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Abstract—We study the behavior of singular solutions of the Emden–Fowler type equation
y(n) = p(x, y, y′, . . . , y(n−1))|y|k sgn y, n > 2, with a regular (k > 1) or singular (0 < k < 1)
nonlinearity. A singular solution is a solution that has a vertical (possibly, resonance) asymptote
(for k > 1) or a solution that vanishes together with derivatives of order ≤ n at some point or
has a point of accumulation of zeros (for 0 < k < 1).
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1. INTRODUCTION. STATEMENT OF THE PROBLEM

Consider the Emden–Fowler type equation

y(n) = p(x, y, y′, . . . , y(n−1))|y|k sgn y, x ∈ R, n ∈ N, n ≥ 2, k ∈ (0,+∞)\{1}, (1)

where the function p : Rn+1 → R is jointly continuous in all the variables, satisfies the inequalities
m ≤ p(x, ξ1, . . . , ξn) ≤ M with some positive constants m and M , and is Lipschitz continuous in
the variables ξ1, . . . , ξn. The class of such functions is denoted by Pn. We also consider the equation

y(n) = p0|y|k sgn y, n ≥ 2, k ∈ (0,+∞)\{1}, p0 ∈ R\{0}, (2)

which is a special case of Eq. (1) if p0 > 0.

The monograph [1, Sec. 11] defines singular solutions of the first and second kind. The termi-
nology is as follows. For the regular nonlinearity (k > 1), a singular solution is either a nonoscil-
lating solution that has a vertical asymptote at the right endpoint x∗ of its existence interval or
an oscillating solution that has a resonance asymptote at that point (i.e., satisfies the conditions
lim x→x∗−0 y(x) = +∞ and lim x→x∗−0 y(x) = −∞). For the singular nonlinearity (0 < k < 1),
a singular solution is either a solution that, together with the derivatives of order ≤ n, vanishes at
some point or an oscillating solution that has a point of accumulation of zeros.

The present paper considers the asymptotic behavior of singular solutions of Eqs. (1) and (2) near
the boundary of their existence intervals or near a point where the uniqueness of solutions is violated.
Note that we obtain a complete asymptotic classification of solutions, including a description of
singular solutions, of Eq. (1) with p = p(x) for n = 3 and of Eq. (2) for n = 4.

2. REGULAR NONLINEARITY. CONSTANT-SIGN SOLUTIONS

We say that the function p(x, ξ1, . . . , ξn) satisfies the condition A(x∗, p0) if it tends to the num-
ber p0 as x → x∗ − 0, ξ1 → +∞, . . . , ξn → +∞. It is known for n ∈ {2, 3, 4} that if p satisfies the
condition A(x∗, p0), then each positive solution of Eq. (1) with a vertical asymptote at the point x∗

has the power-law asymptotics

y(x) = C(x∗ − x)−α(1 + o(1)) as x → x∗ − 0, (3)
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α =
n

k − 1
, (4)

C =

(
α(α + 1) · · · (α+ n− 1)

p0

)1/(k−1)

(5)

(see [1, Ch. V] for n = 2 and [2; 3, Ch. 5.3] for n ∈ {3, 4}).
It was also proved in [4] that for each n there exist positive constants C1 and C2 such that

any solution with a vertical asymptote at x = x∗ satisfies the inequalities C1(x
∗ − x)−α ≤ y(x) ≤

C2(x
∗ − x)−α in a left neighborhood of x∗. Under some additional assumptions about p, the

paper [3, Ch. 5.1] establishes that Eq. (1) has a solution with the power-law asymptotics (3) for
any n, while for 5 ≤ n ≤ 11 there exists an (n−1)-parameter family of such solutions (see also [5]).
The natural conjecture that all positive solutions of Eq. (1) with a vertical asymptote at x = x∗

exhibit the power-law asymptotic behavior (3) [1, Problem 16.4] is false even for Eq. (2). It was
proved in [6] that for any N and K > 1 there exist an integer n > N and a real number k ∈ (1,K)
such that Eq. (2) has a solution of the form

y = p
−1/(k−1)
0 (x∗ − x)−αh(ln(x∗ − x)), (6)

where h is a nonconstant continuous positive periodic function on R. The existence of a k > 0
for which Eq. (2) has a solution of the form (6) was proved in [5] for 12 ≤ n ≤ 14 and in [7] for
arbitrary n ≥ 12.

However, Kiguradze’s above-mentioned conjecture that solutions with a vertical asymptote have
power-law asymptotic behavior is true for weakly nonlinear equations; namely, the following theo-
rem holds.

