nonzero solutiom in any of these subspaces

is noncritical, since
Uz g O
(D/(J) = LT3 0 U_]_ )
0 usz Uz
implying that dimkei®’ (u) = 1. Howeveru = 0 belongs to all the specified subspaces and
is critical, since dimke®’(0) =3 > 1. a

Example 8Consider® : R® — R3, ®(u) = (u, Ugus, Upuz). Then®1(0) is the union of
two linear subspaces, both of dimension{i:c R® | u; = 0, u, = 0} and{u € R3 | u; =
0, uz3 = 0}. Any nonzero solutiom in any of these subspaces is noncritical, since

100
PU)=|u0u |,
0 usz Uz
and hence, dimkep’(u) = 1. However,u= 0 belongs to both specified subspaces and is
critical, since dimkef’(0) =2 > 1. 0

3 Further stability issues

The next result is a generalization of [19, Proposition Hick analyzed stability properties
of noncritical Lagrange multipliers. Here, we demonstthg noncritical singular solutions
of general nonlinear equations can be stable subject tosmaygial perturbations only. In
particular, see Remark 1 below.

Proposition 1 Let @ : RS x RP — RY be continuous neafo, u) € R® x RP, whereu is a
noncritical solution of the equation

®(o,u) =0. (21)

Let @ be strictly differentiable afo, U) with respect to its null set (in the spa x RP).
Let{oX} c RS\ {0} and{u} c RP be any sequences such tHat} — g, {U} — U, and
for each k it holds that

o(c* U =0. (22)

For each k, letX be any projection of fionto the solution set of the equati(il).
Then it holds that
lu — & = o(||o* - o)) (23)
as k— oo, the sequencé(c® — g, uk — ) /||oX — ||} has accumulation points, and any
such accumulation poir{d, v) satisfies the equality

0P _ 00 _
%(a, ujd+ %(a, ujv=0. (24)
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Proof Estimate (23) follows from (4), which holds under the staasdumptions, according
to Theorem 2. Indeed,

lu— || = o(]|@(a, u)|)) = O(]| @(T, u) — @(c*, W)
Ay k kK = K =
= O(H%(U,LD(U —@H) +o(|lo*—a|)) = o(|o*— a|)

ask — o, where the first equality is by the noncriticality afas a solution of (21) (in
particular, by (4)), the second equality is by (22), and thieltis by strict differentiability
of @ at (0o, u) with respect to the null set.

Note that, by its definition{d} converges ta. We then derive that

0= [[o(0*, U = [[B(c%, u) — (G, )|

- HZ—:G,@(akcmf;—ﬁ(aﬁ)(ukak) +o(l|(0"—a, v~ d9|)

ask — o, where the last equation is again by strict differenti@pitf @ at (o, u) with
respect to the null set. Taking into account (23), this iepl(i24). ad

We next discuss why the results of Proposition 1 mean thgtisn noncritical solutions
can be expected to be stable only under some poor/specakslaf perturbations.

Remark 1 Note that (24) implies the inclusion

0 _ . 0P _
%(U,J)dEImE(G,L_I). (25)

If the solutionu of (21) is singular, i.e.,
oo _
rankm(o, u) <q,

then the right-hand side of (25) is a proper linear subspad®.iHence, in this case, (25)
can hold only for very special sequendes‘}, unless

. 0P, _ . 0D _

im %(a, uj Cim W(a, uj.
But the latter property is clearly atypical, and can onlydholr very special (in a sense, poor)
parameterizations. For instance, it does not hold for patarizations allowing arbitrary
right-hand side perturbations: singular noncritical sohs usually do not “survive” such
perturbations. In particular, stability of a noncriticalstion subject to arbitrary right-hand
side perturbation implies the nondegeneracy conditioi. (16 a

We proceed to give some illustrations of the discussion @abov

Example gcontinued) Consider the mappigfrom Example 6 withp (u) = uy, ¢1(-) =1,
¢2(u) = Up. Then®~1(0) = ¢ ~1(0) = {u € R? | uy = 0} is a linear subspace of dimension
1. Since¢; never equals zero, every solutions noncritical. For anyw € R?\ {0}, the
perturbed equation (9) is solvable only when= 0, in which case the unique solution has
the form

u(w) = (wg, wa/wy). (26)

Suppose thafwK} c R? converges to Owk # 0 for all k, and {u(wX)} converges to some
ue ®~1(0). Then by (26), it necessarily holds tha/wk — U, implying that for any
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accumulation pointl of the sequencéwX/|wX|} it holds thatd, = Upd;. This fully agrees
with (25), since im®’(0) = {w € R? | w, = Upw }. Therefore, each solution (recall that
they are all noncritical) can be stable only subject to pbetions tangential to very special
directions, forming a linear subspace @hu) of dimension 1 in the space of right-hand
side perturbations, of dimension 2.