Theorem 1. Let n > 4, and let p ∈ Pn satisfy the condition A(x∗, p0). There exists a K > 1
such that if k ∈ (1,K), then each positive solution of Eq. (1) with a vertical asymptote at the
point x∗ has the power-law asymptotic behavior (3)–(5).

The proof of Theorem 1 for Eq. (2) can be found in [8] and for Eq. (1) in [9].

To state further results on the properties of solutions of Eq. (2), we need the following definition.

Definition 1. A solution y(x) of an nth-order differential equation is said to be n-positive at
a point x0 if y(x0) > 0, y′(x0) > 0, . . . , y(n−1)(x0) > 0.

Note that if k > 1, then any right maximal solution of Eq. (1) that is n-positive at some point
has a vertical asymptote at the right end of its existence interval [1, Sec. 11; 2, Ch. 5, Lemma 5.2].

It turns out that the power-law behavior of n-positive solutions may be atypical even for Eq. (2)
(see [10]). Namely, the following assertions hold.

Theorem 2. If the equation

n−1∏
j=0

(λ+ a+ j) =

n−1∏
j=0

(a+ j + 1)

has no pure imaginary roots and there exists at least one nonunit root with positive real part, then
the set of Cauchy data of asymptotically power-law solutions of Eq. (2) has Lebesgue measure zero
for each initial point x0 ∈ R.

Corollary 1. If the equation
n−1∏
j=0

(λ+ j) =

n−1∏
j=0

(j + 1)

has no pure imaginary roots and there exists at least one nonunit root with positive real part, then
there exists a kn > 1 such that for any k > kn and any initial point x0 ∈ R the set of Cauchy data
of asymptotically power-law solutions of Eq. (2) has Lebesgue measure zero.
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Theorem 3. For any integer n ∈ [12, 203], there exists a kn > 1 such that for any real k > kn
the set of Cauchy data of asymptotically power-law solutions of Eq. (2) at any point x0 ∈ R has
Lebesgue measure zero.

Note that some singular solutions of higher-order equations were studied in [11]. Equations with
a nonpower-law nonlinearity were considered, e.g., in [12].

3. REGULAR AND SINGULAR NONLINEARITIES.
SIGN-ALTERNATING SOLUTIONS

The existence of oscillating solutions of Eq. (1) was proved in [1, Sec. 15] (see also [3, Ch. 6]).
The behavior of such solutions was described in [3, Ch. 6] for third- and fourth-order equations and
in [13–21] for higher-order equations. Let us present a result showing that formula (6), which de-
scribes nonpower-law behavior of singular solutions of Eq. (2), can also describe oscillating solutions
of this equation if h is a sign-alternating periodic function (see [22]).

Theorem 4. For any integer n > 2 and real k > 1, there exists a periodic oscillating function h
on R such that for all p0 < 0 and x∗ ∈ R the function

y(x) = |p0|−1/(k−1)(x∗ − x)−αh(ln(x∗ − x)) (7)

is a solution of Eq. (2) on (−∞, x∗).

Corollary 2. For any even n > 2 and real k > 1, there exists a sign-alternating periodic
function h such that for all p0 < 0 and x∗ ∈ R the function

y(x) = |p0|−1/(k−1)(x− x∗)−αh(ln(x− x∗)) (8)

is a solution of Eq. (2) on (x∗,+∞).

Corollary 3. For any odd n > 2 and real k > 1, there exists a sign-alternating periodic
function h such that for all p0 > 0 and x∗ ∈ R the function (8) is a solution of Eq. (2) on (x∗,+∞).

Theorem 5 [23]. For any integer n > 2 and positive k < 1, there exists a sign-alternating
periodic function h such that for any p0 satisfying the inequality (−1)np0 < 0 and all x∗ ∈ R the
function (7) is a solution of Eq. (2) on (−∞, x∗).

Note that the behavior of oscillatory solutions was also described in detail when producing
the asymptotic classification of solutions of third- and fourth-order equations (2) (see [24–27]).
The oscillatory solutions turn out to have the form (7) (see [28]).

4. SINGULAR NONLINEARITY. CONSTANT-SIGN SOLUTIONS

Now let 0 < k < 1. Let us prove an analog of Theorem 1. Set

m = n− 1, β =
1− k

n
= − 1

α
> 0.