Now let ¢ (u) = ¢1(u) = u1, ¢2(u) = up. Then the solution set is the same, but the
solutionu= 0 is now critical, with all the other solutions being nonical. For anyw € R2\
{0}, the perturbed equation (9) is solvable only wiven> 0, in which case the solutions
have the form

u(w) = (i\/vT, i\;v—\/%) @7)

Suppose thafwk} c R? converges to Owk > 0 for all k, and {u(wX)} converges to some
uc ®~1(0). Then by (27), it necessarily holds tHats|/\/wWk — Up. Therefore, ifuz # 0,

then for any accumulation poidtof the sequencéw®/||wX||} it holds that eithed = (0, 1)
ord = (0, —1). This again fully agrees with (25), since #(0) = {w € R? | w; = 0}. At
the same time, it can be easily seen that the unique critidatisn u= 0 is stable subject
to a wide class of right-hand side perturbations, and ttas ilaexplained by Theorem 4
below. O

We next discuss some further examples, showing that ourdemasions are relevant for
perturbations of optimization problems with inequalitynstraints (at least if strict comple-
mentarity holds), and even for generalized Nash equilibrroblems [11].

Example 9 (DEGEN 20103 [9F onsider the canonically perturbed inequality-consedin
optimization problem
minimize —x? — xx

subject tox? <y, 28)

wherew = (x,y) € R xR is a parameter. Fav= (0, 0), the unique solution of this problem
isx=0.

The Karush—Kuhn—Tucker (KKT) optimality system with respeo (x, 4) € R x R,
characterizing stationary points and associated Lagramg#pliers of problem (28), has
the form

—2X—X+2ux=0, p>0,X<y, p(x¥—y)=0. (29)

This system has no solutionsyik 0, and ifx # 0,y = 0. Forw = (0, 0), the solution set is
{X} xR. If y> 0, this system has the solutigr(w), u(w)) = (,/y, 1+ x/(2,/y)) when
-2,/ < x; the solution(x(w), u(w)) = (=¥, 1— x/(2,/y)) when x < 2,/y; and also
the solution(x(w), pu(w)) = (—x/2,0) when—2,/y < x < 2,/y. Solutions of the first two
families tend to(x, 1) if x = o(,/y), while solutions of the last family always tend (& 0)
asw— (0, 0). Therefore, the two solutior(x, 1) and(X, 0) of the unperturbed KKT system
are stable subject to wide classes of specified perturtsti@ther solutions can “survive”
very special perturbations only, i.e., those satisfyyng O(x?). Observe that, for every
sequencgwX} C R x R such that® = (X, Yk), Xk — 0, andyx = O(x2), any accumulation
pointd of the sequencéw*/||wX||} is eitherd = (1, 0) ord = (-1, 0).

We next relate these observations about stability patierttss problem to the results
obtained above. Note that for apy> 0, near the solution = (x; () of the unperturbed KKT
system, and fow close enough t¢0, 0), system (29) reduces to the system of equations (9)

with p=2,u= (x, u), w= (X, y),
D) = (—2x(1— ), X3). (30)
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It is easy to see that= (X, 1) is a critical solution of equation (1), sine#’(u) = 0, while
To-1(0)(U) = {0} x R. Other solutionsi = (x, u) with u > 0 are noncritical, with in®’ (U) =

fw=(X,y) eRxR|y=0}.
Furthermore, using the smooth complementarity functiancan equivalently reformu-
late (29) as the parametric system of equations

®(o,u) =0, (31)
whereo = (x,y) and
®(0,u) = (=2x(1— ) — X, —2H(¢ —y) — (Min{0, u —X* +y})?).

It is easy to see that both=(X; 1) andu = (X, 0) are critical solutions of (31) foo =0
(the latter solution corresponds to the unique multiplietating strict complementarity, and
To-1(0)(U) = {0} x R,). All the other solutions are noncritical. O

Example 10 ([11, Example 1.1Qonsider the canonically perturbed generalized Nash equi-
librium problem

minimize,, (x1—1)% — x1x1 minimizey, (X2 —1/2)2 — x2X2

subjectto x3 +x2 <y, subjectto x1+x2 <y, (32)
wherew = (x, y) € R? x R? is a parameter.
The KKT-type system of problem (32) has the form
21 —1) = X1+ =0, 2(x2—1/2)—x2+U2=0, (33)
P> 0, X1 +% <y, li(Xa+X2 <y1) =0, Hp >0, X1 +X2 < Vo, to(Xa+X2 < Y2) =(3%)

Forw = (x,y) € R? x R? close enough t¢0, 0), this system has the solution

xt ) = (3 - Fra+wn 3 - 3¢e) (W xe-21.0))

if y1 < yo; the set of solutions

1
X=(t, 14y —t), u= (2(1—t)+X17 2 (t— > —Y1> +X2> ,
(%, 1) 11 1
te {E — X2ty 1+ §X1:|
if y1 = y»; and the solution

1 1 1 1 1
xem ) = ( (54 r - Hte 3+ 1) (0134 xe -2

if y1 > y». In particular, forw = (0, 0), the solution set of system (33)—(34) has the form

{(x,u) x=(t,1-t), u= (2(1—t),2(t—%)),te [%,1} }

Solutions of the first family tend t6(1/2, 1/2), (1, 0)), while solutions of the third family
tend to((1, 0), (0, 1)) asw — (0, 0). Hence, the two specified solutions of the unperturbed
KKT-type system are stable subject to wide classes of spdqiferturbations. Solutions of
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the remaining second family may tend to any solution of thegenturbed KKT-type system,
depending on the control of but this family exists for very special perturbations omlg.,
those withy; = y».