Let us extend the definition of the condition A(x∗, p0) by allowing x∗ to be infinite. We say
that the condition A(+∞, p0) is satisfied for a function p(x, ξ1, . . . , ξn) if p(x, ξ1, . . . , ξn) tends to p0
as x → +∞, ξ1 → +∞, . . . , ξn → +∞.

Theorem 6. Let n ≥ 2, and let p ∈ Pn. If p satisfies the condition A(+∞, p0), then there
exists a k∗ ∈ (0, 1) such that for any real k ∈ (k∗, 1) any right maximal solution of Eq. (1) that is
n-positive at some point has the power-law asymptotic behavior

y(x) =

(
p0β

n

m∏
l=1

(1− βl)−1

)1/(1−k)

x1/β(1 + o(1)) as x → +∞. (9)
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Proof. Let us construct a dynamical system with parameter β on the m-dimensional sphere Sm.
This sphere will be viewed as the quotient space of the space R

n\{0} by the equivalence relation

(z0, . . . , zm) ∼ (λz0, . . . , λzm), λ > 0.

The equivalence class of a point (z0, . . . , zm) ∈ R
n \{0} will be denoted by (z0 : . . . : zm). Any

nontrivial solution y(x) of Eq. (2) with p0 = 1 generates the curve in S
m formed by the points

(
y(x) :

∣∣∣∣y
′(x)

a1

∣∣∣∣
1/(1−β)

sgn y′(x) : . . . :

∣∣∣∣y
(j)(x)

aj

∣∣∣∣
1/(1−βj)

sgn y(j)(x) : . . . :

∣∣∣∣y
(m)(x)

am

∣∣∣∣
1/(1−βm)

sgn y(m)(x)

)
,

where x ∈ dom y and

a1 =

m∏
l=1

(1− βl)−1/n, aj+1 = (1− βj)a1aj = aj+1
1

j∏
l=1

(1− βl), j = 1, . . . ,m− 1. (10)

In the chart that covers the part of S
m
+ ⊂ S

m where all zj are positive and which has the
coordinate functions vj : (z0 : . . . : zm) 	→ (zj/z0)

1−βj , j = 1, . . . ,m, this curve, when locally
parametrized by the variable

τ = a1

x∫
x0

y(ξ)−βdξ,

can be described by the system of equations

dv1
dτ

= (1− β)(v2 − v21),

dvj
dτ

= (1− βj)(vj+1 − v1vj), j = 2, . . . ,m− 1,

dvm
dτ

= (1− βm)(1− v1vm).

(11)

Once such a trajectory enters the domain S
m
+ , it remains there forever. We denote the unique

fixed point of system (11) in S
m
+ by v∗. (All the coordinates of this point are equal to unity.)

Similar formulas define the curve in other charts, which, taken together, cover the entire sphere.
Different variables parametrizing the curve in different charts can be merged into one variable with
the use of a partition of unity. In this way, we arrive at a dynamical system S depending on
a parameter β and globally defined on the entire sphere S

m.

We need the following three lemmas.

Lemma 1. There exist numbers β1 > 0 and r > 0 such that for all β ∈ [0, β1] the Jacobian
matrix of system (11) at the point v∗ = (1, . . . , 1) has m distinct eigenvalues with negative real
parts and with absolute value ≥ r.

Proof. This Jacobian matrix is an m×m matrix, and for β = 0 it has the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 . . . 0 0

−1 −1 1 . . . 0 0

−1 0 −1 . . . 0 0

. . . . . . . . . . . . . . . . . .

−1 0 0 . . . −1 1

−1 0 0 . . . 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Let us prove by induction on m ∈ N that its characteristic polynomial Pm(λ) can be represented
in the form

Pm(λ) =
(1 + λ)m+1 − 1

(−1)mλ
. (12)

For m = 1, we have

P1(λ) = −2− λ = −(1 + λ)2 − 1

λ
=

(1 + λ)1+1 − 1

(−1)1λ
.

Assume that (12) has been proved for some positive integer m. To compute Pm+1(λ), we expand
the corresponding Jacobian by the last row,

Pm+1(λ) = (−1)(−1)m + (−1− λ)Pm(λ) = (−1)m+1 − (1 + λ)
(1 + λ)m+1 − 1

(−1)mλ
=

(1 + λ)m+2 − 1

(−1)m+1λ
,

which implies relation (12) for m replaced with m+ 1.

The roots of the polynomial Pm(λ) are

λj = −1 + cos
2πj

n
+ i sin

2πj

n
, j = 1, . . . ,m,

where the value j = 0 is omitted in view of the denominator in the representation (12).

The real parts of these roots do not exceed

−1 + cos
2π

n
= −1 + cos

2πm

n
= −2 sin2 π

n
.

Since all the roots of the polynomial are distinct and hence simple, it follows from the implicit
function theorem that they continuously depend on the coefficients of the polynomial. Hence the
real parts of all eigenvalues of the Jacobian matrix of system (11) at the point (1, . . . , 1) are smaller
than − sin2(π/n) for sufficiently small β > 0. This proves the lemma.

Lemma 2. There exists a β2 > 0 and an open neighborhood U of the point v∗ such that for
all positive β < β2 any trajectory of the dynamical system S passing through the closure U tends
to v∗. If such a trajectory does not coincide with v∗, then it crosses the boundary ∂U transversally
at some time.

Proof. Let us change the local coordinates from (vj)1≤j≤m to (wj)1≤j≤m to describe the systemS

on S
m
+ more conveniently. To this end, first we apply a shift that continuously depends on β

and moves the fixed point to the point 0. Then we make a C-linear transformation continuously
depending on β such that the linearization of the right-hand side of the system is given by a diagonal
matrix. In the new (complex) coordinates, our system is written in the form

dwj

dτ
= λj(β)wj + qj(w, β), j = 1, . . . ,m,

with continuous functions qj(w, β) quadratic in β.

Let Q be a positive constant such that |qj(w, β)|2 ≤ Q|w|2 for all j ∈ {1, . . . ,m}, any w ∈ C
m,

and any positive β ≤ β1, where β1 is the constant in Lemma 1 and |w|2 =
∑m

j=1 |wj |2.
The τ -derivative of the quadratic function |w|2 can be estimated as

d|w|2
dτ

= 2

m∑
j=1

Re (λj(β)|wj |2 + qj(w, β)wj) < 2|w|2(−r +Q|w|),

where r > 0 is the constant in Lemma 1. Thus,

d ln |w|2
dτ

< −r for |w| < r

2Q
.
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The last inequality specifies the desired neighborhood U of the fixed point v∗. One has ln |w|2 → −∞
as τ → +∞ on any trajectory passing through the closure U ; i.e., all such trajectories tend to v∗.

Since the function ln |w|2 is defined at all points of the set U \{v∗}, we see that the above
estimate of the derivative d ln |w|2/dτ proves the last assertion of the lemma. The proof of the
lemma is complete.

Now consider a solution y(x) of Eq. (1) assuming that p → 1 as x → +∞, ξ1 → +∞, . . . ,
ξn → +∞. This solution defines a curve in S

m, which is described in the same chart by the system

dv1
dτ

= (1− β)(v2 − v21),

dvj
dτ

= (1− βj)(vj+1 − v1vj), j ∈ {2, . . . ,m− 1},
dvm
dτ

= (1− βm)(q(τ) − v1vm),

(13)

where the function q(τ) is obtained by an appropriate substitution into the function p and tends
to unity as τ → +∞.

Lemma 3. The set of all ω-limit points of a trajectory described by system (13) with a func-
tion q(τ) tending to unity as τ → +∞ is the union of some entire trajectories of the system S.

Proof. Let v̂ be a limit point of a trajectory v(τ) of system (13). Then there exists a se-
quence {τj} such that v(τj) → v̂ and τj → +∞ as j → +∞. Let us draw a trajectory of system (11)
through v̂ and show that any of its points is a limit point of the trajectory v(τ) as well. Let ṽ(τ) be
the solution of system (11) with ṽ(0) = v̂, let ṽ(T ) = v̆, and assume that the point v̆ is not a limit
point of v(τ). Then there exists a number ε > 0 such that the inequality |v(τ)− v̆| > ε is satisfied
for all sufficiently large τ .

On the other hand, by the theorem on the continuous dependence of the solution on the initial
data and the right-hand side, there exists a number δ > 0 such that if |q(τ) − 1| < δ, then
|v(τ0 +T )− ṽ(T )| < ε for any trajectory v(τ) of system (13) satisfying the condition |v(τ0)− v̂| < δ
at some point τ0.

Therefore, we arrive at a contradiction by taking τ∗ from the sequence {τj} to be large enough
that |v(τ∗) − v̂| < δ and |q(τ) − 1| < δ for all τ > min(τ∗, τ∗ + T ). The proof of the lemma
is complete.