All these observations fully agree with the results obtdimdove, the same way as
in Example 9, by considering separately those solutiorisfgaty strict complementarity
(corresponding tb € (1/2, 1)), and by treating the remaining two solutions via the smooth
equation reformulation of the KKT-type system. a

We proceed to prove some formal results showing that, unlikecritical solutions,
critical ones can indeed be expected to be stable under somelasses of perturbations.
To this end, the notion of 2-regularity of a mapping will besfus.

Consider a mapping@ : RP — RY, which is twice differentiable at € RP. Let [T be
the projector inRY onto an arbitrary fixed complementary subspace opiifu) along this
subspace. For eache RP, define theg x p-matrix

W(E v) = @'(0) + 1" (T) . (35)
The mapping® is referred to ag-regularat the pointuin the directionv € RP if
rank¥(u; v) = q.

It can be easily seen that the 2-regularity property is iavarwith respect to the choice
of I, and to the norm of, and it is stable subject to small perturbationsroMoreover,
2-regularity in a directiow implies 2-regularity in the directiorv as well.

The notion of 2-regularity proved to be a useful tool in nnakr analysis and optimiza-
tion theory; see, e.g., the book [2] and references thelkig. is regular atu'in the sense
of (16), then it is 2-regular at this point in every directidtowever, in the singular case
when (16) does not hold, the linear approximationdofs not adequate, and second-order
information needs to be employed. This is where the notid@gularity comes into play,
and helps to extend various results to the singular casesgfoe applications, see, e.g., [4,
21,22,14,15]).

Here, we use 2-regularity in the context of implicit functitheorems. One important
theorem of this kind was derived in [5], but it is not appliain the irregular case with
p = g, which is the setting of principal interest in the presentkvé more general implicit
function theorem was established in [18]. It is free from #fwve disadvantage, and con-
tains the result of [5] as a particular case. The followinggatsons are obtained applying the
implicit function theorem of [18] to the case of the rightrgside perturbations.

Theorem 4 Let @ : RP — RY be twice differentiable nearc RP, and let its second deriva-
tive be continuous at. Letu be a solution of equatiofi). Let K RP be a closed cone such
that the mapping® is 2-regular atu in every direction \e K\ {0}. Let /T be the projector

in R% onto some complementary subspaciero®’(u) along this subspace. Define the set

W=W(K, IT) = ®(K), (36)

where® : RP — RY, 1
®(u) = @' (Wu-+ 51" (W@]u, ul.

Then there exist = ¢(K, 1) > 0 and C= C(K, IT) > 0 such that for every w W N
B(0, ) the equation®(u) = w has a solution (w) such that

[Ju(w) —ul] <C([|(F = M)w| + /[ Tw]). (37)
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We next provide some examples showing that, unlike for ritical solutions, Theo-
rem 4 can guarantee stability of critical solutions subjecivide classes of perturbations,
allowing for star-like domains of “good” parameter valuegéth nonempty interior (and in
particular, not “asymptotically thin”).

Example 6(continued) Consider again the mappifgfrom Example 6 with¢ (u) = u,
#1(-) = 1, ¢2(u) = up. Consider any noncritical solution, say= (0, 1). Let 1 be the or-
thogonal projector ontGim @’ (1)) = {w € R? | wy +w, = 0}. We have that

- (A5 3). o (30). ve- (1)

Therefore, de¥/(U; v) = v1, and henceg is 2-regular atiin any directiorv such thav; # 0.
In particular, for everyy > 0, the mapping® is 2-regular auin any directionv from the
closed cone

Ky={veR?||vi| > yival}. (38)
3
W (K., TI)
2,
1t
ws g y=1
_1,
v=0.1

_2,
_3 L

-3 -2 -1 0 1 2 3

Fig. 2 Setw(K,, ).

Furthermore,

D(u) = (U — U1lp/2, Ug +UyUp/2),

and hence, the equation
d(u)=w (39)

is solvable fow # O if and only ifw; +ws # 0, with the unique solution being

u(w) = (%(W1+W2), WZ_Wl) .

Wi + W
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15¢

0.5

-15

Fig. 3 SetsW(Ky, 1) andw.

This readily implies that, for the cort§, defined in (38), the set defined according to (36)
has the form

W(Ky, 1) = {w e R?| (W1 +W2)2/2 > ylwo —wy| } .