Since the sphere Sm is compact, it follows that each trajectory s(τ) on it has at least one ω-limit
point. If this ω-limit point is unique, then it is the limit of points of the trajectory as τ → +∞.
Thus, if a trajectory does not tend to the point v∗, then it necessarily contains at least one ω-limit
point v∗∗ 
= v∗. If the trajectory s(τ) is defined by a solution of Eq. (1) tending to +∞ as x → +∞,
then we can assume that v∗∗ ∈ S

m
+ . By Lemma 2, the trajectory s1(τ) of the system S through

the point v∗∗ crosses ∂U transversally for some β ∈ (0, β2). If the function q(τ) is sufficiently close
to unity, then the trajectory s(τ) crosses ∂U transversally as well. In this case, it can enter U
but can never leave it. Hence the points of s1(τ) outside U cannot be ω-limit points of s(τ). This
contradiction with Lemma 3 shows that s(τ) → v∗ as τ → +∞. In particular,

v1 = (z1/z0)
1−β → 1 as τ → +∞,

which implies that the corresponding solution y(x) of Eq. (1) satisfies the condition

y′

a1y1−β
→ 1 as x → +∞.

Hence (yβ)′ ∼ a1β as x → +∞, and we obtain y ∼ (a1βx)
1/β = Cβx

1/β, where

Cβ = (a1β)
1/β = β1/β

m∏
l=1

(1− βl)−1/(1−k) =

(
βn

m∏
l=1

(1− βl)−1

)1/(1−k)

in view of (10).
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This proves Theorem 6 for the case of p0 = 1.

If y is a solution of Eq. (1) with a function p tending to some number p0 > 0, p0 
= 1, as x → +∞,
ξ1 → +∞, . . . , ξn → +∞, then the function p0

−1/(1−k)y is a solution of the same equation (1)

with a different but similar function p tending to unity. Thus, p0
−1/(1−k)y ∼ Cβx

1/β, and hence
relation (9) holds. The proof of Theorem 6 is complete.

5. ASYMPTOTIC CLASSIFICATION OF SOLUTIONS
OF THIRD- AND FOURTH-ORDER EQUATIONS

WITH A SINGULAR NONLINEARITY

A complete asymptotic classification of solutions has been obtained for the second-, third-,
and fourth-order equations. In particular, a more accurate asymptotic representation of singular
solutions has been indicated in all of these cases. This classification can be found in [1, Ch. V; 29]
for second-order equations with various restrictions on the function p and in [3, Ch. 7; 25] for third-
and fourth-order equations with a regular nonlinearity. The papers [14–16] deal with various aspects
of qualitative behavior of solutions of third- and fourth-order equations. In the case of the regular
nonlinearity (k > 1), the asymptotic classification only deals with maximally extended solutions,
because the solutions can only have singular behavior near the endpoints of their existence intervals.
For k < 1, singular behavior can also be observed at an interior point of the existence interval.
This necessitates introducing the following definition to classify these solutions.

Definition 2. A maximally unique solution, or a μ-solution, is a solution y : (a, b) → R, where
−∞ ≤ a < b ≤ +∞, such that the following two conditions are satisfied:

(i) The equation has no solution that coincides with y on some subinterval of (a, b) and is not
equal to y at some point in (a, b).

(ii) The equation either has no solutions defined on another interval containing (a, b) and equal
to y on (a, b) or has at least two such solutions that are not equal to each other at points arbitrarily
close to the boundary of the interval (a, b).

Note that the assumptions of the classical solution uniqueness theorem for the Cauchy problem
are not satisfied in this case. However, the following assertion holds [2, Ch. 7.3].

Theorem 7. Let p ∈ Pn. Then the Cauchy problem

y(i)(x0) = y0
i , i = 0, . . . , n− 1,

for Eq. (1) has a unique solution for any numbers x0, y
0
0 , . . . , y

0
n−1 such that at least one y0

i is
nonzero.

Set γ = n/(1− k) > 0.

Theorem 8. Let n = 3, let 0 < k < 1, and let p(x, ξ1, . . . , ξn) = p(x), where p(x) is a nonnegative
continuous function defined on the entire real line R and having finite positive limits p∗ and p∗
as x → ±∞, respectively.

Then any μ-solution of Eq. (1) is one of the following solutions.

1. A constant-sign solution with asymptotically power-law behavior on (x∗,+∞); namely,

y(x) = ±C(p(x∗))(x− x∗)γ(1 + o(1)) as x → x∗ + 0,

y(x) = ±C(p∗)xγ(1 + o(1)) as x → +∞,
(14)

where

C(p) =

(
(1− k)3p

3(k + 2)(2k + 1)

)1/(1−k)

.