This set is shown in Figure 2 as the area between the two symgerpatabolas; it is “asymp-
totically thin” near 0, which means that the ratio of the &size.g., the Lebesgue measure) of
the intersection of this area wiB(0, &) and the “size” oB(0, d) tends to zero ad — 0+.
Theorem 4 can be applied wikh= Ky, and it claims that for every > 0 there exist(y) >0
andC(y) > 0 such that for everw € W(K,, IT) satisfying|\w|| < £(y), the perturbed equa-
tion (9) has a solution(w) satisfying

[[u(w) — ull < C(y)(Iw +Wa| +/|wi — wal). (40)

Smaller values of > 0 give larger set®/(K,, 1) (see Figure 2), and in the limit 35— 0,
they give the entire plane with excluded nonzero points erlitre w; +w, = 0. However,
the domain of “appropriate” values wf remains “asymptotically thin”, even if we give up
with the estimate (40): according to Proposition 1, for gwkie R? with dy # d» it holds
thatw(t) = td does not belong to this domain for &l 0 small enough.

We next turn to the case wher(u) = ¢1(u) = us, $2(u) = u. Consider any noncritical
solution, sayu= (0, 1). Let IT be the orthogonal projector onfem @'(0))* = {w € R? |
wy = 0}. We have that

(3. waw-(22). wov-(%3)

This matrix is singular whatever is taken gsand hence@ is not 2-regular ati in any
direction. Therefore, Theorem 4 is not applicable at sutitisms.



Critical solutions of nonlinear equations 19

Consider now the unique critical solution="0. We have®’(u) =0, 1 =1, ¥(G; v) =
@"(u)[v]. Therefore, deWﬁLT; v) = vp, and henceg is 2-regular atiin any directiorv such
thatvy # 0. Furthermore® = @ and for the con&, defined in (38), we have that

W(Ky, IT) = {w e R? | wy > ylwa|}.

Observe that, as a consequence of full degeneracy, in théd\eK,, I7) is always a cone;
see Figure 3. Theorem 4 applied with= Ky, claims that for every > 0 there exise(y) >
0 andC(y) > 0 such that for everyv € W(K, 1) satisfying||w|| < £(y), the perturbed
equation (9) has a solutiar{w) satisfying

[[u(w) —ull < C(y)/[[w]. (41)

In the limit asy — 0O, the set3N(K,, 1) cover the entire open right half-plane with the
added zero point. More precisely, for evahe R? with ||d|| = 1 andd; > 0 there exists
y=y(d) >0 such thatl € W(K,, IT). FixanyB > 0, se(d) = min{g(y), 1/(C(y))?*+P)},
and define the set

W= {we R?|w; > 0, |w]| < &(w/|w])}.

Observe that this set is star-like with respect to 0, witheékeluded directions being only
thosed € R? satisfyingd; < 0; see Figure 3. Then for evewe< W the perturbed equation
(9) has a solutionu(w) satisfying (41) withy = y(w/|lwl||). This implies thatu(w) — U
asw — 0. Indeed, consider any sequenge‘} C W converging to zero. If the sequence
{C(y(wW¥/|[wX||))} is bounded, thefu(wX)} converges tal according to (41). On the other
hand, if{C(y(WX/[[wX||))} — oo, then from (41) and the definition &wX/||wX||) we have

lu(ws) — | < (CwW*/ W) — 0

ask — co.

Observe, however, that the estimate (41) v@tly) replaced by som€ > 0 independent
of y does not hold for allv € W. Specifically, for any choice o€ > 0, such estimate does
not hold along any sequend@X} c W convergent to zero and such thelf = o(||w]|).
Indeed, from (27) we then have

_ sl W]
IUz(Wk)—\/—ZWl— Wi\/lw‘ébc ]|

for all k large enough. ad

Motivated by the example above, in the rest of this sectiorskadl provide conditions
ensuring that a given solution is stable subject to the iigind side perturbations in a star-
like domain with nonempty interior, in particular, not “asptotically thin”.

Consider anyv € W(K, 1) for some con& C RP satisfyingK = —K, i.e., there exists
u € K satisfying (39). For convenience, I8tbe the orthogonal projector ontom @’ (1)) .
Then for everyt € R,

~ 1
d(tu) =td' (Qu+ Et2r1 " (W[u, u] = t(I — Mw+t2rw.
Therefore, for the functioruy : R — RY, wy(t) =t(1 — ﬂ)w+t2ﬂw, we conclude that

the parabolic curve defined by this function, passing thinoudfor t = 1), is contained in
W(K, IT),i.e.,wy(t) e W(K, M) for allt € R.
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Another observation is the following. For a giver RP such that® is 2-regular atiin
this direction, set

W= ®(V). (42)

Then®' (V) = ¥(; V) has rankg, and applying the standard covering theorendtatv, we
obtain the existence af > 0 such that for everw € RY satisfying|jw — w]|| < d, equation
(39) has a solution(w) tending tov asw tends tow. By stability of 2-regularity with respect
to small perturbations of a direction, there exists a clasmtkK C RP such that® is 2-
regular atu'in every directionv € K\ {0}, andv < intK. Therefore, ifd > 0 is taken small
enough, then

B(w, ) cW(K, IT). (43)

Assume now thatb is 2-regular auin a directionv € ker@’(u). We next show that if
p = q, this assumption can be expected to hold onlyig a critical solution of equation (1).
Indeed, ifuis a noncritical solution, then for evenye ker@®’(u) it holds thatv € Ta)fl(o) (u),

by (3). Thus, there exist a sequenitg} of positive reals and a sequenfe&} c RP such
that{t,} — 0, ||r*|| = o(tx), and for allk it holds that

_ 1
0= [|@(U+tev+r")| = H @' (@r+ SEP" (@[ V| +o(tF).

Hence,
1
Sl @ Vil = 17 @' (W] +o(tg) = otg),

so that
Mo (@, v =0.

Then, from (35) we obtain thate ker¥(u; v). If v # 0, the latter implies tha’ (u; v) is
singular, and hencep cannot be 2-regular at in the directionv. In particular, if @'(u)
is singular, then® cannot be 2-regular atin any directionv € ker@’(u). Therefore, for
a singular (e.g., nonisolated) but noncritical solutigrthere exists no with the needed
properties.

On the other hand, ifi is a critical solution, the neededcan exist even whep = q.
In the last example considered above, for the unique drigimationu= 0 anyv € R? with
V1 # 0 is appropriate. For the mappirg from Example 7, fou= 0 the appropriate € R3
are those satisfying vov3 £ 0. At the same time, for the mappifrom Example 8, for the
unique critical solutiom = 0 there are no appropriateFor the mappingp from Example 5,
for the unique solution = 0 the appropriate € RP are those satisfying; ... v, # 0.

Let w be defined according to (42) (and henae= T1®" (u)[v, v[/2). From inclusion
(43), which holds in this case with some> 0, it further follows thatV (K, IT) contains the
entire collection of parabolic curves specified above, ipgshrough every point of the ball
B(w, J):

Q(w, 0) CW(K, IT), (44)

where
Q(w, 8) = {ww(t) |[we B(w, J),t € R}. (45)

The following Lemma 2, and its proof, are illustrated in Fig4.

Lemma2 Let® : RP — RY be differentiable ati € RP, and letw € (im @' (U))*.
Then for eveny > 0the setQ(w, ), defined in(45), is star-like with respect to.
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TW

0 im ®'(a)

(im ®'(u))*

Fig. 4 lllustration of Lemma 2.

Proof We need to show that for evety € Q(w, &) and everyr € [0, 1], it holds thatrw €
Q(w, 9).

Take anyw € B(w, 8) andt € R such thatw = wy(t) (they exist according to (45)),
and definev; = /T(l1 — M)w+ Mw. Sincew € (im @' (0))*, we have thatl — M)w = 0,
Mw = w. Using also that7 and| — 1 are the orthogonal projectors onto two subspaces
which are orthogonal complements to each other, we obtain th

e =W = Tl (1= T) (W= W) |+ [|77 (W — W) |
< (= M)W= W2+ 1T (w—wW)||* = [w—w]* < 5%

Thereforew; € B(w, ), and hence, by (45), we conclude that
Q(W, 8) 2wy, (tVT) =tT(I — MW+t 1MW = Twy(t) = Tw.
O

Remark 21f w=0, thenQ(w, 8) =RY. On the other hand, i’ £ 0 and rank’(U) = q—1,
then for everyd € RY satisfying(w, d) > 0, it holds thatrd € Q(w, ) for all T > 0 small
enough, and therefore& (w, d) is asymptotically dense within the half-spape € RY |
(W, w) > O}. 0

Combining Theorem 4 with (44) and Lemma 2, we finally obtam fitilowing.

Theorem 5 Let® : RP — RY be twice differentiable nearc RP, and let its second deriva-
tive be continuous afi. Letu be a solution of equatiofil). Let @ be 2-regular atu in a
directionv € ker®’(u). Let [T be the orthogonal projector ontgm @’ (0))+.

Then there exist a set W W(v) ¢ RY and C=C(v) > 0 such that W is star-like with
respect to0, estimate(37) holds for every we W, and there exist = €(v) > 0and d =
d(V) > Osuch that BeM @"(0)[v, V], ) CW.
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4 Back to Lagrange multipliers

We now get back to the Lagrange optimality system (6) for tipeadity-constrained opti-
mization problem (5). We shall relate our new results foregahequations to the notions
of critical/noncritical Lagrange multipliers [23,24,2%),27] (see also the book [26]), and
derive some new insights into properties of the latter.