2. A solution oscillating on (−∞, x∗) whose points xj , j ∈ Z, of local extremum satisfy the
conditions

xj → −∞, |y(xj)| = |xj |γ+o(1) as j → −∞,

xj → x∗ − 0, |y(xj)| = |x∗ − xj |γ+o(1) as j → +∞.
(15)
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3. A solution that satisfies relations (14) as x → +∞ and (15) as x → −∞ and does not vanish
together with its derivatives y′ and y′′ at any point.

Remark. If p0 > 0 in Eq. (2), then each solution of the form 2 in Theorem 8 can be written
as follows on the interval (−∞, x∗) :

y(x) = (x∗ − x)γh(log(x∗ − x))

with some nonconstant oscillating periodic function h (see Theorem 5). See also [21, Th. 16].

Theorem 9. Let n = 4, let 0 < k < 1, and let p0 < 0. Then all μ-solutions of Eq. (2) can be
divided into three types according to their asymptotic behavior :

1. Oscillating solutions defined on the half-line (−∞, b). The distance between their neighboring
zeros grows infinitely as x → −∞ and tends to zero as x → b. These solutions y and their
derivatives y(j) satisfy the conditions

lim
x→b

y(i)(x) = 0 and lim
x→−∞

|y(i)(x)| = +∞, i = 0, . . . , 4.

The following estimates hold at the points of local extremum:

C1|x− b|γ ≤ |y(x)| ≤ C2|x− b|γ (16)

with positive constants C1 and C2 depending on k and p0 alone.

2. Oscillating solutions defined on the half-line (b,+∞). The distance between their neighboring
zeros tends to zero as x → b and grows infinitely as x → +∞. These solutions y and their
derivatives y(j) satisfy the conditions

lim
x→b

y(i)(x) = 0 and lim
x→+∞

|y(i)(x)| = +∞, i = 0, . . . , 4.

The estimates (16) hold with positive constants C1 and C2 depending on k and p0 alone at the
points of local extremum.

3. Oscillating solutions defined on R. These solutions y and their derivatives y(j) satisfy the
relations

lim
x→−∞

|y(i)(x)| = lim
x→+∞

|y(i)(x)| = ∞, i = 0, . . . , 4.

The following estimates hold at the points of local extremum that are sufficiently large in absolute
value:

C1|x|γ ≤ |y(x)| ≤ C2|x|γ

with positive constants C1 and C2 depending on k and p0 alone.

Theorem 10. Let n = 4, let 0 < k < 1, and let p0 > 0. Then all μ-solutions of Eq. (2) are
divided into 13 types according to their asymptotic behavior :

1–2. Solutions defined on the half-line (b,+∞) with power-law asymptotic behavior near the
boundaries of the existence interval (with the same signs ±) :

y(x) ∼ ±C4k(x− b)γ as x → b+ 0, y(x) ∼ ±C4kx
γ as x → +∞,

where

C4k =

(
4(k + 3)(2k + 2)(3k + 1)

p0(k − 1)4

)1/(k−1)

.

3–4. Solutions defined on the half-line (−∞, b) with power-law asymptotic behavior near the
boundaries of the existence interval (with the same signs ±) :

y(x) ∼ ±C4k|x|γ as x → −∞, y(x) ∼ ±C4k(b− x)γ as x → b− 0.
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5. Periodic oscillating solutions defined on the entire line R. All of those can be derived from
one solution, say, z(x) using the relation y(x) = λ4z(λk−1x+ x0) with arbitrary λ > 0 and x0.

Thus, there may exist such solutions with an arbitrary maximum h > 0 and an arbitrary period
T > 0 but not with an arbitrary pair (h, T ).

6–7. Solutions defined on R that are oscillating at −∞ and have power-law asymptotic behavior
at +∞ :

y(x) ∼ ±C4kx
γ as x → +∞.

For every solution of this type, there exists a finite limit of the absolute values of its local extrema
as x → −∞.

8–9. Solutions defined on R that are oscillating at +∞ and have power-law asymptotic behavior
at −∞ :

y(x) ∼ ±C4k|x|γ as x → −∞.

For every solution of this type, there exists a finite limit of the absolute values of its local extrema
as x → +∞.

10–13. Solutions defined on R that exhibit power-law asymptotic behavior at −∞ and +∞
(with four possible pairs of signs ±) :

y(x) ∼ ±C4k(p(b))|x|γ as x → ±∞.

This asymptotic classification supplements the results on the behavior of singular solutions of
higher-order equations.
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