The Lagrange optimality system (6) is a special case of enqquét), settingp =q =
n+1l,u=(xA),

®(u) = (%(x,)\), h(x)). (46)

If X R" is a stationary point of problem (5), theh—1(0) contains the affine manifold
S= {x} x .#(X). Therefore,

Ts(U) C Tp-1(g) (W), (47)

whereu = (X, )T), for every)T € . (X). Furthermore,
dimS=dimker(h'(x))T = | — rankh'(X).

In particular, din5> 0 if and only if the regularity condition

rankh’(x) = | (48)
is violated.
Since
02
@' (u) = (a—xé(x,)\) (h’(X))T)7 (49)
h (x) 0

we obtain that

erd!(@ = { (.)€ QEA) <R | (VR n=-FZ@NE [ 60

where the linear subspa€¥Xx, )T) is given by
02
7}

Qi 7) = { € cker! (9 | S5 @ ME €im (V)" }. (51)

From (50) and (51), it can be readily seen that

dimker®’(0) = dimQ(x; A) +dimker(h' (x))T. (52)

Hence, dimker’(u) > dimSif and only if Q(x; A) # {0}, which is equivalent to saying
that A is a critical Lagrange multiplier (see (7)). In particully (2) and (47), ifA is a
noncritical multiplier, thenu is necessarily noncritical as a solution of (1) with given
by (46). Moreover, ifis an isolated stationary point, the1(0) = Snearu= (x; A) for
everyA € . (X). Hence, in this case,is a critical solution of (1) if and only iA is a critical
Lagrange multiplier.

We summarize the above relations in the following.
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Proposition 2 Let f: R" — R and h: R" — R! be twice differentiable at a stationary point
x € R" of optimization probleng5), and letA € R' be an associated Lagrange multiplier.

If A is a noncritical Lagrange multiplier, them = (x; A) is a noncritical solution of
equation(1) with @ defined in(46). _

Moreover, ifX is an isolated stationary point, then= (X, A) is a critical solution of(1)
if and only ifA is a critical Lagrange multiplier.

However, ifX is a nonisolated stationary poin{ can be critical wheru = (X, )T) is
noncritical. This is illustrated by the following.

Example 11Considerf : R? — R, f(x) = %3, h: R? — R, h(x) = x3x2. Thenx=0is a
(nonisolated) stationary point of problem (5% (0) = R, and every multiplier in this set is
critical.

We have that®(u) = (2x(1+ Ax2), AX2, X2x2), and @~1(0) is the linear subspace of
dimension 2, defined by the equation= 0. As foru= (X, A) we have

200
@@= [000],
000

it holds that dimke’ (u) = 2, whatever is taken ak. Thereforeuis noncritical. ]
Another useful observation is the following.
Remark 3Note that twice differentiability off andh at an isolated stationary poimtof

problem (5) implies strict differentiability ofp defined in (46), au= (x; A) for every
A € . (x), with respect to its null set which locally coincides wh- {Xx} x .# (X). Indeed,

2 3 A
%(X’A)%(X,A)(X@(h’(@)T(AA)H

~ “ 2 _ A
— %(X’)‘)""(h/(x)f(’\_)‘)_%(z)\)(x—i}—(h’(@f()\—)\)H

n R 2 _
- %(X”\)_%(K’\)—%(@\)(X—@ +o(|x—x])

2 R 2 3

= %W)(H *%m)(xf@ +of[[x—X])
= o(|[x X)),

1h(x) = h(x) = b (X) (x=X)|| = o(||x—X]|)

asx € R" tends tox; andA € R' andA € # (X) tend toA, yielding the needed property.
In particular, it follows that Theorem 2 implies Theorem hjil® Proposition 1 implies the
corresponding result in [19].

Observe that any stronger smoothness properties, dike strict differentiability atu,
are not implied by twice differentiability of andh. ad

The next task is to understand what the 2-regularity comusti used above in the case
of general equations, mean when the Lagrange optimalitgsys considered.
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Observe that, whep = q (as in the case in question), according to (35)is not 2-
regular atu'in a directionv € RP if and only if there existsi € RP\ {0} such that

ueker®'(u), @"(U)v,u €imae’'(0). (53)

Let @ be defined in (46). We first derive the characterization oé@utarity of @ at
U= (X A)inadirectionv=(&,n) € R"x R', whereA € .Z(X).

Define the linear operatofi (x; A) : Q(x; A) — imK (X) putting in correspondence to
every& € Q(x, A) the unique solution of the linear system

2 —
(W(9)Tn = 22 (e A)E (54)

in imh (x) = (ker(h'(x))T)*. (This operator is correctly defined, due to (51).) It hasnbee
shown in [19, Proposition 3] that

im®/(@) = {(x y) € " ximH (%] |x+ (A (X A))'ye QR AN |, (59)

whereA* stands for the adjoint of a linear operatbr
Assuming thatf andh are three times differentiable, from (49) we obtain thatves
(&,n) eR" xR andu= (x,A) € R" x R! it holds that

3 _
@ (@), U] = (%(K MIEA+ (NP TN+ (W' () [E])TA ) . (56)
' (x)[&, X

Therefore, according to (50), (51), (53)—(58),is not 2-regular in a direction= (&, n) if
and only if there existéx, A) € (R" x R")\ {(0, 0)} such that

2

x € kerh/ (), %(z Ax+(W(%)TA =0, (57)
3 _ _ _
%(K A&+ (W X) TN+ (H(XEDTA + (A A)) ' (X[E, X € (QX A )T,
(58)
' (X[, X € imh (). (59)

The next lemma gives a sufficient condition for 2-regularity

Lemma 3 Let f:R" — R and h: R" — R' be three times differentiable atc R". For a
given pair(&, n) € R" xR, and for some\ € R, assume that

3 — —
%(‘,/\)[E,x, X+ (N, ()% X)) +2(A (X A)x W (X[, X)) # 0 (60)

for all x € Q(x, )T) \ {0} satisfying(59), and
imh(%) + 1 (%)[€, QK )] =R, (61)

Then the mapping defined in(46)is 2-regular atu= (X, )T) in the direction v= (&, n).
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Proof Suppose that, on the contrary, there existsA) € (R" x R\ {(0,0)} satisfying
(57)—(59). Multiplying the left-hand side of (58) by(which belongs tdQ(x, A ) according
to (51) and (57)), we then obtain

L _ — _ =

S EMIE XX+ (1, W (R, K) + (A +A (K A)x h'(%)[&, X)) = O,

By the second relation in (57)\ is a solution of equation (54). Hence, by (59) and the
definition of A (x; A), it holds that

(AW (KE, X)) = (A (% A)x, W' (K)[E,X).

Hence, the left-hand side of (60) equals zero, which is oolysible ifx = 0. Then from
(57)—(58) we obtain that

(M)A =0, (WRIENTA € QKA
By (61), this implies thaA = 0O, giving a contradiction. O

Using the characterization of 2-regularity provided abhawee can apply Theorem 4
to the Lagrange optimality system, specifying appropréeesk. Here, we shall restrict
ourselves to deciphering Theorem 4 in this context.

In [19, Proposition 4], the following projector onto an appriate complementary sub-
space to i@’ (0) is constructed: fofx, y) € R" x R!

A(Y) = (REX + (A X)) Rz Pty V) -
With this choice offT, the seM(K, IT) defined in (36) consists dfy,y) € R" x R' such
that there existéx, A ) € K satisfying

9 _ 3 —
55 02 D (D) + 385 (G5 06 M) 20 (910 )

+HAK ) Pl ®x X = x, (62

1 L
(Xt 5Py s (R X = . (63)
Given the constructions above, Theorem 4 results in theviartig.
Proposition 3 Let f: R" — R and h: R" — R' be three times differentiable nearc R",
and let their third derivatives be continuousatLetx be a stationary point of probleii),
and letA € .#(X). LetKc R" x R' be a closed cone such that for evééy n) € K\ {(0, 0)}
there exists ngx, A) € (R" x R")\ {(0, 0)} satisfying(57)~«59).
Then there exist = £(K) > 0and C=C(K) > 0 such that for every w- (x, y) € B(0, €)
satisfying(62)~(63) with some(x, A ) € K, there existgx(w), A (w)) € R" x R! satisfying
oL
&(Xv)\)_)ﬂ h(X)—y/

and

(x(w) —% A(w) = A)|| < C (H (Py X~ (A X)) Rii¥: Prawva) |

+\/H (REX+ (A X)) P Pl -Y) H) :



26 Izmailov, Kurennoy, and Solodov

Proposition 3 establishes Holder stability of primaldds@lutions of optimization prob-
lem (5) subject to wide classes of canonical perturbatibos.other results on Holder sta-
bility of solutions and solution sets, see, e.g., [1,3033432,13] and [7, Chapter 4]. One
feature distinguishing Proposition 3 from the cited workghat it deals with stability of
a specific dual solution. A result related to Proposition 3 watablished in [19], but for
directional (one-dimensional) perturbations only. _

We next study the cases whéncan (or cannot) be 2-regular at= (x, A) in some di-
rectionv= (&, n) € ker®’(u). Note that if a directiorv € ker®’(u) for which 2-regularity
holds exists, then Theorem 5 guarantees stability of thetiealu (with this specificA €
# (x)!) with respect to a wide class of right-hand side pertudretiof the Lagrange opti-
mality system. _ _

According to Proposition 2, ik is a noncritical Lagrange multiplier, then=(X; A) is
a noncritical solution of equation (1). Furthermore, asuaised above, if is a noncritical
solution and®’(u) is singular, ther® cannot be 2-regular atin any directiorv € ker@’(u).
Therefore, according to (52), in the case of violation of ¢bastraints regularity condition
(48) we can expect 2-regularity in the needed directiong whienA is a critical multiplier,
i.e., whenQ(x; A) #0.

Recall also that according to (50) and (5¢)pelongs to ke®’(u) if and only if

2L

& € kerh'(x), W(

X A)E+ (N (X)) =0. (64)

We next consider some special cases, with conclusions stimedan Proposition 4
below. Observe first that, & = 0, then relations (57)—(59) are satisfieddsy 0 and by every
A €ker((x))T, where the subspace k&f(x))T is nontrivial when the constraints regularity
condition (48) does not hold. Hence, 2-regularity is notsilae in such directions.

Furthermore, lef +# 0, and consider the case of dipix; A) = 1, i.e.,Q(x; A) is spanned
by someé € R"\ {0} (in this caseA is referred to as a multiplier critical of order 1 [27]).
Then (51) and (64) imply tha§ is a nonzero multiple o, and takingx = 0 in (57)—(59)
reduces these relations to

(W(x)"™A =0, (N'(X[E &,A)=0.

If W' (x)[&, &] € imh'(x), then this system always has a nontrivial solution when tre ¢
straints regularity condition (48) is violated. Otherwiskis system reduces to a system
consisting of rank’(x) + 1 linearly independent linear equationslisariables. In particu-
lar, if rankh (X) <1 —2, then 2-regularity in the needed directions is not possibhis case
is especially difficult, as it allows for nonisolated crélanultipliers.

Suppose now thdt= 1. Then violation of constraints regularity condition (48gans
full degeneracyh’(x) = 0. Then it holds that

d°L

QX A) =kergz (X A). A(XA) =0,

Therefore, system (57)—(59) takes the form

3L

oL XA XA H’ T LA Te(k XA .
(}A)x=0, =z A)[EX+n("KX)" +A(N K)[E]) E(erﬁ(x, )) ,

ox2

W'(X)[&, %] = O.
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If & # 0 and dimQ(X, )T) =1, then these relations reduce to the system

KA =1 o -
(25 MIE & &+t + DN RE E] =0, th'(J[E & =0

3
with respect tqt, A ) € R x R, where we sex =t&. This system has only the trivial solution
if and only if o
H'(x)[€, €] # 0. (65)
Therefore, in the case d¢f= 1, and when constraints regularity condition (48) does not
hold andQ(x, A) is spanned by, we conclude thatb is 2-regular au’in the directions
v= (&, n) € ker®’(u) for all n € R if and only if (65) holds.
We summarize the above considerations in the following.

Proposition 4 Let f: R" — R and h: R" — R' be three times differentiable at a stationary
pointx € R" of optimization probleng5), and letA be a Lagrange multiplier associated to
x. Let X, A) be spanned by sondec R"\ {0}, i.e., A is a critical multiplier of order 1.

If rankh’(x) = | — 1, thenker@’(u) contains elements of the form=v(&, n) with some
n € R, and @ is 2-regular atu in every such direction if and only if t%)[&,&] € im N (X).

If rankh (x) <1 —2, then® cannot be 2-regular ati in any direction e ker®’(u).

If '(x) =0, and | > 2 or (65) does not hold, thei® cannot be 2-regular ati in any
direction ve ker@'(u).

Example 12 (DEGEN 20101 [9FFonsiderf : R — R, f(x) = x%, h: R? = R, h(x) = »2.
Thenx= 0 is the unique solution of problem (3)(x) = 0, and.# (x) = R. Furthermore,
oL A)=2(1+A
W(Xa ) - ( + )7
and hence, the only critical multiplier 5= —1.

For the mapping® defined in (46), equation (9) with right-hand side pertuidrat =
(X,Y) € R xR (corresponding to canonical perturbation of problem (8} the solutions
(x(w), A(w)) = (=¥, —1% x/(2,/y)) wheny > 0, and no solutions for othew # 0. If
X = 0(,/y), both these solutions tend to= (x, A) asw — 0. Other points in{X} x . (X)
can be stable only subject to special perturbatissitisfyingy = O(x?), thus withw/ ||w||
tending tod = (1, 0). _

Observe that here di@(x; A) = 1,1 = 1, and (65) holds. Hence, according to Proposi-
tion 4, @ is 2-regular atiin the directionsy = (&, n) € ker@’(u) for everyn € R. O

We conclude by mentioning that the case when@{x A) > 2 (i.e., when s critical
of order higher than 1) opens wide possibilities for 2-ragty in the needed directions, and
hence, for stability subject to wide classes of perturlmetio

Finally, itis worth making the following simple but usefubgservation: all the results and
discussions above readily extend to KKT systems involvirefjuality constraints (arising
from optimization or variational problems), to KKT-typestgms for equilibrium problems
(including GNEPSs), and to more general complementarityesys, assuming that solution
in question satisfies strict complementarity. Near suchtgwls, complementarity systems
naturally (without using any complementarity functionsjluce to a smooth system of equa-
tions. Such cases have already been illustrated by Exa@pled 10. For instance, a critical
solutionu= (x, 1) in Example 9 can be treated the same way as the unique csttalon
in Example 12, with the same conclusions for the correspmnadiapping® defined in (30).
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